Про подання розв’язку квазістатичної задачі термопружності для багатошарового циліндра

B. V. Protsiuk

Анотація


Побудовано розв’язок квазістатичної задачі термопружності для довгого багатошарового порожнистого циліндра у вигляді суперпозиції залежностей, кожна з яких описує напружений стан, зумовлений відповідними тепловим або силовим чинниками. Проілюстровано його застосування до визначенння термопружного стану для різних законів зміни температур довкілля і теплових потоків та асимптотичних режимів, а також до розв’язання обернених задач термопружності. При цьому використано знайдені точні суми рядів за власними функціями задачі теплопровідності для розглядуваного циліндра. Проаналізовано три розподіли температури довкілля усередині дванадцятишарового порожнистого циліндра, які визначено за заданими розподілами, відповідно, переміщення, радіальної деформації і колового напруження на обмежувальній зовнішній поверхні.

 

Зразок для цитування: Б. В. Процюк, “Про подання розв’язку квазістатичної задачі термопружності для багатошарового циліндра,” Прикл. проблеми механіки і математики, Вип. 21, 43–63 (2023), https://doi.org/10.15407/apmm2023.21.43-63

Ключові слова


багатошаровий циліндр, нестаціонарне температурне поле, асимптотичний тепловий режим, ряди за власними функціями, термопружність, обернені задачі, узагальнені функції, функції Ґріна, лінійні сплайни

Посилання


V. M. Vigak, Control of Temperature Stresses and Movements [in Russian], Nauk. Dumka, Kyiv (1988).

D. V. Grylitsky, Thermoelastic contact problems in tribology [in Ukrainian], IZMN, Kyiv (1996).

Fire protection. Building structures. Fire resistance test method. General requirements. DSTU B.V.1.1-4-98 [in Ukrainian], Kyiv (1999).

R. M. Kushnir, V. S. Popovych, A. V. Yasinskyi, Optimization and Identification in Thermomechanics of Heterogeneous Bodies [in Ukrainian], Vol. 5 of Y. Y. Burak, R. M. Kushnir (eds), Modeling and Optimization in Thermomechanics of Electrically Conductive Heterogeneous Bodies, Spolom, Lviv (2011).

Ya. S. Pidstrygach, Selected works [in Ukrainian], Nauk. Dumka, Kyiv (1995).

Plyatsko H. V. Nonstationary problems of thermal conductivity and thermoelasticity with an application to the calculation of elements of thermal power plants [in Russian], Academy of Sciences of the Ukrainian SSR, Kyiv (1969).

Ya. S. Podstrigach, V. A. Lomakin, Yu. M. Kolyano, Thermoelasticity of Bodies of Heterogeneous Structure [in Russian], Nauka, Moskva (1984).

B. V. Protsiuk, “Thermoelastic state of a piecewise inhomogeneous orthotropic thermosensitive cylinder,” Mat. Metody Fiz.-Mekh. Polya, 62, No. 3, 57–73 (2019) (in Ukrainian); English translation: J. Math. Sci., 263, No. 1, 62–83 (2022), https://doi.org/10.1007/s10958-022-05907-8

B. V. Protsiuk, “Quasistatic thermoelastic state of a layered functionally graded cylinder with accounting thermal radiation,” Mat. Metody Fiz.-Mekh. Polya, 65, No. 1-2, 146–157 (2022) (in Ukrainian), https://doi.org/10.15407/mmpmf2022.65.1-2.146-157; English translation: B. V. Protsiuk, “Quasistatic thermoelastic state of a layered functionally graded cylinder with regard for thermal radiation,” J. Math. Sci., 282, No. 5, 780–797 (2024), https://doi.org/10.1007/s10958-024-07216-8

B. V. Protsiuk, V. M. Sinyuta, “The temperature field of a multilayer cylinder in the asymptotic thermal regime,” Mat. Metody Fiz.-Mekh. Polya, 40, No. 4, 162–169 (1997) (in Ukrainian).

I. V. Sergienko, V. S. Deineka, “Identification by gradient methods of a thermal and thermally stressed states two-layer cylinder by known displacements,” Dop. Nats. Akad. Nauk Ukrainy, No. 7, 42–48 (2009) (in Russian).

G. Blanc, M. Raynaud, “Solution of the inverse heat conduction problem from thermal strain measurements,” J. Heat Transfer., 118, No. 4, 842–849 (1996), https://doi.org/10.1115/1.2822579

A. E. Segall, D. Engels, C. Drapaca, “Inverse determination of thermal boundary conditions from transient surface temperatures and strains in slabs and tubes,” Mater. Manuf Process, 27, No. 8, 860–868 (2012), https://doi.org/10.1080/10426914.2012.663130

Y. Tanigawa, T. Akai, R. Kawamura, N. Oka, “Transient heat conduction and thermal stress problems of a nonhomogeneous plate with temperature-dependent material properties,” J. Therm. Stresses, 19, No. 1, 77–102 (1996), https://doi.org/10.1080/01495739608946161

A. Yasinskyy, L. Tokova, “Inverse problem on the identification of temperature and thermal stresses in an FGM hollow cylinder by the surface dicplacements,” J. Therm. Stresses, 40, No. 12, 1471–1483 (2017), https://doi.org/10.1080/01495739.2017.1357455


Посилання

  • Поки немає зовнішніх посилань.


Creative Commons License
Ця робота ліцензована Creative Commons Attribution 3.0 License.