Температурні напруження в ортотропній циліндричній оболонці нерегулярної шаруватої структури

R. M. Kushnir, U. V. Zhydyk, V. M. Flyachok

Анотація


Досліджено напружено-деформований стан замкнутої ортотропної циліндричної оболонки нерегулярної шаруватої структури за нагрівання її лінійними джерелами тепла. Для формулювання задачі використовуються рівняння теорії оболонок типу Тимошенка, що враховує поперечну анізотропію, і двовимірні рівнянь теплопровідності неоднорідних анізотропних оболонок. Методами інтегральних перетворень Фур’є і Лапласа знайдено розв’язок нестаціонарної задачі теплопровідності та квазістатичної задачі термопружності для скінченної шарнірно опертої кругової циліндричної оболонки. Числові результати наведено для двошарової оболонки, шари якої виготовлені з різних графітів.

 

Зразок для цитування: Р. М. Кушнір, У. В. Жидик, В. М. Флячок, “Температурні напруження в ортотропній циліндричній оболонці нерегулярної шаруватої структури,” Мат. методи та фіз.-мех. поля, 65, No. 3-4, 101–110 (2022), https://doi.org/10.15407/mmpmf2022.65.3-4.101-110


Ключові слова


термопружність, шарувата оболонка, температурне навантаження, циліндрична оболонка

Посилання


U. V. Zhydyk, “Laminated cross-ply cylindrical shell due to transient heating,” Prykl. Probl. Mekh. Mat., Issue 17, 113–120 (2019) (in Ukrainian), https://doi.org/10.15407/apmm2019.17.113-120

U. V. Zhydyk, V. M. Flyachok, “Temperature fields in shallow shells of a layered structure,” Qualilohiia Knyhy, No. 1(31), 94–97 (2017) (in Ukrainian).

U. Zhydyk, M. Nykolyshyn, V. Flyachok, “Analysis of thermoelastic state of laminated anisotropic cylindrical shell under local heating by heat sources,” Visn. Lviv. Univ., Ser. Mekh.-Mat., Issue 73, 71–76 (2010) (in Ukrainian).

Yu. M. Kolyano, Methods of Thermal Conductivity and Thermoelasticity of an Inhomogeneous Body [in Russian], Naukova Dumka, Kiev (1992).

R. M. Kushnir, M. M. Nykolyshyn, U. V. Zhydyk, V. M. Flyachok, “Modeling of thermoelastic processes in heterogeneous anisotropic shells with initial deformations,” Mat. Met. Fiz.-Mekh. Polya, 53, No. 2, 122–136 (2010) (in Ukrainian); English translation: J. Math. Sci., 178, No. 5, 512–530 (2011), https://doi.org/10.1007/s10958-011-0566-5

S. Brischetto, E. Carrera, “Coupled thermo-mechanical analysis of one-layered and multilayered isotropic and composite shells,” CMES – Comput. Model. Eng. Sci., 56, No. 3, 249–302 (2010), https://doi.org/10.3970/cmes.2010.056.249

R. B. Hetnarski (ed.). Encyclopedia of Thermal Stresses (in 11 volumes), Springer, Dordrecht (2014), https://doi.org/10.1007/978-94-007-2739-7

S. A. Fazelzadeh, S. Rahmani, E. Ghavanloo, P. Marzocca, “Thermoelastic vibration of doubly-curved nano-composite shells reinforced by graphene nanoplatelets,” J. Therm. Stresses, 42, No. 1, 1–17 (2019), https://doi.org/10.1080/01495739.2018.1524733

Y. Li, L. Yang, L. Zhang, Y. Gao, “Exact thermoelectroelastic solution of layered one-dimensional quasicrystal cylindrical shells,” J. Therm. Stresses, 41, No. 10–12, 1450–1467 (2018), https://doi.org/10.1080/01495739.2018.1520618

H. Matsunaga, “Thermal buckling of cross-ply laminated composite shallow shells according to a global higher-order deformation theory,” Compos. Struct., 81, No. 2, 210–221 (2007), https://doi.org/10.1016/j.compstruct.2006.08.008

I. Mirsky, “Vibrations of orthotropic, thick, cylindrical shells,” J. Acoust. Soc. Am., 36, No. 1, 41–51 (1964), https://doi.org/10.1121/1.1918910

Y. Ootao, Y. Tanigawa, K. Miyatake, “Transient thermal stresses of a cross-ply laminated cylindrical shell using a higher-order shear deformation theory,” J. Therm. Stresses, 33, No. 1, 55–74 (2010), https://doi.org/10.1080/01495730903310524

S. Pandey, S. Pradyumna, “Transient stress analysis of sandwich plate and shell panels with functionally graded material core under thermal shock,” J. Therm. Stresses, 41, No. 5, 543–567 (2018), https://doi.org/10.1080/01495739.2017.1422999

D. Punera, T. Kant, Y. M. Desai, “Thermoelastic analysis of laminated and functionally graded sandwich cylindrical shells with two refined higher order models,” J. Therm. Stresses, 41, No. 1, 54–79 (2018), https://doi.org/10.1080/01495739.2017.1373379

J. N. Reddy, Mechanics of Laminated Composite Plates and Shells. Theory and Analysis, CRC Press, New York (2004), https://doi.org/10.1201/b12409

K. Swaminathan, D. M. Sangeetha, “Thermal analysis of FGM plates – A critical review of various modeling techniques and solution methods,” Compos. Struct., 160, 43–60 (2017), https://doi.org/10.1016/j.compstruct.2016.10.047

H.-T. Thai, S.-E. Kim, “A review of theories for the modeling and analysis of functionally graded plates and shells,” Compos. Struct., 128, No. 1, 70–86 (2015), https://doi.org/10.1016/j.compstruct.2015.03.010

The Industrial Graphite Engineering Handbook, Union Carbide Corp., New York (1970).

Y. V. Tokovyy, A. I. Chyzh, C. C. Ma, “Thermal analysis of radially-inhomogeneous hollow cylinders vs cylindrical shells,” in: Proc. of the Sixth Asian Conference on Mechanics of Functional Materials and Structures (ACMFMS 2018) (Taiwan, 2018), pp. 216–219.


Посилання

  • Поки немає зовнішніх посилань.


Creative Commons License
Ця робота ліцензована Creative Commons Attribution 3.0 License.