A hybrid numerical method for evaluating the building seismic protection based on digital twins
Анотація
Гібридний числовий метод розрахунку сейсмозахисту будівель на основі цифрових двійників
Наведено результати числових та експериментальних досліджень вібро-сейсмозахисту житлових будинків з використанням гумових ізоляторів українського виробництва з натуральної гуми. Числові дослідження вертикальних коливань будівлі з гумовими опорами на рівні залізобетонної сітки виконано з використанням динамічних цифрових двійників, розроблених на основі методу скінченних елементів. Числові дослідження коливань цифрових двійників виконано з використанням записів віброприскорень ґрунту, отриманих внаслідок проходження залізничних поїздів, а також ефектів, визначених акселерограмами землетрусів. Виконано розрахунки будівель на сейсмічних опорах з урахуванням сейсмічних навантажень з визначенням коефіцієнтів безпеки щодо падіння житлового будинку. Показано, що вирішення проблеми вібро- та сейсмозахисту будівель є можливим при використанні в якості ізоляторів гумових елементів, які мають нелінійну залежність жорсткості від навантаження.
Зразок для цитування: O. M. Trofymchuk, Iu. I. Kaliukh, Ya. O. Berchun, M. G. Marienkov, B. O. Khymenko, V. A. Tytarenko, V. V. Vapnichna, “A hybrid numerical method for evaluating the building seismic protection based on digital twins,” Мат. методи та фіз.-мех. поля, 66, No. 1-2, 259–274 (2023), https://doi.org/10.15407/mmpmf2023.66.1-2.259-274
Ключові слова
Посилання
V. A. Bazhenov, Ye. S. Dekhtiariuk, Construction Mechanics. Dynamics of Buildings [in Ukrainian], Institute of content and methods of education, Kyiv (1998).
DBN 360-92**. “Urban planning. Planning and construction of urban and rural settlements” [in Ukrainian].
DBN B.1.1-12:2014. “Construction in seismic regions of Ukraine” [in Ukrainian].
DSN 3.3.6.039-99. “State sanitary standards on industrial general and local vibration [in Ukrainian].
DSTU-N B EN 1998-1:2010. “Eurocode 8. Design of structures for seismic resistance. Part 1: General rules, seismic actions, rules for buildings”(EN 1998-1:2004, IDT) [in Ukrainian].
I. Kaliukh, V. Dunin, M. Marienkov, O. Trofymchuk, S. Kurash, “Peculiarities of applying the risk theory and numerical modeling to determine the resource of buildings in a zone of influence of military actions,” Kibern. Syst. Anal., 59, No. 4, 117–128 (2023) (in Ukrainian); English translation: Cybern. Syst. Anal., 59, No. 4, 612–623 (2023), https://doi.org/10.1007/s10559-023-00596-w
I. Kaliukh, O. Lebid, “Constructing the adaptive algorithms for solving multi-wave problems,” Kibern. Syst. Anal., 57, No. 6, 106–117 (2021) (in Ukrainian); English translation: Cybern. Syst. Anal., 57, No. 6, 938–949 (2021), https://doi.org/10.1007/s10559-021-00419-w
I. Kaliukh, O. Trofymchuk, O. Lebid, “Numerical solution of two-point static problems for distributed extended systems by means of the Nelder–Mead method,” Kibern. Syst. Anal., 55, No. 4, 109–118 (2019) (in Ukrainian); English translation: Cybern. Syst. Anal., 55, No. 4, 616–624 (2019), https://doi.org/10.1007/s10559-019-00170-3
V. V. Kulyabko, Dynamics of the Constructions, Buildings and Structures, Part 1, Static-Dynamic Models for the natural vibration analysis and interaction of constructions with foundations and moving loads [in Russian], Zaporizhzhia State Engineering Academy, Zaporizhzhia (2005).
M. G. Maryenkov, Yu. K. Bolotov, V. I. Dyrda, M. I. Lysytsia, “Seismic insulation of multi-storey buildings of complex configuration with pile grillages,” Nauka Budivn., 29, No. 3, 57–64 (2021) (in Ukrainian), https://doi.org/10.33644/2313-6669-14-2021-7
Yu. I. Nemchinov, N. G. Maryenkov, A. K. Khavkin, K. N. Babik, Designing Structures with a Specified Level of Seismic Resistance [in Russian], Gudimenko S. V., Kyiv (2012).
G. S. Pisarenko, Vibrations of Mechanical Systems with Consideration of Imperfect Elasticity of the Material [in Russian], Naukova Dumka, Kyiv (1970).
Control program. Multi-channel system "Seismic monitoring" version 1.0. Operator's manual [in Russian], DIATOS, Kyiv (2009).
A. N. Trofimchuk, Seismic Resistance of the Structures with Consideration of Their Interaction with the Soil Foundation [in Russian], “Poligraphconsulting”, Kyiv (2004).
H. H. Fareniuk, Yu. I. Nemchynov, O. L. Bilokon’, M. H. Maryenkov, D. V. Bohdan, K. M. Babik, Kh. Z. Baitala, “Assessment of the condition of buildings and structures using vibrodynamic method after damages caused by military actions,” Nauka Budivn., 32, No. 2, 3–18 (2022) (in Ukrainian).
A. K. Chopra, Earthquake Dynamics of Structures. Theory and Applications to Earthquake Engineering, Prentice Hall, New Jersey (1995).
R. W. Clough, J. Penzien, Dynamics of Structures, Computers & Structures Inc., Berkley (1995).
T. Erikawa, “Design procedure and examples of seismic isolation buildings in Japan,” in: Proc. of Int. Seminar on Technologies of Earthquake-Resistant Construction, Kazakhstan, Almaty (2018), pp. 56–61.
A. S. Horodetskyi (ed.), LIRA-SAPR 2017 Software package. User’s manual. Teaching examples. Electronic edition (2017), Access at: https://www.liraland.com/ news/update/3379
O. Hrytsyna, Y. Tokovyy, M. Hrytsyna, “Non-classical theory of electro-thermo-elasticity incorporating local mass displacement and nonlocal heat conduction,” Math. Mech Solids., 29, No. 3, 539–559, https://doi.org/10.1177/10812865231201132
ISO 2631-2:2003. “Mechanical vibration and shock” – Evaluation of human exposure to whole-body vibration. Part 2: Vibration in buildings (1 Hz to 80 Hz).
I. Kaliukh, V. Senatorov, O. Khavkin, T. Kaliukh, K. Khavkin, “Experimental and analytic researches on technical state, design and operation of reinforced concrete anti-landslide structures for seismic dangerous regions of Ukraine,” in: Proc. of the 12th Fib Symposium “Engineering a Concrete Future: Technology, Modeling and Construction” (April 22–24, 2013, Tel-Aviv, Israel), pp. 625–628.
J. M. Kelly, “Base isolation: linear theory and design,” Earthq. Spectra, 6, 223–244 (1990), https://doi.org/10.1193/1.1585566
P. Krivosheev, Y. Slyusarenko, J. Chervinsky, “Development of calculation methods of foundations on the pliable basis in Ukraine,” In: Proc. of the 17th Int. Conference on Soil Mechanics and Geotechnical Engineering “The Academia and Practice of Geotechnical Engineering”, Vol. 2, pp. 1818–1821 (2019), https://doi.org/10.3233/978-1-60750-031-5-1818
Y. Kunets, R. Kushnir, V. Matus, “Scattering of SH-waves by an elastic fiber of non-canonical shape with a thin interphase layer,” in: A. N. Guz, H. Altenbach, V. Bogdanov, V. M. Nazarenko (eds.), Adv. Mech., Vol. 191, pp. 293–312 (2023), https://doi.org/10.1007/978-3-031-37313-8_17
N. M. Newmark, Hall W. J. Earthquake Spectra and Design, Earthquake Engineering Research Institute, Berkeley (1982).
I. Kaliukh, V. Vasylenko, Y. Berchun, V. Vapnichna, V. Sedin, O. Tytarenko, “The computational intelligence application for assessing the technical state of a multi-storey building damaged by an explosion,” in: Proc. of the 2023 IEEE 4th KhPI Week on Advanced Technology (KhPIWeek, Kharkiv, Ukraine), pp. 1–5 (2023), https://doi.org/10.1109/KhPIWeek61412.2023.10312914
Y. Slyusarenko, I. Matveyev, A. Kisil, Y. Ischenko, O. Romanov, N. Kosheleva, “Solution of the geotechnical problems of the Poshtova Square reconstruction in Kyiv,” Proc. XVI European Conference on Soil Mechanics and Geotechnical Engineering (ECSMGE 2015) “Geotechnical Engineering for Infrastructure and Development,” pp. 693–698 (2015).
Yu. Slyusarenko, V. Tytarenko, N. Kosheleva, Ie. Kostochka, V. Shekhovtsov, I. Yakovenko, O. Fesenko, V. Vapnichna, S. Iskov, Iu. Kaliukh, “Experimental solving the problem of the shelter object reinforced concrete structures thermal expansion,” in: A. Ilki, D. Çavunt, Y. S. Çavunt (eds.), Building for the Future: Durable, Sustainable, Resilient: Fib Symposium 2023, Ser. Lecture Notes in Civil Engineering, Vol. 350, pp. 1683–1693 (2023), https://doi.org/10.1007/978-3-031-32511-3_173
O. M. Trofymchuk, I. I. Kaliukh, V. A. Dunin, S. Y. Kyrash, “Dynamic certification and assessment of the buildings life cycle under regular explosive impacts,” System Research Inform. Tech., No. 4, 100–118 (2022), https://doi.org/10.20535/SRIT.2308-8893.2022.4.09
O. Trofymchuk, O. Lebid, V. Berchun, Y. Berchun, I. Kaliukh, “Ukraine’s cultural heritage objects within landslide hazardous sites,” in: I. Vayas, F. M. Mazzolani (eds.), in: Proc of Int. Conf. on Protection of Historical Constructions (PROHITECH 2021, October 25–27, 2021, Athens, Greece), Ser. Lecture Notes in Civil Engineering, Vol. 209, Springer, Cham (2021), pp. 951–961, https://doi.org/10.1007/978-3-030-90788-4_73
O. Trofymchuk, O. Lebid, O. Klymenkov, S. Shekhunova, R. Havrilyuk, “Dynamic certification of landslide protection structures in a seismically hazardous region of Ukraine: Experimental and analytical research,” in: Proc. of the 7th Int. Conference on Earthquake Geotechnical Engineering (ICEGE 2019, June 17–20, 2019, Rome, Italy), CRC Press, London (2019), pp. 5337–5344.
W. Weaver, S. P. Timoshenko, D. H. Young, Vibration Problems in Engineering, Wiley-Interscience, New York (1990).
E. Voloshkina, V. Efimenko, O. Zhukova, D. Chernyshev, I. Korduba, V. Shovkivska, “Visual modeling of the landslide slopes stress-strain state for the computer-aided design of retaining wall structures,” In Proc. of the IEEE 16th Int. Conf. on the Experience of Designing and Application of CAD Systems (CADSM, February 22–26, 2021), 5/1-5/5, https://doi.org/10.1109/CADSM52681.2021.9385211
Посилання
- Поки немає зовнішніх посилань.
Ця робота ліцензована Creative Commons Attribution 3.0 License.