Коливання спряжених оболонкових систем у полі комбінованих статичних навантажень

Ya. M. Grigorenko, O. I. Bespalova, N. P. Boreiko

Анотація


Запропоновано математичну модель коливань пружних систем зі спряжених оболонок обертання різної геометрії, що знаходяться в полі ком­бінованих статичних осесиметричних навантажень. Модель базується на положеннях геометрично нелінійної теорії середнього згину в межах класич­ної теорії Кірхгофа–Лява і реалізована з використанням сучасних методів прикладної математики та чисельного аналізу. Побудовано спект­ральний портрет оболонкової конструкції з елементами додатної, нульової і від’єм­ної ґауссової кривини, який дозволяє відстежити резонансні ситу­ації при динамічних наванта­женнях і визначити небезпечні комбінації статичних наванта­жень при оцінці стійкості її рівноважних станів.

 

Зразок для цитування: Я. М. Григоренко, О. І. Беспалова, Н. П. Борейко, “Коливання спряжених оболонкових систем у полі комбінованих статичних навантажень,” Мат. методи та фіз.-мех. поля, 63, No. 3, 5–18 (2020), https://doi.org/10.15407/mmpmf2020.63.3.5-18

Translation: Y. M. Grigorenko, O. I. Bespalova, N. P. Boreiko, “Vibration of conjugated shell systems under combined static loads,” J. Math. Sci., 273, No. 1, 1–16 (2023), https://doi.org/10.1007/s10958-023-06479-x


Ключові слова


спряжені оболонкові системи, комбіновані статичні навантаження, коливання, математична модель, чисельно-аналітична методика, аналіз

Посилання


E. I. Bespalova, N. P. Boreiko, “Vibrations of composed shell systems under subcritical loads,” Prykl. Mekh., 56, No. 4, 27–37 (2020); English translation: Int. Appl. Mech., 56, No. 4, 415–423 (2020), https://doi.org/10.1007/s10778-020-01025-7

E. I. Bespalova, N. P. Boreiko, “Determination of the natural frequencies of compound anisotropic shell systems using various deformation models,” Prykl. Mekh., 55, No. 1, 44–59 (2019); English translation: Int. Appl. Mech., 55, No. 1, 41–54 (2019), https://doi.org/10.1007/s10778-019-00932-8

O. I. Bespalova, N. P. Yaremchenko, “Determination of the stress-strain state of coupled flexible shells of revolution under subcritical loads,” Visn. T. Shevchenko Kyiv. Nats. Univ., Ser. Fiz.-Mat. Nauky, Issue 4, 29–36 (2017) (in Ukrainian).

Ya. M. Grigorenko, E. I. Bespalova, A. B. Kitaigorodskii, A. I. Shinkar’, Free Vibrations of Elements of Shell Structures [in Russian], Naukova Dumka, Kiev (1986).

Ya. М. Grigorenko, O. I. Bespalova, N. P. Boreiko, “Stability of compound systems from the shells of revolution with variable Gaussian curvature,” Mat. Met. Fiz.-Mekh. Polya, 62, No. 1, 127–142 (2019) (in Ukrainian).

Ya. M. Grigorenko, A. Ya. Grigorenko, L. I. Zakhariichenko, “Analysis of influence of the geometrical parameters of elliptic cylindrical shells with variable thickness on their stress-strain state,” Prykl. Mekh., 54, No. 2, 42–50 (2018); English translation: Int. Appl. Mech., 54, No. 2, 155–162 (2018), https://doi.org/10.1007/s10778-018-0867-1

Y. М. Grigorenko, L. S. Rozhok, “Analysis of the stress state of hollow cylinders with concave corrugated cross sections,” Mat. Met. Fiz.-Mekh. Polya, 58, No. 4, 70–77 (2015); English translation: J. Math. Sci., 228, No. 1, 80–89 (2018), https://doi.org/10.1007/s10958-017-3607-x

V. G. Karnaukhov, I. F. Kirichok, “Forced harmonic vibrations and dissipative heating-up of viscoelastic thin-walled elements (Review), Prykl. Mekh., 36, No. 2, 39–63 (2000); English translation: Int. Appl. Mech., 36, No. 2, 174–195 (2000), https://doi.org/10.1007/BF02681993

S. R. Asemi, A. Farajpour, H. R. Asemi, M. Mohammadi, “Influence of initial stress on the vibration of double-piezoelectric-nanoplate systems with various boundary conditions using DQM,” Physica E: Low-dimensional Systems and Nanostructures, 63, 169–179 (2014), https://doi.org/10.1016/j.physe.2014.05.009

E. Вespalova, G. Urusova, “Vibrations of compound shells of revolution with elliptical toroidal members,” Thin-Walled Struct., 123, 185–194 (2018), https://doi.org/10.1016/j.tws.2017.11.024

E. Bespalova, G. Urusova, “Vibrations of highly inhomogeneous shells of revolution under static loading,” J. Mech. Mater. Struct., 3, No. 7, 1299–1313 (2008), https://doi.org/10.2140/jomms.2008.3.1299

S. O. Dailamani, J. G. A. Croll, “Relative importance of horizontal and vertical components of earthquake motion on the responses of barrel vault cylindrical roof shells,” in: Proc. 16th World Conference on Earthquake Engineering (16WCEE 2017), January 9–13, 2017, Santiago, Chile, Paper No. 874.

Y. C. Fung, E. E. Sechler, A. Kaplan, “On the vibration of thin cylindrical shells under internal pressure,” J. Aeron. Sci., 24, No. 9, 650–660 (1957), https://doi.org/10.2514/8.3934

M. Goodarzi, M. Mohammadi, A. Farajpour, M. Khooran, “Investigation of the effect of pre-stressed on vibration frequency of rectangular nanoplate based on a visco-Pasternak foundation,” J. Solid Mech., 6, No. 1, 98–121 (2014).

Q. Han, F. Chu, “Effect of rotation on frequency characteristics of a truncated circular conical shell,” Arch. Appl. Mech., 83, No. 12, 1789–1800 (2013), – https://doi.org/10.1007/s00419-013-0778-x

I. Harbaoui, J. B. Casimir, M. A. Khadimallah, M. Chafra, “A new prestressed dynamic stiffness element for vibration analysis of thick circular cylindrical shells,” Int. J. Mech. Sci., 140, 37–50 (2018), – https://doi.org/10.1016/j.ijmecsci.2018.02.046

L. Hua, K. Y. Lam, “The generalized differential quadrature method for frequency analysis of a rotating conical shell with initial pressure,” Int. J. Num. Methods Eng., 48, No. 12, 1703–1722 (2000), https://doi.org/10.1002/1097-0207(20000830)48:12<1703::AID-NME961>3.0.CO;2-X

J.-H. Kang, “Free vibrations of combined hemispherical-cylindrical shells of revolution with a top opening,” Int. J. Struct. Stab. Dyn., 14, No. 1, Art. 1350023 (2014), https://doi.org/10.1142/S0219455413500235

O. P. Krivenko, “Effect of static loads on the natural vibrations of ribbed shells,” // Strength of Materials and Theory of Structures, 101, 38–44 (2018), – https://doi.org/10.32347/2410-2547.2018.101.38-44

P. Kumar, C. V. Srinivasa, “On buckling and free vibration studies of sandwich plates and cylindrical shells: A review,” J. Thermoplast. Compos. Mater., 33, No. 5, 673–724 (2020), https://doi.org/10.1177/0892705718809810

T. Mazúch, J. Horacek, J. Trnka, J. Veselý, “Natural modes and frequencies of a thin clamped-free steel cylindrical storage tank partially filled with watter: FEM and measurement,” J. Sound Vibr., 193, No. 3, 669–690 (1996), – https://doi.org/10.1006/jsvi.1996.0307

M. Mohammadimehr, M. Moradi, A. Loghman, “Influence of the elastic foundation on the free vibration and buckling of thin-walled piezoelectric-based FGM cylindrical shells under combined loadings,” J. Solid Mech., 6, No. 4, 347–365 (2014).

I. Nachtigall, N. Gebbeken, J. L. Urrutia-Galicia, “On the analysis of vertical circular cylindrical tanks under earthquake excitation at its base,” Eng. Struct., 25, No. 2, 201–213 (2003), https://doi.org/10.1016/S0141-0296(02)00135-9

M. S. Qatu, “Recent research advances in the dynamic behavior of shells: 1989–2000, Part 1: Laminated composite shells,” Appl. Mech. Rev., 55, No. 4, 325–350 (2002), https://doi.org/10.1115/1.1483079

M. S. Qatu, E. Asadi, W. Wang, “Review of recent literature on static analyses of composite shells: 2000–2010,” Open J. Compos. Mater., 2, No. 3, 61–86 (2012), https://doi.org/10.4236/ojcm.2012.23009

Y. Qu, S. Wu, Y. Chen, H. Hua, “Vibration analysis of ring-stiffened conical-cylindrical-spherical shells based on a modified variational approach,” Int. J. Mech. Sci., 69, 72–84 (2013), https://doi.org/10.1016/j.ijmecsci.2013.01.026

F. Sabri, A. A. Lakis, “Hydroelastic vibration of partially liquid-filled circular cylindrical shells under combined internal pressure and axial compression,” in: Proc. 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 4–7 May 2009, Palm Springs, California, 19 p., – https://doi.org/10.2514/6.2009-2646

A. Shekari, F. A. Ghasemi, K. Malekzadehfard, “Free damped vibration of rotating truncated conical sandwich shells using an improved high-order theory,” Lat. Am. J. Solids Struct., 14, No. 12, 2291–2323 (2017), https://doi.org/10.1590/1679-78253977

A. H. Sofiyev, N. Kuruoglu, “Buckling and vibration of shear deformable functionally graded orthotropic cylindrical shells under external pressures,” Thin-Walled Struct., 78, 121–130 (2014), https://doi.org/10.1016/j.tws.2014.01.009

S. Sun, S. Chu, D. Q. Cao, “Vibration characteristics of thin rotating cylindrical shells with various boundary conditions,” J. Sound Vibr., 331, No. 18, 4170–4186 (2012), https://doi.org/10.1016/j.jsv.2012.04.018

Z. Su, G. Jin, “Vibration analysis of coupled conical-cylindrical-spherical shells using a Fourier spectral element method,” J. Acoust. Soc. Am., 140, No. 5, 3925–3940 (2016), https://doi.org/10.1121/1.4967853

B. Ustundag, On the Free Vibration Behavior of Cylindrical Shell Structures: B. S. Mechanical Engineering. Turkish Naval Academy (2006).

Y. L. Zhang, D. G. Gorman, J. M. Reese, “Vibration of prestressed thin cylindrical shells conveying fluid,” Thin-Walled Struct., 41, No. 12, 1103–1127 (2003), https://doi.org/10.1016/S0263-8231(03)00108-3

A. Zingoni, “Liquid-containment shells of revolution: A review of recent studies on strength, stability and dynamics,” Thin-Walled Struct., 87, 102–114 (2015), https://doi.org/10.1016/j.tws.2014.10.016


Повний текст: PDF

Посилання

  • Поки немає зовнішніх посилань.


Creative Commons License
Ця робота ліцензована Creative Commons Attribution 3.0 License.