Аналіз тривимірних задач динамічного навантаження пружних кусково-однорідних тіл із внутрішніми тріщинами

V. Z. Stankevych

Анотація


Проведено огляд стану досліджень задач динамічного навантаження пружних кусково-однорідних тіл з плоско-паралельними поверхнями поділу матеріалів та внутрішніми тріщинами. З використанням гранично-інтегрального формулювання вказаних тривимірних задач описано ефекти впливу різнотипних крайових умов контакту на поверхнях поділу матеріалів, біматеріальної і шаруватої структур композитів на динамічні коефіцієнти інтенсивності напружень в околі дефектів.

 

Зразок для цитування: В. З. Станкевич, “Аналіз тривимірних задач динамічного навантаження пружних кусково-однорідних тіл із внутрішніми тріщинами,” Мат. методи та фіз.-мех. поля, 64, No. 1, 54–72 (2021), https://doi.org/10.15407/mmpmf2021.64.1.54-72

Translation: V. Z. Stankevych, “Analysis of 3D problems of dynamic loading of elastic piecewise-homogeneous bodies with internal cracks,” J. Math. Sci., 274, No. 5, 641–659 (2023), https://doi.org/10.1007/s10958-023-06628-2


Ключові слова


тривимірні динамічні задачі, кусково-однорідні тіла, плоско- паралельні поверхні поділу матеріалів, некласичні крайові умови контакту, внутрішні плоскі тріщини, динамічні коефіцієнти інтенсивності напружень, метод граничних інтегральних рівнянь

Посилання


V. M. Alexandrov, D. A. Pozharskii, “The problem of an annular crack at the interface between an elastic layer and elastic half-space,” Prikl. Matem. Mekh., 64, No. 3, 476–483 (2000); English translation: J. Appl. Math. Mech., 64, No. 3, 457–464 (2000), https://doi.org/10.1016/S0021-8928(00)00069-1

V. M. Alexandrov, D. A. Pozharskii, “The problem of a crack on the elastic strip – half-plane interface,” Izv. Ros. Akad. Nauk. Mekh. Tv. Tela, No. 1, 86–93 (2001); English translation: Mech. Solids, 36, No. 1, 70−76 (2001).

V. M. Alexandrov, B. I. Smetanin, B. V. Sobol’, Thin Stress Concentrators in Elastic Bodies [in Russian], Fizmatlit, Moscow (1993).

A. E. Andreikiv, Three-Dimensional Problems of the Theory of Cracks [in Russian], Nauk. Dumka, Kyiv (1982).

V. A. Babeshko, E. V. Glushkov, Zh. F. Zinchenko, Dynamics of Inhomogeneous Linear Elastic Media [in Russian], Nauka, Moscow (1989).

V. A. Babeshko, P. V. Syromyatnikov, “A method for the construction of the Fourier symbol of the Green matrix for multi-layered electroelastic halfspace,” Izv. Ros. Akad. Nauk. Mekh. Tv. Tela, No. 5, 35–47 (2002); English translation: Mech. Solids, 37, No. 5, 27−37 (2002).

A. M. Bagno, “The dispersion spectrum of a wave process in a system consisting of an ideal fluid layer and a compressible elastic layer,” Prikl. Mekh., 51, No. 6, 52–60 (2015); English translation: Int. Appl. Mech., 51, No. 6, 648–653 (2015), https://doi.org/10.1007/s10778-015-0721-7

V. F. Bakirov, R. V. Gol’dshtein, “The Leonov–Panasyuk–Dugdale model for a crack at the interface of the joint of materials,” Prikl. Mat. Mekh., 68, No. 1, 170–179 (2004); English translation: J. Appl. Math. Mech., 68, No. 1, 153–161 (2004), https://doi.org/10.1016/S0021-8928(04)90014-7

L. T. Berezhnitskii, V. V. Panasiuk, N. G. Stashchuk, Interaction Between Rigid Linear Inclusions and Cracks in a Deformable Solid [in Russian], Nauk. Dumka, Kyiv (1983).

A. Yu. Glukhov, “Axisymmetric waves in laminated composite incompressible materials with initial stresses under the slipping of layers,” Dop. Nats. Akad. Nauk Ukrainy, No. 10, 42–46 (2016) (in Ukrainian), https://doi.org/10.15407/dopovidi2016.10.042

V. T. Grinchenko, G. L. Komissarova, “The surface waves in a system: an elastic layer on a fluid half-space,” Akust. Visn., 8, No. 4, 38–45 (2005) (in Russian).

V. T. Grinchenko, V. V. Meleshko, Harmonic Vibrations and Waves in Elastic Bolids [in Russian], Nauk. Dumka, Kyiv (1981).

A. N. Guz, I. A. Guz, A. V. Men’shikov, V. A. Men’shikov, “Three-dimensional problems in the dynamic fracture mechanics of materials with interface cracks (review),” Prikl. Mekh., 49, No. 1, 3–78 (2013); English translation: Int. Appl. Mech., 49, No. 1, 1–61 (2015), https://doi.org/10.1007/s10778-013-0551-4

A. N. Guz, V. V. Zozulya, “Brittle fracture of materials under dynamic loads,” in: Nonclassical Problems of Fracture Mechanics [in Russian], Vol. 4, Nauk. Dumka, Kyiv (1993).

J. Dundurs, M. Comninou, “A review and prospects of the investigation of an interface crack,” Mekh. Kompozit. Mater., No. 3, 387–396 (1979) (in Russian).

A. A. Kaminskii, L. A. Kipnis, V. A. Kolmakova, “On the Dugdaill model for a crack at the interface of different media,” Prikl. Mekh., 35, No. 1, 63–68 (1999); English translation: Int. Appl. Mech., 35, No. 1, 58–63 (1999), https://doi.org/10.1007/BF02682063

G. S. Kit, M. V. Khai, Method of Potentials in Three-Dimensional Problems of Thermoelasticity for Cracked Bodies [in Russian], Nauk. Dumka, Kyiv (1989).

A. F. Krivoi, G. Ya. Popov, “Interface tunnel cracks in a composite anisotropic space,” Prikl. Matem. Mekh., 72, No. 4, 689–700 (2008); English translation: J. Appl. Math. Mech., 72, No. 4, 499–507 (2008), https://doi.org/10.1016/j.jappmathmech.2008.08.001

R. M. Kushnir, U. V. Zhydyk, V. M. Flyachok, “Thermoelastic analysis of functionally graded cylindrical shells,” Mat. Met. Fiz.-Mekh. Polya, 61, No. 3, 45–53 (2018); English translation: J. Math. Sci., 254, No. 1, 46–58 (2021), https://doi.org/10.1007/s10958-021-05287-5

R. Kushnir, T. Nykolyshyn, M. Rostun, “Limiting equilibrium of a cylindrical shell with a surface crack made of a functionally gradient material ,” Mashynoznavstvo, No. 5, 3–7 (2006).

V. V. Larkina, V. V. Tvardovskii, “Problem of an interphase crack at the interface of the two half-planes,” Prikl. Mekh., 23, No. 8, 71–77 (1987); English translation: Sov. Appl. Mech., 23, No. 8, 766–771 (1987), https://doi.org/10.1007/BF00886665

V. V. Mikhas’kiv, J. Sladek, V. Sladek, O. I. Stepanyuk, “Stress concentration near an elliptic crack in the interface between elastic bodies under steady-state oscillations,” Prikl. Mekh., 40, No. 6, 81–89 (2004); English translation: Int. Appl. Mech., 40, No. 6, 664–671 (2004), https://doi.org/10.1023/B:INAM.0000041394.83873.2f

V. V. Mykhas’kiv, V. Z. Stankevych, E. V. Glushkov, N. V. Glushkova, “Dynamic stresses in a compound body with circular crack under sliding contact on an interface,” Mat. Met. Fiz.-Mekh. Polya, 53, No. 1, 80–87 (2010); English translation: J. Math. Sci., 176, No. 4, 590–599 (2011), https://doi.org/10.1007/s10958-011-0424-5.

V. S. Nikishin, “Axisymmetric contact problems for a two-layer elastic half-space with an annular or circular crack at the interface of the layers,” Prikl. Mat. Mekh., 66, No. 4, 670–680 (2002); English translation: J. Appl. Math. Mech., 66, No. 4, 651–660 (2002), https://doi.org/10.1016/s0021-8928(02)00084-9

O. N. Panasyuk, “Influence of interface conditions on wave propagation in composite laminates,” Prikl. Mekh., 50, No. 4, 52–58 (2014); English translation: Int. Appl. Mech., 50, No. 4, 399−405 (2014), https://doi.org/10.1007/s10778-014-0643-9

V. G. Popov, A. E. Ulanovskii, “Comparative study of diffraction fields generated by elastic waves passing through imperfections of various nature,” Izv. Ros. Akad. Nauk, Mekh. Tv. Tela, No. 4, 99–109 (1995); English translation: Mech. Solids, 30, No. 4, 93–102 (1995).

G. Ya. Popov, Concentration of Elastic Stresses near Stamps, Cuts, Thin Inclusions and Reinforcements [in Russian], Nauka, Moscow (1982).

G. Ya. Popov, Yu. A. Morozov, N. D. Vajsfel’d, “On solution of dynamic problems of elastic-stress concentration near defects on cylindrical surfaces,” Prikl. Mekh., 35, No. 1, 28–36 (1999); English translation: Int. Appl. Mech., 35, No. 1, 24–32 (1999), https://doi.org/10.1007/BF02682058

Yu. V. Roganov, V. Yu. Roganov, “Wave propagation in periodic liquid-solid layered media,” Geofiz. Zh., 38, No. 6, 101–117 (2016) (in Russian), https://doi.org/10.24028/gzh.0203-3100.v38i6.2016.91877

M. P. Savruk, Two-Dimensional Problems of Elasticity for Bodies with Cracks [in Russian], Nauk. Dumka, Kyiv (1981).

R. L. Salganik, “The brittle fracture of cemented bodies,” Prikl. Mat. Mekh., 27, No. 5, 957–962 (1963) (in Russian); English translation: J. Appl. Math. Mech., 27, No. 5, 1468–1478, https://doi.org/10.1016/0021-8928(63)90086-8

M. Siratori, T. Miesi, Kh. Matsusita, Computational Fracture Mechanics [in Russian], Mir, Moscow (1986).

V. Z. Stankevych, “Interaction of cracks in elastic solid contacting with fluid under harmonic loading,” Mat. Metody Fiz.-Mekh. Polya, 50, No. 1, 130–135 (2007) (in Ukrainian).

V. Z. Stankevych, “Boundary-integral statement of the dynamical problem of cracks interaction in bimaterial object “elastic body–liquid”,” Dop. Nats. Akad. Nauk Ukrainy, No. 4, 54–58 (2005).

V. Z. Stankevych, “Stresses formed near a crack in half space in contact with liquid under harmonic loading,” Fiz.-Khim. Mekh. Mater., 41, No. 3, 96–100 (2005); English translation: Mater. Sci., 41, No. 3, 388–394 (2005), https://doi.org/10.1007/s11003-005-0176-9

V. Z. Stankevych, V. V. Mykhas’kiv, “Intensity of dynamic stresses of longitudinal shear mode in a periodically-layered composite with penny-shaped cracks,” Mat. Met. Fiz.-Mekh. Polya, 63, No. 3, 46–54 (2020), https://doi.org/10.15407/mmpmf2020.63.3.46-54

N. G. Stashchuk, Problems of Mechanics of Elastic Bodies with Crack-Like Defects [in Russian], Nauk. Dumka, Kyiv (1993).

H. T. Sulym, Foundations of the Mathematical Theory of Thermoelastic Equilibrium of Deformable Solids with Thin Inclusions [in Ukrainian], Dosl.-Vydavn. Tsentr NTSh, Lviv (2007).

H. T. Sulym, Yo. Z. Piskozub, “Conditions of contact interaction of bodies (A survey),” Mat. Met. Fiz.-Mekh. Polya, 47, No. 3, 110–125 (2004) (in Ukrainian).

V. V. Tikhomirov, “Stressed state of a piecewise homogeneous layer containing a semi-infinite symmetric crack,” Prikl. Mekh., 28, No. 2, 21–27 (1992); English translation: Int. Appl. Mech., 28, No. 2, 85–91 (1992), https://doi.org/10.1007/BF00847206

S. N. Alturi (ed.), Computational Methods in Fracture Mechanics, North-Holland (1986).

J. D. Achenbach, Z. L. Li, “Reflection and transmission of scalar waves by a periodic array of screens,” Wave Motion, 8, No. 3, 225−234 (1986), https://doi.org/10.1016/S0165-2125(86)80045-2

W. T. Ang, D. L. Clements, “Hypersingular integral equations for periodic arrays of planar cracks in a periodically layered anisotropic elastic space under antiplane shear stress,” Acta Math. Sci., 19, No. 3, 343–355 (1999), https://doi.org/10.1016/S0252-9602(17)30516-7

G. Anlas, M. H. Santare, J. Lambros, “Numerical calculation of stress intensity factors in functionally graded materials,” Int. J. Fract., 104, No. 2, 131–143 (2000), https://doi.org/10.1023/A:1007652711735

B. Audoly, “Asymptotic study of the interfacial crack with friction,” J. Mech. Phys. Solids, 48, No. 9, 1851−1864 (2000), https://doi.org/10.1016/S0022-5096(99)00098-8

J.-M. Baik, R. B. Thompson, “Ultrasonic scattering from imperfect interfaces: A quasi-static model,” J. Nondestr. Eval., 4, No. 3-4, 177–196 (1984), https://doi.org/10.1007/BF00566223

R. S. Barsoum, “On the use of isoparametric finite elements in linear fracture mechanics,” Int. J. Num. Meth. Eng., 10, No. 1, 23−37 (1976), https://doi.org/10.1002/nme.1620100103

O. R. Bingol, B. Schiefelbein, R. J. Grandin, S. D. Holland, A. Krishnamurthy, “An integrated framework for solid modeling and structural analysis of layered composites with defects,” Computer-Aided Design, 106, 1–12 (2018), https://doi.org/10.1016/j.cad.2018.07.006

A. Boström, M. Golub, “Elastic SH wave propagation in a layered anisotropic plate with interface damage modelled by spring boundary conditions,” Quart. J. Mech. Appl. Math., 62, No. 1, 39–52 (2009), https://doi.org/10.1093/qjmam/hbn025

A. Boström, G. Wickham, “On the boundary conditions for ultrasonic transmission by partially closed cracks,” J. Nondestr. Eval., 10, No. 4, 139–149 (1991), https://doi.org/10.1007/BF00567096

P. Bovik, “A comparison between the Tiersten model and O(h) boundary conditions for elastic surface waves guided by thin layers,” Trans. ASME. J. Appl. Mech., 63, No. 1, 162–167 (1996), https://doi.org/10.1115/1.2787193

Y. S. Chan, G. H. Paulino, A. C. Fannjiang, “The crack problem for nonhomogeneous materials under antiplane shear loading – A displacement based formulation,” Int. J. Solids Struct., 38, No. 17, 2989–3005 (2001), https://doi.org/10.1016/S0020-7683(00)00217-1

B. T. Chen, C. T. Hu, S. Lee, “Dislocations near a sliding interface,” Int. J. Eng. Sci., 36, No. 9, 1011−1034 (1998), https://doi.org/10.1016/S0020-7225(98)00004-4

R. V. Craster, J. Kaplunov (eds.), Dynamic Localization Phenomena in Elasticity, Acoustics and Electromagnetism, Springer, Wien (2013).

H.-H. Dai, J. Kaplunov, D. A. Prikazchikov, “A long-wave model for the surface elastic wave in a coated half-space,” Proc. R. Soc. London A, 466, No. 2122, 3097–3116 (2010), https://doi.org/10.1098/rspa.2010.0125

S. K. Datta, A. H. Shah, Elastic Waves in Composite Media and Structures with Applications to Ultrasonic Nondestructive Evaluation, CRC Press, Boca Raton (2009).

F. Delale, F. Erdogan, “The crack problem for a nonhomogeneous plane,” Trans. ASME J. Appl. Mech., 50, No. 3, 609–614 (1983), https://doi.org/10.1115/1.3167098

A. V. Ekhlakov, O. M. Khay, Ch. Zhang, J. Sladek, V. Sladek, “A BDEM for transient thermoelastic crack problems in functionally graded materials under thermal shock,” Comput. Mater. Sci., 57, 30–37 (2012), https://doi.org/10.1016/j.commatsci.2011.06.019

A. H. England, “A crack between dissimilar media,” Trans. ASME J. Appl. Mech., 32, No. 2, 400−402 (1965), https://doi.org/10.1115/1.3625813

F. Erdogan, “Fracture mechanics of functionally graded materials,” Compos. Eng., 5, No. 7, 753–770 (1995), https://doi.org/10.1016/0961-9526(95)00029-M

F. Erdogan, “Stress distribution in nonhomogeneous elastic plane with cracks,” Trans. ASME J. Appl. Mech., 30, No. 2, 232−236 (1963), https://doi.org/10.1115/1.3636517

F. Erdogan, “The crack problem for bonded nonhomogeneous materials under antiplane shear loading,” Trans. ASME J. Appl. Mech., 52, No. 4, 823–828 (1985), https://doi.org/10.1115/1.3169153

Y. Fu, “Linear and nonlinear wave propagation in coated or uncoated elastic half-spaces,” in: M. Destrade, G. Saccomandi (eds) Waves in Nonlinear Pre-Stressed Materials, CISM Courses and Lectures, Vol. 495. Springer, Vienna (2007), pp. 103–127, https://doi.org/10.1007/978-3-211-73572-5_4

M. V. Golub, A. Boström, “Interface damage modeled by spring boundary conditions for in-plane elastic waves,” Wave Motion, 48, No. 2, 105–115 (2011), https://doi.org/10.1016/j.wavemoti.2010.09.003

M. V. Golub, O. V. Doroshenko, A. Boström, “Effective spring boundary conditions for a damaged interface between dissimilar media in three-dimensional case,” Int. J. Solids Struct., 81, 141–150 (2016), https://doi.org/10.1016/j.ijsolstr.2015.11.021

S. Gopalakrishnan, Wave Propagation in Materials and Structures, CRC Press, Boca Raton (2016).

P. Gu, R. J. Asaro, “Cracks in functionally graded materials,” Int. J. Solids Struct., 34, No. 1, 1–17 (1997), https://doi.org/10.1016/0020-7683(95)00289-8

P. Gu, M. Dao, R. J. Asaro, “A simplified method for calculating the crack tip-field of functionally graded materials using the domain integral,” Trans. ASME J. Appl. Mech., 66, No. 1, 101–108 (1999), https://doi.org/10.1115/1.2789135

I. A. Guz, M. Menshykova, C. Soutis, “Internal instability as a possible failure mechanism for layered composites,” Phil. Trans. R. Soc. London A, 374, No. 2071, Art. 20160019 (2016), http://doi.org/10.1098/rsta.2016.0019

N. A. Haskell, “The dispersion of surface waves on multilayered media,” Bull. Seismol. Soc. Am., 43, No. 1, 17–34 (1953), https://doi.org/10.1785/BSSA0430010017

P. D. Hilton, “A specialized finite element approach for three-dimensional crack problems,” in: G. C. Sih (ed.), Mechanics of Fracture, Vol. 3, Plates and shells with cracks, Noordhoff Int. Publ., Leyden (1977), p. 273−298.

A. Hvatov, S. Sorokin, “Assessment of reduced-order models in analysis of Floquet modes in an infinite periodic elastic layer,” J. Sound Vib., 440, 332–345 (2018), https://doi.org/10.1016/j.jsv.2018.10.034

Z. H. Jia, D. J. Shippy, F. J. Rizzo, “Boundary-element analysis of wave scattering from cracks,” Commun. Appl. Num. Methods, 6, No. 8, 591−601 (1990), https://doi.org/10.1002/cnm.1630060804

A. Kaczynski, S. J. Matysiak, V. J. Pauk, “Griffith crack in a laminated elastic layer,” Int. J. Fract., 67, No. 4, R81–R86 (1994), https://doi.org/10.1007/BF00032505

A. Kaczynski, S. J. Matysiak, “On crack problems in periodic two-layered elastic composites,” Int. J. Fract., 37, No. 1, 31–45 (1988), https://doi.org/10.1007/BF00017821

J. Kaplunov, D. Prikazchikov, L. Sultanova, “Rayleigh-type waves on a coated elastic half-space with a clamped surface,” Phil. Trans. R. Soc. London A, 377, No. 2156, Art. 20190111 (2019), http://doi.org/10.1098/rsta.2019.0111

J. Kaplunov, A. Zakharov, D. Prikazchikov, “Explicit models for elastic and piezoelastic surface waves,” IMA. J. Appl. Math., 71, No. 5, 768–782 (2006), https://doi.org/10.1093/imamat/hxl012

P. I. Kattan, G. Z. Voyiadjis, Damage Mechanics with Finite Elements. Practical Applications with Computer Tools, Springer, Berlin (2002).

A. Khanna, A. Kotousov, “The stress field due to an interfacial edge dislocation in a multi-layered medium,” Int. J. Solids Struct., 72, No. 1, 1–10 (2015), https://doi.org/10.1016/j.ijsolstr.2015.06.030

L. Knopoff, “A matrix method for elastic wave problems,” Bull. Seism. Soc. Am., 54, No. 1, 431–438 (1964), https://doi.org/10.1785/BSSA0540010431

R. Kulchytsky-Zhyhailo, S. J. Matysiak, “Stress singularities in a periodically layered composite near interface crack tips,” Int. J. Fract., 143, No. 3, 277–286 (2007), https://doi.org/10.1007/s10704-007-9064-7

S. Kumar, I. V. Singh, B. K. Mishra, A. Singh, “New enrichments in XFEM to model dynamic crack response of 2-D elastic solids,” Int. J. Impact Eng., 87, 198–211 (2016), https://doi.org/10.1016/j.ijimpeng.2015.03.005

Y. I. Kunets, V. V. Matus, V. O. Mishchenko, V. V. Porochovs’kyj, “SH-wave scattering by elastic inclusion with a thin interface layer of low rigidity,” In: DIPED-2014, Proc. XIXth Int. Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (Tbilisi, 2014), pp. 157–159, https://doi.org/10.1109/DIPED.2014.6958357.

O. V. Kvasha, A. Boström, N. V. Glushkova, E. V. Glushkov, “The propagation of in-plane P-SV waves in a layered elastic plate with periodic interface cracks: exact versus spring boundary conditions,” Waves Random Complex Media, 21, No. 3, 515–528 (2011), https://doi.org/10.1080/17455030.2011.593586

A. I. Lavrentyev, S. I. Rokhlin, “Models for ultrasonic characterization of environmental degradation of interfaces in adhesive joints,” J. Appl. Phys., 76, No. 8, 4643–4650 (1994), https://doi.org/10.1063/1.35730

A. I. Lavrentyev, S. I. Rokhlin, “Ultrasonic spectroscopy of imperfect contact interfaces between a layer and two solids,” J. Acoust. Soc. Am., 103, No. 2, 657–664 (1998), https://doi.org/10.1121/1.423235

D. L. Leguillon, “Interface crack tip singularity with contact and friction,” C. R. Acad. Sci. Ser. B, 327, No. 5, 437−442 (1999), https://doi.org/10.1016/S1287-4620(99)80096-9

J. Lei, Y. S. Wang, D. Gross, “Dynamic interaction between a sub-interface crack and the interface in a bi-material: time-domain BEM analysis,” Archive Appl. Mech., 73, No. 3-4, 225–240 (2003), https://doi.org/10.1007/s00419-003-0281-x

R. Leiderman, A. M. B. Barbone, P. E. Braga, “Scattering of ultrasonic waves by defective adhesion interfaces in submerged laminated plates,” J. Acoust. Soc. Am., 118, No. 4, 2154–2166 (2005), https://doi.org/10.1121/1.2036147

H. Lekesiz, N. Katsube, S. I. Rokhlin, R. R. Seghi, “Effective spring stiffness for a planar periodic array of collinear cracks at an interface between two dissimilar isotropic materials,” Mech. Mater., 43, No. 2, 87–98 (2011), https://doi.org/10.1016/j.mechmat.2010.12.004

H. Lekesiz, N. Katsube, S. I. Rokhlin, R. R. Seghi, “Effective spring stiffness for a periodic array of interacting coplanar penny-shaped cracks at an interface between two dissimilar isotropic materials,” Int. J. Solids Struct., 50, No. 18, 2817–2828 (2013), https://doi.org/10.1016/j.ijsolstr.2013.04.006

Y. Liu, S. Lin, Y. Li, Ch. Li, Y. Liang, “Numerical investigation of Rayleigh waves in layered composite piezoelectric structures using the SIGA-PML approach,” Compos. Part B-Eng., 158, 230–238 (2018), https://doi.org/10.1016/j.compositesb.2018.09.037

V. V. Loboda, “Analytical derivation and investigation of the interface crack models,” Int. J. Solids Struct., 35, No. 33, 4477−4489 (1998), https://doi.org/10.1016/S0020-7683(97)00255-2

R. M. Mahamood, E. T. Akinlabi, “Functionally graded materials,” Springer, Cham (2017).

A. K. Mal, L. Knopoff, “A differential equation for surface waves in layers with varying thickness,” J. Math. Anal. Appl., 21, No. 2, 431–441 (1968), https://doi.org/10.1016/0022-247X(68)90227-8

F. J. Margetan, R. B. Thompson, T. A. Gray, “Interfacial spring model for ultrasonic interactions with imperfect interfaces: Theory of oblique incidence and application to diffusion-bonded butt joints,” J. Nondestruct. Eval., 7, No. 3-4, 131–152 (1988), https://doi.org/10.1007/BF00565998

P. R. Marur, H. V. Tippur, “Numerical analysis of crack-tip fields in functionally graded materials with a crack normal to the elastic gradient,” Int. J. Solids Struct., 37, No. 38, 5353–5370 (2000), https://doi.org/10.1016/S0020-7683(99)00207-3

S. J. Matysiak, D. M. Perkowski, “Crack normal to layered elastic periodically stratified space,” Theor. Appl. Fract. Mech., 50, No. 3, 220–225 (2008), https://doi.org/10.1016/j.tafmec.2008.07.009

O. V. Menshykov, M. V. Menshykova, I. A. Guz, “3-D elastodynamic contact problem for an interface crack under harmonic loading,” Eng. Fract. Mech., 80, 52–59 (2012), https://doi.org/10.1016/j.engfracmech.2010.12.010

Y. Mikata, “SH-waves in a medium containing a disordered periodic array of cracks,” Trans. ASME. J. Appl. Mech., 62, No. 2, 312−319 (1995), https://doi.org/10.1115/1.2895933

Y. Mikata, J. D. Achenbach, “Interaction of harmonic waves with a periodic array of inclined cracks,” Wave Motion, 10, No. 1, 59−72 (1988), https://doi.org/10.1016/0165-2125(88)90006-6

T. Murakami, T. Sato, “Three-dimensional J-integral calculations of part-through surface crack problems,” Comput. Struct., 17, No. 5-6, 731–736 (1983), http://doi.org/10.1016/0045-7949(83)90087-1

V. V. Mikhas’kiv, “Opening-function simulation of the threedimensional nonstationary interaction of cracks in an elastic body,” Int. J. Appl. Mech., 37, No. 1, 75–84 (2001), https://doi.org/10.1023/a:1011364214291

V. Mykhas’kiv, V. Stankevych, “Elastodynamic problem for a layered composite with penny-shaped crack under harmonic torsion,” ZAMM Z. Angew. Math. Mech., 99, No. 5, Art. e201800193 (2019), https://doi.org/10.1002/zamm.201800193

V. V. Mykhas’kiv, O. I. Stepanyuk, “Boundary integral analysis of the symmetric dynamic problem for an infinite bimaterial solid with an embedded crack,” Meccanica, 36, No. 4, 479–495 (2001), https://doi.org/10.1023/A:1015097108811

V. Mykhas’kiv, V. Stankevych, J. Kaplunov, D. Prikazchikov, “Mode-III dynamic stress intensity factor of penny-shaped crack in a coated elastic half-space,” in: Proc. of the Intern. Conf. “Modern Problems of Mechanics and Mathematics” (22–25 May 2018, Lviv), Vol. 2, pp. 109–110.

V. Mykhas’kiv, V. Stankevych, I. Zhbadynskyi, C. Zhang, “3-D dynamic interaction between a penny-shaped crack and a thin interlayer joining two elastic half-spaces,” Int. J. Fract., 159, 137–149 (2009), https://doi.org/10.1007/s10704-009-9390-z

G. P. Nikishkov, S. N. Atluri, “Calculation of fracture mechanics parameters for an arbitrary three-dimensional crack, by the “equivalent domain integral” method,” Int. J. Numer. Meth. Eng., 24, No. 9, 1801–1821 (1987), https://doi.org/10.1002/nme.1620240914

Ia. Pasternak, H. Sulym, N. Ilchuk, “Boundary element analysis of 3D shell-like rigid electrically conducting inclusions in anisotropic thermomagnetoelectroelastic solids,” Z. Angew. Math. Mech., 99, No. 7, Art. e201800319.2019, https://doi.org/10.1002/zamm.201800319

S. Pommier, A. Gravouil, A. Combescure, N. Moes, Extended Finite Element Method for Crack Propagation, Wiley-ISTE Ltd. (2011).

D. A. Pozharskii, B. V. Sobol, P. V. Vasiliev, “Periodic crack system in a layered elastic wedge,” Mech. Adv. Mater. Struct., 27, No. 4, 318–324 (2020), https://doi.org/10.1080/15376494.2018.1472346

Z.-H. Qian, F. Jin, T.-J. Lu, K. Kishimoto, “Transverse surface waves in a functionally graded piezoelectric substrate coated with a finite-thickness metal waveguide layer,” Appl. Phys. Lett., 94, No. 2, Art. 023501 (2009), https://doi.org/10.1063/1.3070540

S. I. Rokhlin, W. Huang, “Ultrasonic wave interaction with a thin anisotropic layer between two anisotropic solids: Exact and asymptotic-boundary-condition methods,” J. Acoust. Soc. Am., 92, No. 3, 1729−1742 (1992), https://doi.org/10.1121/1.403912

M. Ryvkin, “A mode I crack parallel to the interfaces in a periodically layered medium,” Int. J. Fract., 99, No. 3, 173–188 (1999), https://doi.org/10.1023/A:1018677325624

H.-S. Shen, Functionally Graded Materials: Nonlinear Analysis of Plates and Shells, CRC Press (2016).

Sheng-Hu Ding, Xing Li, “The fracture analysis of an arbitrarily oriented crack in the functionally graded material under in-plane impact loading,” Theor. Appl. Fract. Mech., 66, 26–32 (2013), https://doi.org/10.1016/j.tafmec.2013.12.006

P. P. Shi, “Interaction between the doubly periodic interfacial cracks in a layered periodic composite: Simulation by the method of singular integral equation,” Theor. Appl. Fract. Mech., 78, 25–39 (2015), https://doi.org/10.1016/j.tafmec.2015.04.003

C. W. Shul, K. Y. Lee, “Dynamic response of subsurface interface crack in multilayered orthotropic half-space under anti-plane shear impact loading,” Int. J. Solids Struct., 38, No. 20, 3563–3574 (2001), https://doi.org/10.1016/S0020-7683(00)00216-X

J. Sladek, V. Sladek, “Dynamic stress intensity factors studied by boundary integrodifferential equations,” Int. J. Numer. Meth. Eng., 23, No. 5, 919–928 (1986), https://doi.org/10.1002/nme.1620230512

J. Sladek, V. Sladek, P. Solek, “Elastic analyses in 3D anisotropic functionally graded solids by the MLPG,” Comput. Model. Eng. Sci., 43, No. 3, 223–252 (2009), https://doi.org/10.3970/cmes.2009.043.223

J. Sladek, V. Sladek, Ch. Zhang, “A local integral equation method for dynamic analysis in functionally graded piezoelectric materials,” in: V. Minutolo, M. H. Aliabadi (eds.), Proc. 8th Int. Conf. on Boundary Element Techniques “BeTeq–2007” (24-26 July 2007, Naples, Italy), EC Ltd (2007), pp. 141–148.

V. Z. Stankevych, I. Ya. Zhbadyns’kyi, Yu. V. Tereshchak, “Interaction of the crack and thin elastic layer in the solid under the action of time-harmonic loading,” in: Proc. XXIVth Int. Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory “DIPED-2019” (12–14 September 2019, Lviv, Ukraine), Lviv (2019), pp. 172–176, https://doi.org/10.1109/DIPED.2019.8882615

D. J. Steigmann, R. W. Ogden, “Surface waves supported by thin-film/substrate interactions,” IMA. J. Appl. Math., 72, No. 6, 730–747 (2007), https://doi.org/10.1093/imamat/hxm018

A. S. J. Suiker, N. A. Fleck, “Crack tunneling and plane-strain delamination in layered solids,” Int. J. Fract., 125, No. 1-2, 1–32 (2004), https://doi.org/10.1023/B:FRAC.0000021064.52949.e2

W. T. Thomson, “Transmission of elastic waves through a stratified solid medium,” J. Appl. Phys., 21, No. 2, 89–93 (1950), https://doi.org/10.1063/1.1699629

H. F. Tiersten, “Elastic surface waves guided by thin films,” J. Appl. Phys., 40, No. 2, 770–789 (1969), https://doi.org/10.1063/1.1657463

D. M. Trace, “3-D elastic singularity element for evaluation of K along an arbitrary crack front,” Int. J. Fract., 9, No. 3, 340−343 (1973), https://doi.org/10.1007/BF00049217

I. Turchyn, O. Turchyn, “Transient plane waves in multilayered half-space,” Acta mechanica et automatica, 7, No. 1, 53–57 (2013), https://doi.org/10.2478/ama-2013-0010

S. Ueda, S. Biwa, K. Watanabe, R. Heuer, C. Pecorari, “On the stiffness of spring model for closed crack,” Int. J. Eng. Sci., 44, No. 13-14, 874−888 (2006), https://doi.org/10.1016/j.ijengsci.2006.06.002

M. C. Walters, G. H. Paulino, R. H. Dodds Jr., “Stress-intensity factors for surface cracks in functionally graded materials under mode-I thermomechanical loading,” Int. J. Solids Struct., 41, No. 3-4, 1081–1118 (2004), https://doi.org/10.1016/j.ijsolstr.2003.09.050

B. L. Wang, J. C. Han, S. Y. Du, “Cracks problem for non-homogeneous composite material subjected to dynamic loading,” Int. J. Solids Struct., 37, No. 9, 1251–1274 (2000), https://doi.org/10.1016/S0020-7683(98)00292-3

X. Wang, Zh. Zhong, “A cracked sliding interface between anisotropic bimaterials,” Mech. Res. Commun., 30, No. 4, 387–393 (2003), https://doi.org/10.1016/S0093-6413(03)00029-6

J. R. Willis, “Fracture mechanics of interfacial crack,” J. Mech. Phys. Solids, 19, No. 6, 353−368 (1971), https://doi.org/10.1016/0022-5096(71)90004-4

Z. Yan, C. Wei, C. Zhang, “Elastic SH wave propagation in periodic layered composites with a periodic array of interface cracks,” Acta Mech. Solida Sin., 28, No. 5, 453–463 (2015), https://doi.org/10.1016/S0894-9166(15)30041-0

H. Y. Yu, K. P. Cooper, “Dynamic penny-shaped cracks in multilayer sandwich composites,” Theor. Appl. Fract. Mech., 51, No. 3, 181–188 (2009), https://doi.org/10.1016/j.tafmec.2009.05.003

Z. Q. Yue, H. T. Xiao, L. G. Tham, “Boundary element analysis of crack problems in functionally graded materials,” Int. J. Solids Struct., 40, No. 13-14, 3273–3291 (2003), https://doi.org/10.1016/S0020-7683(03)00094-5

Ch. Zhang, M. Cui, J. Wang, X. W. Gao, J. Sladek, V. Sladek, “3D crack analysis in functionally graded materials,” Eng. Fract. Mech., 78, No. 3, 585–604 (2011), https://doi.org/10.1016/j.engfracmech.2010.05.017

Ch. Zhang, D. Gross, On Wave Propagation in Elastic Solids with Cracks, Comput. Mech. Publ., Southampton–Boston (1998).

Ch. Zhang, J. Sladek, V. Sladek, “Antiplane crack analysis of a functionally graded material by a BIEM,” Comput. Mater. Sci., 32, No. 3-4, 611–619 (2005), https://doi.org/10.1016/j.commatsci.2004.09.002

Ch. Zhang, J. Sladek, V. Sladek, “Effects of material gradients on transient dynamic mode-III stress intensity factors in a FGM,” Int. J. Solids Struct., 40, No. 20, 5251–5270 (2003), https://doi.org/10.1016/S0020-7683(03)00243-9

Ch. Zhang, J. Sladek, V. Sladek, “Numerical analysis of cracked functionally graded materials,” Key Eng. Mater., 251-252, 463–472 (2003), https://doi.org/10.4028/www.scientific.net/KEM.251-252.463

G. Y. Zhang, X.-L. Gao, S. R. Ding, “Band gaps for wave propagation in 2-D periodic composite structures incorporating microstructure effects,” Acta Mechanica, 229, No. 10, 4199−4224 (2018), https://doi.org/10.1007/s00707-018-2207-2.

Z. Z. Zou, S. X. Wu, C. Y. Li, “On the multiple isoparametric finite element method and computation of stress intensity factor for cracks in FGMs,” Key Eng. Mater., 183-187, 511–516 (2000), https://doi.org/10.4028/www.scientific.net/KEM.183-187.511


Повний текст: PDF

Посилання

  • Поки немає зовнішніх посилань.


Creative Commons License
Ця робота ліцензована Creative Commons Attribution 3.0 License.