Алгоритми декомпозиції області для осесиметричної задачі про контакт пружних тіл

I. I. Prokopyshyn, I. I. Dyyak, I. A. Prokopyshyn

Анотація


Запропоновано паралельні ітераційні методи декомпозиції області для розв'язування осесиметричної задачі про контакт пружних тіл. Визначено умови слабкої збіжності цих методів. Зі застосуванням скінченноелементних апроксимацій розроблені методи апробовано для дослідження контактної взаємодії двох пружних тіл обертання, одне з яких має поодиноке дискретне циліндричне пружне покриття. Вивчено вплив висоти та жорсткості покриття на контактні та міжфазні напруження.

 

Зразок для цитування: І. І. Прокопишин, І. І. Дияк, І. А. Прокопишин, “Алгоритми декомпозиції області для осесиметричної задачі про контакт пружних тіл,” Прикл. проблеми механіки і математики, Вип. 17, 68–81 (2019), https://doi.org/10.15407/apmm2019.17.68-81

 


Ключові слова


осесиметричні контактні задачі, пружні покриття, варіаційні нерівності, нелінійні варіаційні рівняння, методи декомпозиції області, метод скінченних елементів

Посилання


G. Duvant, J.-L. Lions, Inequalities in Mechanics and Physics, Nauka, Moscow (1980).

A. S. Kravchuk, “Formulation of the problem of contact between several deformable bodies as a nonlinear programming problem,” Prikl. Mat. Mekh., 42, No. 3, 466–474 (1978); English translation: J. Appl. Math. Mech., 42, No. 3, 489–498 (1978), https://doi.org/10.1016/0021-8928(78)90117-X

V. I. Kuz'menko, “On the variational method in the theory of contact problems for nonlinearly elastic laminated bodies,” Prikl. Mat. Mekh., 43, No. 5, 893–901 (1979); English translation: J. Appl. Math. Mech., 43, No. 5, 961–970 (1979), https://doi.org/10.1016/0021-8928(79)90184-9

J.-L. Lions, Some Methods of Solving Non-Linear Boundary Value Problems [in Russian], Mir, Moscow (1972); Dunod-Gauthier-Villars, Paris (1969).

L. A. Lopata, B. A. Liashenko, V. I. Kalinichenko, Yu. V. Volkov, T. V. Lopata, “Obtaining wear-resistant discrete coatings by electrical contact baking,” Probl. Tert. Znosh., Issue 51, 139–148 (2009) (in Russian).

L. A. Lopata, B. A. Liashenko, V. I. Kalinichenko, A. V. Dudan, “Electrical contact baking of discrete coatings,” Vestn. Polotsk. Gos. Univ. Ser. B, Issue 2, 147–154 (2010) (in Russian).

B. A. Liashenko, Yu. V. Volkov, Ye. K. Solovykh, L. A. Lopata, “Increasing of wear resistance of the components of ship engines and mechanisms with discrete structure coatings. Providing discrete structure coatings by technology of electrical contact baking,” Probl. Tert. Znosh., 2 (67), 110–126 (2015) (in Russian).

R. M. Martynyak, I. A. Prokopyshyn, I. I. Prokopyshyn, “Contact of elastic bodies with nonlinear Winkler surface layers,” Mat. Met. Fiz.-Mekh. Polya, 56, No. 3, 43–56 (2013); English translation: J. Math. Sci., 205, No. 4, 535–553 (2015), https://doi.org/10.1007/s10958-015-2265-0

I. Prokopyshyn, “Domain decomposition algorithms for problems of thermomecha-nical contact between several elastic bodies,” Fiz.-Mat. Model. Inform. Tekhnol., Issue 26, 63-82 (2017), https://doi.org/10.15407/fmmit2017.26.063

I. Prokopyshyn, “A contact interaction between elastic bodies, one of which has a cover, connected with the base through Winkler layer,” Fiz.-Mat. Model. Inform. Tekhnol., Issue 23, 144-160 (2016).

I. Prokopyshyn, “Domain decomposition methods for problem of static equilibrium of system of elastic bodies connected through thin nonlinear interlayers,” Fiz.-Mat. Model. Inform. Tekhnol., Issue 21, 173-185 (2015).

I. Prokopyshyn, “Domain decomposition methods for problems of unilateral contact between nonlinear elastic bodies,” Fiz.-Mat. Model. Inform. Tekhnol., Issue 15, 75-87 (2012).

I. Prokopyshyn, “Parallel domain decomposition schemes for frictionless contact problems of elasticity,” Visn. Lviv Univ. Ser. Prykl. Mat. Inf., Issue 14, 123–133 (2008).

І. І. Prokopyshyn, “Domain decomposition schemes based on the penalty method for the problems of contact of elastic bodies,” PhD thesis, Lviv (2010), 163 p.

І. І. Prokopyshyn, “Domain decomposition schemes based on the penalty method for the problems of perfect contact of elastic bodies,” Mat. Met. Fiz.-Mekh. Polya, 57, No 1, 41–56 (2014); English translation: J. Math. Sci., 212, No. 1, 46–66 (2016), https://doi.org/10.1007/s10958-015-2648-2

І. І. Prokopyshyn, І. І. Dyyak, R. M. Martynyak, “Numerical analysis of the problems of contact of three elastic bodies by the domain decomposition methods,” Fiz.-Khim. Mekh. Mater., 49, No. 1, 46–55 (2013); English translation: Mater. Sci., 49, No. 1, 45–58 (2013), https://doi.org/10.1007/s11003-013-9581-7

I. Prokopyshyn, S. Shakhno, “Differential-difference iterative domain decomposition algorithms for unilateral multibody contact problems of elasticity,” Fiz.-Mat. Model. Inform. Tekhnol., Issue 25, 125-140 (2017), https://doi.org/10.15407/fmmit2017.25.125

E. K. Solovykh, B. A. Liashenko, V. I. Kalinichenko, “Wear resistant discontinuous coatings of frame type,” Probl. Tert. Znosh., Issue 54, 31–46 (2010).

P. Avery, C. Farhat, “The FETI family of domain decomposition methods for ine-quality-constrained quadratic programming: Application to contact problems with conforming and nonconforming interfaces,” Comput. Meth. Appl. Mech. Engrg., 198, No. 21–26, 1673–1683 (2009), https://doi.org/10.1016/j.cma.2008.12.014

D. Bresch, J. Koko, “An optimization-based domain decomposition method for non-linear wall laws in coupled systems,” Math. Models Methods Appl. Sci., 14, No. 7, 1085–1101 (2004), https://doi.org/10.1142/S0218202504003556

Z. Dostál, T. Kozubek, V. Vondrák, T. Brzobohatý, A. Markopoulos, “Scalable TFETI algorithm for the solution of multibody contact problems of elasticity,” Int. J. Numer. Methods Eng., 82, No. 11, 1384–1405 (2010), https://doi.org/10.1002/nme.2807

I. I. Dyyak, I. I. Prokopyshyn, I. A. Prokopyshyn, “Penalty Robin–Robin domain decomposition methods for unilateral multibody contact problems of elasticity: Convergence results,” 32 p. (2012), http://arxiv.org/pdf/1208.6478v1.pdf

Z.-Q. Gong, K. Komvopoulos, “Effect of surface patterning on contact deformation of elastic-plastic layered media,” J. Tribol., 125, No. 1, 16-24 (2003), https://doi.org/10.1115/1.1501086

Z.-Q. Gong, K. Komvopoulos, “Mechanical and thermomechanical elastic-plastic contact analysis of layered media with patterned surfaces,” J. Tribol., 126, No. 1, 9–17 (2004), https://doi.org/10.1115/1.1609487

J. Haslinger, R. Kučera, T. Sassi, “A domain decomposition algorithm for contact problems: Analysis and implementation,” Math. Model. Nat. Phenom., 4, No. 1, 123–146 (2009), https://doi.org/10.1051/mmnp/20094106

N. Kikuchi, J. T. Oden, Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods, SIAM, Philadelphia (1988).

I. I. Prokopyshyn, I. I. Dyyak, R. M. Martynyak, I. A. Prokopyshyn, “Domain decomposition methods for problems of unilateral contact between elastic bodies with nonlinear Winkler covers,” in: Erhel J., Gander M., Halpern L., Pichot G., Sassi T., Widlund O. (eds) Domain Decomposition Methods in Science and Engineering XXI. Lecture Notes in Computational Science and Engineering, Vol. 98, Springer, Cham (2014), pp. 739–748, https://doi.org/10.1007/978-3-319-05789-7_71

I. I. Prokopyshyn, I. I. Dyyak, R. M. Martynyak, I. A. Prokopyshyn, “Penalty Robin – Robin domain decomposition schemes for contact problems of nonlinear elasticity,” in: Bank R., Holst M., Widlund O., Xu J. (eds) Domain Decomposition Methods in Science and Engineering XX. Lecture Notes in Computational Science and Engineering, Vol. 91, Springer, Berlin, Heidelberg (2013), pp. 647–654, https://doi.org/10.1007/978-3-642-35275-1_77

S. Ramachandra, T. C. Ovaert, “Effect of coating geometry on contact stresses in two-dimensional discontinuous coatings,” J. Tribol., 122, No. 4, 665–671 (2000), https://doi.org/10.1115/1.1310333


Повний текст: PDF

Посилання

  • Поки немає зовнішніх посилань.