On the semigroup of injective endomorphisms of the semigroup $\mathbf{B}_\omega^{\it F_n}$ which is generated by the family $\it F_n$ of initial finite intervals of $\omega$
Анотація
Про напівгрупу ін’єктивних ендоморфізмів напівгрупи $\mathbf{B}_\omega^{\it F_n}$, породжену сім’єю $\it F_n$ початкових скінченних інтервалів у $\omega$
Описано ін’єктивні ендоморфізми інверсної напівгрупи $\mathbf{B}_\omega^{\it F}$, яку введено в статті [3], у випадку коли сім’я $\it F_n$ породжена множиною {0,1,…,n} . Зокрема, показано, що напівгрупа ін’єктивних ендоморфізмів напівгрупи $\mathbf{B}_\omega^{\it F}$ є ізоморфною напівгрупі $(\omega, +)$. Також описано структуру напівгрупи $\it {End}(\it B_\lambda )$ усіх ендоморфізмів напівгрупи $\lambda \times \lambda$-матричних одиниць $\it B_\lambda $.
Зразок для цитування: O. V. Gutik, O. B. Popadiuk, “On the semigroup of injective endomorphisms of the semigroup $\mathbf{B}_\omega^{\it F_n}$ which is generated by the family $\it F_n$ of initial finite intervals of $\omega$,” Мат. методи та фіз.-мех. поля, 65, No. 1-2, 42–57 (2022), https://doi.org/10.15407/mmpmf2022.65.1-2.42-57
Translation: O. V. Gutik, O. B. Popadiuk, “On the semigroup of injective endomorphisms of the semigroup $\mathbf{B}_\omega^{\it F_n}$ generated by the family $\it F_n$ of initial finite intervals in ω,” J. Math. Sci., 282, No. 5, 646–667 (2024), https://doi.org/10.1007/s10958-024-07207-9Ключові слова
Посилання
A. Ya. Aĭzenshtat, “The defining relations of the endomorphism semigroup of a finite linearly ordered set,” Sib. Mat. Zh., 3, No. 2, 161–169 (1962) (in Russian).
V. V. Vagner, “Generalized groups,” Dokl. Akad. Nauk SSSR, 84, No. 6, 1119–1122 (1952) (in Russian).
O. Gutik, M. Mykhalenych, “On some generalization of the bicyclic monoid,” Visn. Lviv. Univ., Ser. Mekh.-Mat., Iss. 90, 5–19 (2020) (in Ukrainian), https://doi.org/10.30970/vmm.2020.90.005-019
O. Gutik, O. Prokhorenkova, D. Sekh, “On endomorphisms of the bicyclic semigroup and the extended bicyclic semigroup,” Visn. Lviv. Univ., Ser. Mekh.-Mat., Iss. 92, 5–16 (2021) (in Ukrainian), http://doi.org/10.30970/vmm.2021.92.005-016
Yu. V. Zhuchok, “Endomorphism semigroups of 2-nilpotent binary relations,” Fund. Prikl. Mat., 14, No. 6, 75–83 (2008) (in Russian); English translation: J. Math. Sci., 164, No. 1, 49–55 (2010); https://doi.org/10.1007/s10958-009-9735-1
L. M. Popova, “On a semigroup of partial endomorphisms of a set with a relation,” Uch. Zap. Leningr. Gos. Ped. Inst., 238, 49–77 (1962) (in Russian).
J. Araujo, V. H. Fernandes, M. M. Jesus, V. Maltcev, J. D. Mitchell, “Automorphisms of partial endomorphism semigroups,” Publ. Math. Debrecen, 79, No. 1-2, 23–39 (2011), https://doi.org/10.5486/PMD.2011.4703
S. Bardyla, “On topological McAlister semigroups,” Preprint (2021), https://doi.org/10.48550/arXiv.2103.03301
A. H. Clifford, G. B. Preston, The Algebraic Theory of Semigroups, Vol. 1, Amer. Math. Soc., Providence (1961).
A. H. Clifford, G. B. Preston, The Algebraic Theory of Semigroups, Vol. 2, Amer. Math. Soc., Providence (1967).
O. V. Gutik, A. R. Reiter, “Symmetric inverse topological semigroups of finite rank ≤n,” Mat. Met. Fiz.-Mekh. Polya, 52, No. 3, 7–14 (2009); Reprinted in: J. Math. Sci., 171, No. 4, 425–432 (2010), https://doi.org/10.1007/s10958-010-0147-z
O. Gutik, O. Lysetska, “On the semigroup $B_ω^F$ which is generated by the family $F$ of atomic subsets of ω,” Visn. Lviv. Univ., Ser. Mekh.-Mat., No. 92, 34–50 (2021), https://doi.org/10.30970/vmm.2021.92.034-050
O. Gutik, O. Popadiuk, “On the semigroup $B_ω^{F_n}$ which is generated by the family $F_n$ of finite bounded intervals ω,” Carpathian Math. Publ., 15, No. 2, 331–355 (2023), https://doi.org/10.15330/cmp.15.2.331-355
O. Gutik, I. Pozdniakova, "On the group of automorphisms of the semigroup $B_Z^F$ with the family $F$ of inductive nonempty subsets of ω,” Algebra Discrete Math., 35, No. 1, 42–61 (2023), http://doi.org/10.12958/adm2010
E. Harzheim, Ordered Sets, Springer, New York (2005).
V. H. Fernandes, M. M. Jesus, V. Maltcev, J. D. Mitchell, “Endomorphisms of the semigroup of order-preserving mappings,” Semigroup Forum, 81, No. 2, 277–285 (2010), https://doi.org/10.1007/s00233-010-9220-7
V. H. Fernandes, P. G. Santos, “Endomorphisms of semigroups of order-preserving partial transformations,” Semigroup Forum, 99, No. 2, 333–344 (2019), https://doi.org/10.1007/s00233-018-9948-z
S. P. Fitzpatrick, J. S. V. Symons, “Automorphisms of transformation semigroups,” Proc. Edinburgh Math. Soc., 19, No. 4, 327–329 (1975), https://doi.org/10.1017/S0013091500010427
T. Lavers, A. Solomon, “The endomorphisms of a finite chain form a Rees congruence semigroup,” Semigroup Forum, 59, No. 2, 167–170 (1999), https://doi.org/10.1007/PL00006004
M. V. Lawson, Inverse Semigroups. The Theory of Partial Symmetries, World Sci., Singapore (1998).
I. Levi, K. C. O’Meara, G. R. Wood, “Automorphisms of Croisot – Teissier semigroups,” J. Algebra, 101, No. 1, 190–245 (1986), https://doi.org/10.1016/0021-8693(86)90107-9
K. D. Magill Jr. , “Automorphisms of the semigroup of all relations on a set,” Can. Math. Bull., 9, No. 1, 73–77 (1966), https://doi.org/10.4153/CMB-1966-009-7
V. Mazorchuk, “Endomorphisms of $B_n$, $PB_n$ and $C_n$,” Commun. Algebra, 30, No. 7, 3489–3513 (2002), https://doi.org/10.1081/AGB-120004500
M. Petrich, Inverse Semigroups, Wiley, New York (1984).
B. M. Schein, B. Teclezghi, “Endomorphisms of finite full transformation semigroups,” Proc. Amer. Math. Soc., 126, No. 9, 2579–2587 (1998), https://doi.org/10.1090/S0002-9939-98-04764-9
B. M. Schein, B. Teclezghi, “Endomorphisms of finite symmetric inverse semigroups,” J. Algebra, 198, No. 1, 300–310 (1997), https://doi.org/10.1006/jabr.1997.7132
R. P. Sullivan, “Automorphisms of transformation semigroups,” J. Austral. Math. Soc., 20, No. 1, 77–84 (1975), https://doi.org/10.1017/S144678870002396X
Посилання
- Поки немає зовнішніх посилань.
Ця робота ліцензована Creative Commons Attribution 3.0 License.