Математичне моделювання динамічної взаємодії тонкого п’єзокерамічного включення змінної товщини з пружним середовищем за осесиметричного кручення
Анотація
Зразок для цитування: Р. М. Андрійчук, Я. І. Кунець, В. В. Матус, “Математичне моделювання динамічної взаємодії тонкого п’єзокерамічного включення змінної товщини з пружним середовищем за осесиметричного кручення,” Мат. методи та фіз.-мех. поля, 65, No. 1-2, 128–135 (2022), https://doi.org/10.15407/mmpmf2022.65.1-2.128-135
Translation: R. M. Andriychuk, Y. I. Kunets, V. V. Matus, “Mathematical modeling of the dynamic interaction of a thin piezoceramic inclusion of variable thickness with an elastic medium in axisymmetric torsion,” J. Math. Sci., 282, No. 5, 760–768 (2024), https://doi.org/10.1007/s10958-024-07214-wКлючові слова
Посилання
V. M. Aleksandrov, S. M. Mkhitaryan, Conract Problems for Bodies with Thin Coatings and Interlayers [in Russian], Nauka, Moscow (1983).
V. T. Grinchenko, A. F. Ulitko, N. A. Shulga, Electroelasticity [in Russian], Vol. 5 of Mechanics of Coupled Fields in Structural Elements, Nauk. Dumka, Kiev (1989).
G. S. Kit, Ya. I. Kunets, V. V. Mikhas'kiv, “Interaction of a stationary wave with a thin low stiffness penny-shaped inclusion in an elastic body,” Izv. Ross. Akad. Nauk, Mekh. Tv. Tela, 39, No. 5, 82–89 (2004) (in Russian); English translation: Mech. Solids, 39, No. 5, 64–70 (2004).
G. S. Kit, V. F. Emets’, Ya. I. Kunets’, “A model of the elastodynamic interaction of a thin-walled inclusion with a matrix under antiplanar shear,” Mat. Met. Fiz.-Mekh. Polya, 41, No. 1, 54–61 (1998) (in Ukrainian); English translation: J. Math. Sci., 97, No. 1, 3810–3816 (1999), https://doi.org/10.1007/BF02364919
Ya. I. Kunets’, “Axisymmetric torsion of an elastic space with a thin elastic inclusion,” Prikl. Mat. Mekh., 51, No. 4, 638–645 (1988) (in Russian); English translation: J. Appl. Math. Mech., 51, No. 4, 497–503 (1987), https://doi.org/10.1016/0021-8928(87)90090-6
Ya. I. Kunets, V. V. Matus, “Asymptotic approach in the dynamic problems of the theory of elasticity for bodies with thin elastic inclusions,” Mat. Met. Fiz.-Mekh. Polya, 63, No. 1, 75–93 (2020) (in Ukrainian), http://doi.org/10.15407/mmpmf2020.63.1.75-93; English translation: J. Math. Sci., 270, No. 1, 87–106 (2023), https://doi.org/10.1007/s10958-023-06334-z
Ya. I. Kunets’, R. V. Rabosh, “Longitudinal shear of an elastic medium with a thin rectilinear sharp-pointed piezoelectric inclusion of low rigidity,” Mat. Met. Fiz.-Mekh. Polya, 53, No. 3, 141–147 (2010) (in Ukrainian); English translation: J. Math. Sci., 180, No. 2, 153–160 (2012), https://doi.org/10.1007/s10958-011-0637-7
S. A. Nazarov, Introduction to Asymptotic Methods of the Theory of Elasticity [in Russian], Izd. Leningrad. Gos. Univ., Leningrad (1983).
V. Z. Parton, B. A. Kudryavtsev, Electromagnetoelasticity of Piezoelectric and Electroconductive Bodies [in Russian], Nauka, Moscow (1988).
H. T. Sulym, Foundations of the Mathematical Theory of Thermoelastic Equilibrium of Deformable Solids with Thin Inclusions [in Ukrainian], Doslid.-Vydavnych. Tsentr NTSh, Lviv (2007).
R. M. Andriychuk, Ya. I. Kunets, “Mathematical modeling of the dynamic interaction of slim piezoceramic inclusion with elastic matrix at axisymmetric torsion,” in: Proc. of XXVI Int. Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED-2021, 8–10 Sept. 2021), Tbilisi (2021), pp. 249–252, https://doi.org/10.1109/DIPED53165.2021.9552307
W. Q. Chen, C. W. Lim, “3D point force solution for a permeable penny-shaped crack embedded in an infinite transversely isotropic piezoelectric medium,” Int. J. Fract., 131, No. 3, 231–246 (2005), https://doi.org/10.1007/s10704-004-4195-6
V. F. Emets, Ya. I. Kunets, V. V. Matus, “Scattering of SH waves by an elastic thin-walled rigidly supported inclusion,” Arch. Appl. Mech., 73, No. 11-12, 769–780 (2004), https://doi.org/10.1007/s00419-004-0323-z
S. K. Kanaun, V. M. Levin, Self-Consistent Methods for Composites. Vol. 2: Wave Propagation in Heterogeneous Materials, Springer, Heidelberg (2008), https://doi.org/10.1007/978-1-4020-6968-0
A. V. Nasedkin, A. A. Nasedkina, M. E. Nassar, A. N. Rybyanets, “Effective properties of piezoceramics with metal inclusions: numerical analysis,” Ferroelectrics, 575, No. 1, 84–91 (2021), https://doi.org/10.1080/00150193.2021.1888230
Ia. Pasternak, “Doubly periodic arrays of cracks and thin inhomogeneities in an infinite magnetoelectroelastic medium,” Eng. Anal. Bound. Elem., 36, No. 5, 799–811 (2012), https://doi.org/10.1016/j.enganabound.2011.12.004
E. Sánchez-Palencia, Non-homogeneous Media and Vibration Theory, Springer, Berlin–Heidelberg (1980), https://doi.org/10.1007/3-540-10000-8
B. Zhang, A. Boström, A. J. Niklasson, “Antiplane shear waves from a piezoelectric strip actuator: exact versus effective boundary condition solutions,” Smart Mater. Struct., 13, No. 1, 161–168 (2004), https://doi.org/10.1088/0964-1726/13/1/018
Z. Chai, D. Wang, W. Liu, D. Kong, “Torsional wave propagation in a piezoelectric radial phononic crystals,” Noise Control Eng. J., 64, No. 1, 75–84 (2016), https://doi.org/10.3397/1/376361
Посилання
- Поки немає зовнішніх посилань.
Ця робота ліцензована Creative Commons Attribution 3.0 License.