Ефективні термопружні модулі дискретних композиційних шарів у межах моделі ортотропного матеріалу

M. V. Marchuk, V. S. Pakosh, V. M. Kharchenko, M. M. Khomyak

Анотація


Запропоновано новий структурний підхід визначення ефективних термопружних модулів шаруватого композита в межах моделі ортотропного матеріалу. Сформульовані гіпотези про напружено-деформований стан тонких дискретно розглядуваних шарів вибрано за основу для усереднення їхніх властивостей по товщині. Всі шари поділені на дві підмножини залежно від переважаючої жорсткості в одному з двох взаємно перпендикулярних напрямків. Для кожної з підмножин використано окремі алгоритми усереднення, які комбінують способи Фойґта і Реусса (усереднення жорсткості або податливості, відповідно). Отримано повну просторову модель термопружних характеристик шаруватого композита, що враховує поперечні нормальні та зсувні деформації.

 

Зразок для цитування: М. В. Марчук, В. C. Пакош, В. М. Харченко, М. М. Хом’як, “Ефективні термопружні модулі дискретних композиційних шарів у межах моделі ортотропного матеріалу,” Мат. методи та фіз.-мех. поля, 65, No. 3-4, 111–122 (2022), https://doi.org/10.15407/mmpmf2022.65.3-4.111-122


Ключові слова


шаруватий композит, ортотропний матеріал, правило усереднення, ефективні термопружні модулі

Посилання


S. M. Hrebenyuk, “Effective elastic constants of the composite material reinforced with two types of the unidirectional fibers,” Visn. Zaporiz’k. Nats. Univ., Ser. Fiz. Mat. Nauky, No. 1, 48–56 (2016) (in Ukrainian), http://nbuv.gov.ua/UJRN/Vznu_mat_2016_1_8

D. M. Karpinos (ed.), Composite materials [in Russian], Nauk. Dumka, Kyiv (1985).

M. V. Marchuk, V. M. Kharchenko, M. M. Khomyak, “Mathematical model for determination of effective physical and mechanical characteristics of cross-reinforced composite layer,” Prykl. Probl. Mekh. Mat., Issue 16, 64–73 (2018) (in Ukrainian), http://doi.org/10.15407/apmm2018.16.64-73

A. V. Morozov, “Determination of effective elastic characteristics of unidirectional composite material,” Vcheni Zap. Tavr. Nats. Univ. Im. V. I. Vernads’koho, Ser. Tekhn. Nauky, 31(70), No. 2, Part 1, 44–51 (2020) (in Ukrainian), https://doi.org/10.32838/2663-5941/2020.2-1/07

Yu. V. Nemirovskii, A. P. Yankovskii, “Determination of the effective physical and mechanical characteristics of hybrid composites cross-reinforced by transversely isotropic fibers and comparison of calculated characteristics with experimental data,” Mekh. Kompozit. Mater. Konstr. 13, No. 1, 3–32 (2007) (in Russian).

L. P. Khoroshun, O. I. Levchuk, “Effective elastic properties of layered composites under imperfect adhesion," Dop. Nats. Akad. Nauk Ukr., No. 5, 56–66 (2019) (in Russian), https://doi.org/10.15407/dopovidi2019.05.056

H. Altenbach, J. Altenbach, W. Kissing, Mechanics of Composite Structural Elements, Springer Nature, Singapore (2018), https://doi.org/10.1007/978-981-10-8935-0

E. J. Barbero, Introduction to Composite Materials Design, CRC Press, Boca Raton (2017).

G. Bojtár, B. M. Csizmadia, J. Égert, “Numerical determination of orthotropic material properties of textile composite layers and their validation by measurement,” Acta Polytechnica Hungarica, 14, No. 2, 47–67 (2017), https://doi.org/10.12700/APH.14.2.2017.2.3

T. W. Clyne, D. Hull, An Introduction to Composite Materials,” Cambridge Univ. Press, Cambridge (2019), https://doi.org/10.1017/9781139050586

C. J. Ejeh, I. Barsoum, G. O. Chizindu, G. M. Kodie, J. I. Anachuna, “Thermo-elastic behaviour of carbon-fiber reinforced polymer and the effect of adding nanoparticles at elevated heat intensity,” Heliyon, 6, No. 3, e03622 (2020), https://doi.org/10.1016/j.heliyon.2020.e03622

U. Farooq, P. Myler, “Efficient determination of mechanical properties of carbon fibre-reinforced laminated composite panels,” ARPN J. Eng. Appl. Sci., 12, No. 5, 1375–1392 (2017), https://www.researchgate.net/publication/320067938

R. F. Gibson, Principles of Composite Material Mechanics, CRC Press, Boca Raton (2007), https://doi.org/10.1201/b19626

A. Ya. Grigorenko, W. H. Müller, Ya. M. Grigorenko, G. G. Vlaikov, Recent Developments in Anisotropic Heterogeneous Shell Theory: Applications of Refined and Three-Dimensional Theory, Vol. IIA, Springer, Berlin (2016), https://doi.org/10.1007/978-981-10-0645-6

Z. Hashin, S. Shtrikman, “A variational approach to the theory of the elastic behaviour of multiphase materials,” J. Mech. Phys. Solids., 11, No. 2, 127–140 (1963), https://doi.org/10.1016/0022-5096(63)90060-7

R. Hill, “A self-consistent mechanics of composite materials,” J. Mech. Phys. Solids, 13, No. 4, 213–222 (1965), https://doi.org/10.1016/0022-5096(65)90010-4

R. M. Jones, Mechanics of Composite Materials, CRC Press, Boca Raton (1999).

L. P. Kollár, G. S. Springer, Mechanics of Composite Structures, Cambridge Univ. Press, Cambridge (2003), https://doi.org/10.1017/CBO9780511547140

D. Li, Analysis of Composite Laminates: Theories and Their Applications, Elsevier (2022).

S. Rana, R. Fangueiro (eds), Advanced Composite Materials for Aerospace Engineering: Processing, Properties and Applications, Woodhead Publishing, UK (2016), https://doi.org/10.1016/C2014-0-00846-5

J. N. Reddy, Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC Press, Boca Raton (2004), https://doi.org/10.1201/b12409

V. Rubashevskyi, S. Shukayev, “Estimation of limit state for quasi-isotropic [90°/± 45°/0°]S AS4/3501-6 carbon/epoxy under uniaxial and biaxial loads,” Mech. Adv. Technol., 2(86), 7–13 (2019) (in Ukrainian), https://doi.org/10.20535/2521-1943.2019.86.176173

H. Sertse, W. Yu, “Three-dimensional effective properties of layered composites with imperfect interfaces,” Adv. Aircr. Spacecr. Sci., 4, No. 6, 639–650 (2017), https://doi.org/10.12989/aas.2017.4.6.639

P. D. Soden, M. J. Hinton, A. S. Kaddour, “Lamina properties, lay-up configurations and loading conditions for a range of fibre-reinforced composite laminates,” Compos. Sci. Technol., 58, No. 7, 1011–1022 (1998), https://doi.org/10.1016/S0266-3538(98)00078-5

Y. V. Tokovyy, A. V. Yasinskyy, S. Lubowicki, D. M. Perkowski, “Elastic and thermoelastic responses of orthotropic half-planes,” Materials (MDPI), 15, No. 1, Art. 297 (2022), https://doi.org/10.3390/ma15010297

S. W. Tsai, Structural Behavior of Composite Materials, NASA CR-71, Philco, Newport Beach, CA (1964).

S. W. Tsai, H. T. Hahn, Introduction to Composite Materials, Technomic Publ.,Westport, CT (1980).

O. C. Zienkiewicz, R. L. Taylor, J. Z. Zhu, The Finite Element Method: Its Basis and Fundamentals, Elsevier, Oxford, UK (2013).


Посилання

  • Поки немає зовнішніх посилань.


Creative Commons License
Ця робота ліцензована Creative Commons Attribution 3.0 License.