Про число нерозкладних модулярних зображень циклічної $p$-групи над скінченним локальним кільцем
Анотація
Знайдено число нееквівалентних нерозкладних зображень спеціального вигляду циклічної p-групи над скінченним комутативним локальним кільцем скінченної довжини характеристики p.
Зразок для цитування: О. А. Тилищак, “Про число нерозкладних модулярних зображень циклічної p-групи над скінченним локальним кільцем,” Прикл. проблеми механіки і математики, Вип. 16, 19–29 (2018), https://doi.org/10.15407/apmm2018.16.19-29
Посилання
S. D. Berman, “Representations of finite groups over an arbitrary field and over rings of integers,” Izv. Akad. Nauk SSSR. Ser. Mat., 30, Issue 1, 69–132 (1966); English translation: Amer. Math. Soc. Transl., 64, No. 2, 147–215 (1967).
S. D. Berman, “The number of irreducible representations of a finite group over an arbitrary field,” Dokl. Akad. Nauk SSSR, 106, No. 5, 767–769 (1956) (in Russian).
S. D. Berman, P. M. Gudivok, “Indecomposable representations of finite groups over the ring of p-adic integers,” Izv. Akad. Nauk SSSR. Ser. Mat., 28, No. 4, 875–910 (1964); English translation: Amer. Math. Soc. Transl., 50, No. 2, 77–113 (1966).
S. D. Berman, P. M. Gudivok, “Integral representations of finite groups,” Dokl. Akad. Nauk SSSR, 145, No. 6, 1199–1201 (1962); English translation: Soviet Math. Dokl., 3, No. 2, 1172–1174 (1962).
V. M. Bondarenko, “The similarity of matrices over rings of residue classes,” in: Mat. Sbornik [in Russian], Nauk. Dumka, Kyiv (1976), pp. 275–277.
V. M. Bondarenko, M. Yu. Bortosh, “Indecomposable and isomorphic objects in the category of monomial matrices over a local ring,” Ukr. Mat. Zh., 69, No. 7, 889–904 (2017); English translation: Ukr. Math. J., 69, No. 7, 1034–1050 (2017), https://doi.org/10.1007/s11253-017-1413-8
V. M. Bondarenko, Yu. A. Drozd, “Representative type of finite groups,” Zap. Nauch. Sem. Leningr. Otdel. Mat. Inst. im. Steklova Akad. Nauk SSSR, 71, 24–41 (1977); English translation: J. Sov. Math., 20, No. 6, 2515–2528 (1982), https://doi.org/10.1007/BF01681468
P. M. Gudivok, “Representations of finite groups over quadratic rings,” Dokl. Akad. Nauk SSSR, 159, No. 6, 1210–1213 (1964) (in Russian).
P. M. Gudivok, “On the modular and integer-valued representations of finite groups,” Dokl. Akad. Nauk SSSR, 214, No. 5, 993–996 (1974) (in Russian).
P. M. Gudivok, “Representations of finite groups over number rings,” Izv. Akad. Nauk SSSR. Ser. Mat., 31, No. 4, 799–834 (1967); English translation: Math. USSR – Izv., 1, No. 4, 773–805 (1967), https://doi.org/10.1070/IM1967v001n04ABEH000589
P. M. Gudivok, “On boundedness of the degrees of irreducible modular representations of finite groups over principal ideal rings,” Dokl. Akad. Nauk UkrSSR, Ser. A., No. 8, 683–685 (1971) (in Ukrainian).
P. M. Gudivok, V. S. Drobotenko, A. I. Lichtman, “On representations of finite groups over the ring of residue classes mod m,” Ukr. Mat. Zh., 16, No. 1, 82–89 (1964) (in Russian).
P. M. Gudivok, V. I. Pogorilyak, “On indecomposable representations of finite p-groups over commutative local rings,” Dokl. Akad. Nauk UkrSSR, No. 5, 7–11 (1996) (in Russian).
P. M. Gudivok, O. A. Tylyshchak, “On irreducible modular representations of finite p-groups over commutative local rings,” Nauk. Visn. Uzhhorod. Univ., Ser. Mat. Inf., Issue 3, 78–83 (1998) (in Ukrainian).
P. M. Gudivok, I. B. Chukhraj, “On the number of indecomposable matrix representations of given degree of a finite p-group over commutative local rings of characteristic p^s ,” Nauk. Visn. Uzhhorod. Univ., Ser. Mat. Inf., Issue 5, 33–40 (2000) (in Ukrainian).
Yu. A. Drozd, “On tame and wild matrix problems,” in: Matrix problems [in Russian], Inst. Mat. Acad. Nauk UkrSSR, Kiev (1977), pp. 104–114.
Yu. A. Drozd, V. V. Kirichenko, “Primary orders with a finite number of indecomposable representations,” Izv. Akad. Nauk SSSR. Ser. Mat., 37, No. 4, 715–736 (1973); English translation: Math. USSR – Izv., 7, No. 4, 711–732 (1967), https://doi.org/10.1070/IM1973v007n04ABEH001973
Yu. A. Drozd, A. V. Roiter, “Commutative rings with a finite number of indecomposable integral representations,” Izv. Akad. Nauk SSSR. Ser. Mat., 31, No. 4, 783–798 (1967); English translation: Math. USSR – Izv., 1, No. 4, 757–772 (1967), https://doi.org/10.1070/IM1967v001n04ABEH000588
P. M. Gudivok, I. B. Chukhraj, “On the number of nonequivalent indecomposable matrix representations of the given degree of a finite p-group over commutative local ring of characteristic p^s ,” An. Şt. Univ. Ovidius Constanța, Ser. Mat, 8, No. 2, 27–36 (2000).
A. Heller, I. Reiner, “Representations of cyclic groups in rings of integers. I,” Ann. Math. Second Ser., 76, No. 1, 73–92 (1962), https://doi.org/10.2307/1970266
A. Heller, I. Reiner, “Representations of cyclic groups in rings of integers. II,” Ann. Math. Second Ser., 77, No. 2, 318–328 (1963), https://doi.org/10.2307/1970218
H. Jacobinski, “Sur les ordres commutatifs avec un nombre fini de réseaux indécomposables,” Acta Math., 118, No. 1, 1–31 (1967). https://doi.org/10.1007/BF02392474
A. Jones, “Groups with a finite number of indecomposable integral representations,” Mich. Math. J., 10, No. 3, 257–261 (1963), https://doi.org/10.1307/mmj/1028998908
M. Kneser, “Einige Bemerkungen über ganzzahlige Darstellungen endlicher Gruppen,” Arch. Math, 17, No. 5, 377–379 (1966), https://doi.org/10.1007/BF01899614
K. W. Roggenkamp, “Classification of the completely primary totally ramified orders with a finite number of nonisomorphic indecomposable lattices,” Bull. Amer. Math. Soc., 78, No. 3, 399–401 (1972), https://projecteuclid.org/euclid.bams/1183533590, https://doi.org/10.1090/S0002-9904-1972-12915-X
O. Zariski, P. Samuel, Commutative Algebra. Vol. I, Van Nostrand Company, Canada (1965).
GAP – Groups, Algorithms, and Programming, Version 4.8.10 (2018), URL: https://www.gap-system.org
E. Witt, “Die algebraische Struktur des Gruppenringes einer endlichen Gruppe über einem Zahlkörper,” J. Reine Angew. Math., 190, 231–245 (1952), https://doi.org/10.1515/crll.1952.190.231
Посилання
- Поки немає зовнішніх посилань.
Ця робота ліцензована Creative Commons Attribution 3.0 License.