Метод продовження крайових умов у задачах теорії пружності

V. I. Ostryk

Анотація


Для знаходження розв’язків плоских задач теорії пружності в областях, які обмежені двома парами різних координатних ліній, пропонується використовувати розв’язки більш простих задач для областей, обмежених однією парою координатних ліній, із додатковим заданням крайових умов вихідної задачі за межами області. Метод ілюструється знаходженням розв’язків крайових задач теорії пружності для чверті площини, півсмуги та прямокутника.

 

Зразок для цитування: В. І. Острик, “Метод продовження крайових умов у задачах теорії пружності,” Мат. методи та фіз.-мех. поля, 64, No. 3, 26–40 (2021), https://doi.org/10.15407/mmpmf2021.64.3.26-40

Translation: V. I. Ostryk, “Procedure of continuation of boundary conditions in the problems of elasticity theory,” J. Math. Sci., 278, No. 5, 761–779 (2024), https://doi.org/10.1007/s10958-024-06960-1


Ключові слова


крайові умови, пружна чверть площини, півсмуга, прямокутник, бігармонічна задача

Посилання


I. I. Vorovich, V. E. Koval’chuk, “On the basis properties of a system of homogeneous solutions,” Prikl. Mat. Mekh., 31, No. 5, 861–869 (1967); English translation: J. Appl. Math. Mech., 31, No. 5, 869–877 (1967), https://doi.org/10.1016/0021-8928(67)90124-4

É I. Grigolyuk, The Bubnov Method. Origins. Statement. Development [in Russian], Institute of Mechanics of the Moscow State University, Moscow (1996).

V. T. Grinchenko, A. F. Ulitko, Equilibrium of Elastic Bodies of Canonical Form [in Russian], Naukova Dumka, Kiev (1985).

E. M. Zveryaev, M. D. Kovalenko, D. A. Abrukov, I. V. Men’shova, A. P. Kerzhaev, On the Expansions in Papkovich–Fadle Functions in the Problem of Plate Bending [in Russian], Preprint No. 38, Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Moscow (2019), https://doi.org/10.20948/prepr-2019-38

E. M. Zveryaev, M. D. Kovalenko, I. V. Men’shova, A. P. Kerzhaev, On the Properties of Exact Solutions of Boundary-Value Problems of the Theory of Elasticity in a Half Strip and Their Application to the Theory of Residual Stresses in Rocks [in Russian], Preprint No. 56, Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Moscow (2018), https://doi.org/10.20948/prepr-2018-56

M. D. Kovalenko, I. V. Men’shova, “Singularities of exact solutions of the theory of elasticity in a half strip,” Vestn. MGTU, Ser. Estestven. Nauk., No. 4, 52–64 (2017).

M. D. Kovalenko, I. V. Men’shova, A. P. Kerzhaev, G. Yu, “Inhomogeneous problem of the theory of elasticity in a half- strip. Exact Solution,” Izv. Ros. Akad. Nauk, Ser. Mekh. Tverd. Tela, No. 6, 33–39 (2020), https://doi.org/10.31857/S0572329920060094; English translation: Mech. Solids, 55, No. 6, 784–790 (2020), https://doi.org/10.3103/S0025654420060096

M. D. Kovalenko, I. V. Men’shova, A. P. Kerzhaev, T. D. Shulyakovskaya, “Some solutions of the theory of elasticity for a rectangle,” Prikl. Mat. Mekh., 85, No. 3, 370–382 (2021).

N. S. Koshlyakov, É. B. Gliner, M. M. Smirnov, Partial Differential Equations of Mathematical Physics [in Russian], Vysshaya Shkola, Moscow (1970).

V. V. Meleshko, “Biharmonic problem for a rectangle: history and the state-of-art,” Mat. Met. Fiz.-Mekh. Polya, 47, No. 3, 45–68 (2004).

V. V. Meleshko, Yu. V. Tokovyy, “On the P. F. Papkovich algorithm in the method of homogeneous solutions of the twodimensional biharmonic problem in a rectangular domain,” Mat. Met. Fiz.-Mekh. Polya, 49, No. 4, 69–83 (2006).

N. I. Muskhelishvili, Some Basic Problems of the Mathematical Theory of Elasticity [in Russian], Nauka, Moscow (1966); Noordhoff Int. Publ., Leyden (1977).

V. I. Ostrik, “Inversion symmetry of the solutions of basic boundary-value problems of two-dimensional elasticity theory for a wedge,” Mat. Met. Fiz.-Mekh. Polya, 60, No. 4, 90–110 (2017); English translation: J. Math. Sci., 247, No. 1, 108–138 (2020), https://doi.org/10.1007/s10958-020-04792-3

V. I. Ostryk, “On the method of continuation of boundary conditions in problems of the theory of elasticity,” in: Contemporary Problems of Thermomechanics, Proc. of the International Scientific Conference and Mini-Symposia [in Ukrainain], Pidstryhach Institute for Applied Problems in Mechanics and Mathematics, National Academy of Sciences of Ukraine, Lviv (2021), pp. 101–102, http://iapmm.lviv.ua/cpt2021/materials/C02.05.pdf.

P. F. Papkovich, “On one form of the solution of the plane problem of the theory of elasticity for a rectilinear strip,” Dokl. Akad. Nauk SSSR, 27, No. 4, 335–339 (1940).

V. K. Prokopov, “Review of works on homogeneous solutions of the theory of elasticity and their applications,” Tr. Leningrad. Politekh. Inst., No. 279, 31–46 (1967).

A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Integrals and Series, Vol. 1, Elementary Functions [in Russian], Nauka, Moscow (1981); Gordon & Breach Sci. Publ., New York (1986).

I. Sneddon, Fourier Transforms, McGraw-Hill, New York (1951).

S. P. Timoshenko, Theory of Elasticity, McGraw-Hill (1934).

A. F. Ulitko, Vector Decompositions in the Space Theory of Elasticity [in Russian], Akademperiodika, Kiev (2002).

R. D. Gregory, “The semi-infinite strip x≥0, -1≤y≤1; completeness of the Papkovich–Fadle eigenfunctions when Φxx(0,y), Φyy(0,y) are prescribed,” J. Elasticity, 10, No. 1, 57–80 (1980), https://doi.org/10.1007/BF00043135

M. D. Kovalenko, I. V. Menshova, A. P. Kerzhaev, “On the exact solutions of the biharmonic problem of the theory of elasticity in a half strip,” Z. Angew. Math. Phys., 69, Article number 121 (2018), https://doi.org/10.1007/s00033-018-1013-y


Повний текст: PDF

Посилання

  • Поки немає зовнішніх посилань.


Creative Commons License
Ця робота ліцензована Creative Commons Attribution 3.0 License.