Дослідження термонапруженого стану півпростору з багатошаровим покриттям за циклічного конвективного теплообміну із зовнішнім середовищем

V. A. Shevchuk

Анотація


З використанням отриманого замкненого аналітичного розв’язку задачі термопружності для півпростору з багатошаровим покриттям при циклічній кусково-однорідній зміні температури зовнішнього середовища досліджено вплив умов термоциклічного навантаження на термонапружений стан такої системи.

 

Зразок для цитування: В. А. Шевчук, “Дослідження термонапруженого стану півпростору з багатошаровим покриттям за циклічного конвективного теплообміну із зовнішнім середовищем,” Мат. методи та фіз.-мех. поля, 65, No. 3-4, 136–145 (2022), https://doi.org/10.15407/mmpmf2022.65.3-4.136-145


Ключові слова


теплопровідність, термопружність, півпростір, багатошарове покриття, узагальнені граничні умови, термоциклювання

Посилання


S. A. Budinovskii, E. N. Kablov, S. A. Muboyadzhyan, “Using an analytical model for the determination of elastic stresses in a multilayer system in solving problems of the development of high-temperature heat-resistant coatings for blades of aircraft turbines,” Vestn. MGTU im. Baumana, Ser. Mashinostroenie, Special Issue “Promising Structural Materials and Technologies,”, 26–37 (2011) (in Russian).

A. K. Karyshev, M. I. Supel’nyak, “Cyclic thermal stresses in a cylinder caused by non-stationary periodic conditions for heat exchange with external media,” Vestn. MGTU im. Baumana, Ser. Mashinostroenie, No. 2(87), 47–58 (2012) (in Russian).

Yu. A. Kirsanov, Cyclic Thermal Processes and the Theory of Heat Conduction in Regenerative Air Heaters [in Russian], Fizmatlit, Moscow (2007).

S. B. Kobel’skii, R. I. Kuriat, V. I. Kravchenko, A. L. Kvitka, “Procedure and analysis of three-dimensional thermal stressed states of turbine blades with coatings subjected to thermal cycling,” Probl. Prochn., No. 6, 56–64 (1999) (in Russian); English translation: Strength Mater., 31, No. 6, 564–570 (1999), https://doi.org/10.1007/BF02510892

L. V. Kravchuk, R. I. Kuriat, K. P. Buiskikh, E. A. Zadvornyi, S. G. Kiselevskaya, “Investigation of the kinetics of damage to refractory alloys under cyclic thermal loading in a gas flow,” Probl. Prochn., No. 4, 79–86 (2006) (in Russian); English translation: Strength Mater., 38, No. 4, 386–391 (2006), https://doi.org/10.1007/s11223-006-0054-1

V. A. Lebedev, G. V. Ermolaev, S. A. Loy, M. V. Matvienko, “Stressed state of a sprayed coating in thermal stability tests,” Uprochn. Tekhnol. Pokryt., No. 11, 8–12 (2014) (in Russian).

A. S. Tikhonov, V. V. Belov, I. G. Leushin, V. I. Eremenko, S. F. Zabelin, Thermocyclic Treatment of Steels, Alloys, and Composite Materials [in Russian], Nauka, Moscow (1984).

G. N. Tretyachenko, B. S. Karpinos, Strength and Durability of Materials under Thermal Cycling [in Russian], Nauk. Dumka, Kiev (1990).

V. K. Fedyukin, M. E. Smaroginskii, Thermocyclic Treatment of Metals and Machine Parts [in Russian], Mashinostroenie, Leningrad (1989).

V. A. Shevchuk, “Analytical solution of nonstationary heat conduction problem for a half-space with a multilayer coating,” Inzh.-Fiz. Zh., 86, No. 2, 423–431 (2013) (in Russian); English translation: J. Eng. Phys. Thermophys., 86, No. 2, 450–459 (2013), https://doi.org/10.1007/s10891-013-0854-7

V. A. Shevchuk, “Problem of thermoelasticity for a half-space with a multilayer coating,” Prykl. Probl. Mekh. Mat., Issue 11, 157–163 (2013) (in Ukrainain).

V. A. Shevchuk, “The methodology of investigation of thermal stressed state of bodies with thin multilayer coatings,” Mat. Met. Fiz. Mekh. Polya, 64, No. 3, 41–54 (2021) (in Ukrainian), https://doi.org/10.15407/mmpmf2021.64.3.41-54

V. A. Shevchuk, “Generalized boundary conditions of radiant-convection heat exchange of bodies with ambient medium through multilayer nonplanar coatings,” Mat. Met. Fiz.-Mekh. Polya, 62, No. 2, 82–97 (2019) (in Ukrainian); English translation: J. Math. Sci., 261, No. 1, 95–114 (2022), https://doi.org/10.1007/s10958-022-05741-y

V. A. Shevchuk, A. P. Gavris’, “Nonstationary heat-conduction problem for a half-space with a multilayer coating upon cyclic change in the ambient temperature,” Inzh.-Fiz. Zh., 93, No. 6, 1543–1551 (2020) (in Russian); English translation: J. Eng. Phys. Thermophys., 93, No. 6, 1489–1497 (2020), https://doi.org/10.1007/s10891-020-02254-w.

V. A. Shevchuk, O. P. Havrys’, “Thermostressed state of a half-space with a multilayer coating under radiative-convective heat exchange,” Prykl. Probl. Mekh. Mat., Issue 15, 171–179 (2017) (in Ukrainian).

E. Adolfsson, “Steady-periodic thermal stresses in an infinite hollow compound cylinder,” J. Therm. Stresses., 44, No. 9, 1150–1168 (2021), https://doi.org/10.1080/01495739.2021.1945516

R. Ansari, F. Alisafaei, P. Ghaedi, “Dynamic analysis of multi-layered filament-wound composite pipes subjected to cyclic internal pressure and cyclic temperature,” Comput. Struct., 92, No. 5, 1100–1109 (2010), https://doi.org/10.1016/j.compstruct.2009.09.058

T. Apatay, A. N. Eraslan, “Analyses of elastic limit heat loads in thick walled tubes subjected to periodic surface temperatures: analytical treatment,” Arch. Mech., 70, No. 1, 37–53 (2018).

D. Chen, A. Crisci, R. Boichot, J. Colas, L. Charpentier, M. Balat-Pichelin, M. Pons, F. Mercier, “Modeling multilayer coating systems in solar receivers,” Surf. Coat. Technol., 399, Article 126102 (2020), https://doi.org/10.1016/j.surfcoat.2020.126102

A. N. Eraslan, T. Apatay, “Thermoelastic stresses in a rod subjected to periodic boundary condition: an analytical treatment,” J. Multidiscip. Eng. Sci. Technol., 2, No. 9, 2438–2444 (2015).

K. Fuad, M. Daimaruya, H. Kobayashi, “Temperature and thermal stresses in a brake drum subjected to cyclic heating,” J. Therm. Stresses, 17, No. 4, 515–527 (1994), https://doi.org/10.1080/01495739408946277

H. A. E. Hawa, A. Bhattacharyya, D. Maurice, “Modeling of thermal and lattice misfit stresses within a thermal barrier coating,” Mech. Mater., 122, 159–170 (2018), https://doi.org/10.1016/j.mechmat.2018.03.009

R. C. Hendricks, G. McDonald, R. L. Mullen, M. J. Braun, B. T. Chung, J. Padovan, “Thermomechanical loading of multilayered cylindrical geometries in thermal cycling from 300 to 1300 K,” in: Y. Mori, M. J. Tang (eds), Proc. of the ASME/JSME Thermal Engineering Joint Conference (Honolulu, HI, March, 20–24, 1983), Vol. 3, ASME, New York (1983), pp. 329–340.

G. R. Humfeld (Jr.) Mechanical Behavior of Adhesive Joints Subjected to Thermal Cycling,” Master's thesis, Department of Engineering Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA (1997).

Y. Kaya, A. N. Eraslan, “Thermo-elastoplastic solutions of a thick-walled tube with fixed ends subjected to a temperature cycle from its inner surface,” Sigma J. Eng. Nat. Sci., 9, No. 2, 203–212 (2018).

B. Li, X. Fan, K. Zhou, T. Wang, “A semi-analytical model for predicting stress evolution in multilayer coating systems during thermal cycling,” Int. J. Mech. Sci., 135, 31–42 (2018), https://doi.org/10.1016/j.ijmecsci.2017.11.010

H. Mahmoudi, G. Atefi, “Analytical solution for thermal stresses in a hollow cylinder under periodic thermal loading,” J. Mech. Eng. Sci., 226, No. 7, 1705–1724 (2012), https://doi.org/10.1177/0954406211429757

W. G. Mao, Y. C. Zhou, L. Yang, X. H. Yu, “Modeling of residual stresses variation with thermal cycling in thermal barrier coatings,” Mech. Mater., 38, No. 12, 1118–1127 (2006), https://doi.org/10.1016/j.mechmat.2006.01.002

N.-A. Noda, T. Uchicoba, M. Ueno, Y. Sano, K. Iida, Z. Wang, G. Wang, “Convenient debonding strength evaluation for spray coating based on intensity of singular stress,” ISIJ Int., 55, No. 12, 2624–2630 (2015), https://doi.org/10.2355/isijinternational.ISIJINT-2015-458

V. Radu, N. Taylor, E. Paffumi, “Development of new analytical solutions for elastic thermal stress components in a hollow cylinder under sinusoidal transient thermal loading,” Int. J. Press. Vessels Pip., 85, No. 12, 885–893 (2008), https://doi.org/10.1016/j.ijpvp.2008.04.010

Y.-L. Shen, S. Suresh, “Elastoplastic deformation of multilayered materials during thermal cycling,” J. Mater. Res., 10, No. 5, 1200–1215 (1995), https://doi.org/10.1557/JMR.1995.1200

V. A. Shevchuk, “Calculation of thermal state of bodies with multilayer coatings,” in: P. M. A. Sloot, A. G. Hoekstra, C. J. K. Tan, and J. J. Dongarra (eds), Computational Science – ICCS 2002, Ser. Lecture Notes in Computer Science, Vol. 2330, Springer, Berlin (2002), pp. 500–509, https://doi.org/10.1007/3-540-46080-2_52

V. A. Shevchuk, “Generalized boundary conditions to solving thermal stress problems for bodies with thin coatings,” in: R. B. Hetnarski (ed.), Encyclopedia of Thermal Stresses, Vol. 4, Springer, Dordrecht (2014), pp. 1942–1953, https://doi.org/10.1007/978-94-007-2739-7_601

B. Srivathsa, D. K. Das, “Parametric studies of failure mechanisms in thermal barrier coatings during thermal cycling using FEM,” Int. J. Appl. Mech. Eng., 20, No. 4, 899–915 (2015), https://doi.org/10.1515/ijame-2015-0058

V. Teixeira, M. Andritschky, W. Fischer, H. P. Buchkremer, D. Stöver, “Effects of deposition temperature and thermal cycling on residual stress state in zirconia-based thermal barrier coatings,” Surf. Coat. Technol., 120-121, 103–111 (1999), https://doi.org/10.1016/S0257-8972(99)00341-2

X. Zheng, H. Chen, Z. Ma, “Shakedown boundaries of multilayered thermal barrier systems considering interface imperfections,” Int. J. Mech. Sci., 144, 33–40 (2018), https://doi.org/10.1016/j.ijmecsci.2018.05.016


Посилання

  • Поки немає зовнішніх посилань.


Creative Commons License
Ця робота ліцензована Creative Commons Attribution 3.0 License.