Вплив зосереджених сил на міжфазне включення, що перебуває в умовах гладкого контакту в неоднорідному трансверсально-ізотропному просторі

O. F. Kryvyi, Yu. O. Morozov

Анотація


Досліджено вплив зосереджених сил на кругове включення, яке перебуває в умовах гладкого контакту у площині з’єднання двох різних трансверсально-ізотропних півпросторів. Проблему зведено до крайової задачі Рімана за частиною змінних у просторі узагальнених функцій і побудовано її розв’язок у явному вигляді, що дозволило отримати залежність поступальних і колових зміщень включення та стрибків напружень і зміщень на включенні від зосереджених сил і співвідношення між пружними сталими півпросторів. Досліджено вплив на поступальні зміщення і стрибки нормальних напружень наявності зосереджених сил або тільки в одному, або обох півпросторах для різних комбінацій матеріалів півпросторів і форми включення.

 

Зразок для цитування: О. Ф. Кривий, Ю. О. Морозов, “Вплив зосереджених сил на міжфазне включення, що перебуває в умовах гладкого контакту в неоднорідному трансверсально-ізотропному просторі,” Мат. методи та фіз.-мех. поля, 64, No. 4, 68–81 (2021), https://doi.org/10.15407/mmpmf2021.64.4.68-81

Translation: O. F. Kryvyi, Yu.O. Morozov, “Influence of concentrated forces on an interface inclusion under the conditions of smooth contact in the inhomogeneous transversely isotropic space,” J. Math. Sci., 279, No. 2, 197–212 (2024), https://doi.org/10.1007/s10958-024-07005-3


Ключові слова


фундаментальні розв’язки, неоднорідний трансверсально-ізотропний простір, кругове включення, узагальнені функції

Посилання


K. S. Aleksandrov, T. V. Ryzhova, “Elastic properties of crystals. A review,” Kristallografiya, 6, No. 2, 289–314 (1961).

V. V. Efimov, A. F. Krivoi, G. Ya. Popov, “Problems on the stress concentration near a circular imperfection in a composite elastic medium,” Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, No. 2, 42–58 (1998); English translation: Mech. Solids, 33, No. 2, 35–49 (1998).

H. S. Kit, R. M. Andriichuk, “Problem of stationary heat conduction for a piecewise homogeneous space under heat release in a circular domain,” Prykl. Probl. Mekh. Mat., Issue 10, 115–122 (2012).

H. S. Kit, O. P. Sushko, “Problems of stationary heat conduction and thermoelasticity for a body with a heat permeable diskshaped inclusion (crack),” Mat. Met. Fiz.-Mekh. Polya, 52, No. 4, 150–159 (2009); English translation: J. Math. Sci., 174, No. 3, 309–321 (2011), https://doi.org/10.1007/s10958-011-0300-3

H. S. Kit, O. P. Sushko, “Axially symmetric problems of stationary heat conduction and thermoelasticity for a body with thermally active or thermally insulated disk inclusion (crack),” Mat. Met. Fiz.-Mekh. Polya, 53, No. 1, 58–70 (2010); English translation: J. Math. Sci., 176, No. 4, 561–577 (2011), https://doi.org/10.1007/s10958-011-0422-7

H. S. Kit, O. P. Sushko, “Distribution of stationary temperature and stresses in a body with a heat permeable disk-shaped inclusion,” Met. Rozv. Prykl. Zadach Mekh. Deformiv. Tverd. Tila, Issue 10, 145–153 (2009).

H. Kit, O. Sushko, “Stationary temperature field in a semiinfinite body with a thermally active or thermally insulated diskshaped inclusion,” Fiz.-Mat. Model. Inform. Tekhnol., Issue 13, 67–80 (2011).

O. F. Kryvyi, “Mutual influence of an interface tunnel crack and an interface tunnel inclusion in a piecewise homogeneous anisotropic space,” Mat. Met. Fiz.-Mekh. Polya, 56, No. 4, 118–124 (2013); English translation: J. Math. Sci., 208, No. 4, 409–416 (2015), https://doi.org/10.1007/s10958-015-2455-9

O. F. Kryvyi, “Interface crack in the inhomogeneous transversely isotropic space,” Fiz.-Khim. Mekh. Mater., 47, No. 6, 15–22 (2011); English translation: Mater. Sci., 47, No. 6, 726–736 (2012), https://doi.org/10.1007/s11003-012-9450-9

O. F. Kryvyi, “Delaminated interface inclusion in a piecewise homogeneous transversely isotropic space,” Fiz.-Khim. Mekh. Mater., 50, No. 2, 77–84 (2014); English translation: Mater. Sci., 50, No. 2, 245–253 (2014), https://doi.org/10.1007/s11003-014-9714-7

O. F. Kryvyy, “Interface circular inclusion under mixed conditions of interaction with a piecewise homogeneous transversally isotropic space,” Mat. Met. Fiz.-Mekh. Polya, 54, No. 2, 89–102 (2011); English translation: J. Math. Sci., 184, No. 1, 101–119 (2012), https://doi.org/10.1007/s10958-012-0856-6

O. F. Kryvyy, “Singular integral relations and equations for a piecewise homogeneous transversally isotropic space with interphase defects,” Mat. Met. Fiz.-Mekh. Polya, 53, No. 1, 23–35 (2010); English translation: J. Math. Sci., 176, No. 4, 515–531 (2011), https://doi.org/10.1007/s10958-011-0419-2

O. F. Kryvyy, “Tunnel internal crack in a piecewise homogeneous anisotropic space,” Mat. Met. Fiz.-Mekh. Polya, 55, No. 4, 54–63 (2012); English translation: J. Math. Sci., 198, No. 1, 62–74 (2014), https://doi.org/10.1007/s10958-014-1773-7

O. F. Kryvyy, “Tunnel inclusions in a piecewise homogeneous anisotropic space,” Mat. Met. Fiz.-Mekh. Polya, 50, No. 2, 55–65 (2007).

O. F. Kryvyi, Yu. O. Morozov, “Solution of the problem of heat conduction for the transversely isotropic piecewisehomogeneous space with two circular inclusions,” Mat. Met. Fiz.-Mekh. Polya, 60, No. 2, 130–141 (2017); English translation: J. Math. Sci., 243, No. 1, 162–182 (2019), https://doi.org/10.1007/s10958-019-04533-1

O. F. Kryvyi, Yu. O. Morozov, “Fundamental solutions for a piecewise homogeneous transversally isotropic elastic space,” Mat. Met. Fiz.-Mekh. Polya, 63, No. 1, 122–132 (2020), https://doi.org/10.15407/mmpmf2020.63.1.122-132

A. F. Krivoi, “Arbitrarily oriented defects in a composite anisotropic plane,” Visn. Odes’k. Derzh. Univ. Ser. Fiz.-Mat. Nauky, 6, Issue 3, 108–115 (2001).

A. F. Krivoi, “Fundamental solution for a four-component composite anisotropic plane,” Visn. Odes’k. Derzh. Univ. Ser. Fiz.-Mat. Nauky, 8, Issue 2, 140–149 (2003).

A. F. Krivoi, Yu. A. Morozov, “Solution of the problem of heat conduction for two complanar cracks in a composite transversally isotropic space,” Visn. Donets’k. Nats. Univ. Ser. A. Pryrodn. Nauky, No. 1, 76–83 (2014).

A. F. Krivoi, G. Ya. Popov, ”Interface tunnel cracks in a composite anisotropic space,” Prikl. Mat. Mekh., 72, No. 4, 689–700 (2008); English translation: J. Appl. Math. Mech., 72, No. 4, 499–507 (2008), https://doi.org/10.1016/j.jappmathmech.2008.08.001

A. F. Krivoi, G. Ya. Popov, ”Features of the stress field near tunnel inclusions in an inhomogeneous anisotropic space,” Prikl. Mekh., 44, No. 6, 36–45 (2008); English translation: Int. Appl. Mech., 44, No. 6, 626–634 (2008), https://doi.org/10.1007/s10778-008-0084-4

A. F. Krivoi, G. Ya. Popov, M. V. Radiollo, “Certain problems of an arbitrarily oriented stringer in a composite anisotropic plane,” Prikl. Mat. Mekh., 50, No. 4, 622–632 (1986); English translation: J. Appl. Math. Mech., 50, No. 4, 475–483 (1986), https://doi.org/10.1016/0021-8928(86)90012-2

A. F. Krivoi, M. V. Radiollo, “Features of the stress field near inclusions in a composite anisotropic plane,” Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela, No. 3, 84–92 (1984).

R. M. Kushnir, Yu. B. Protsyuk, “Thermoelastic state of layered thermosensitive bodies of revolution for the quadratic dependence of the heat-conduction coefficients,” Fiz.-Khim. Mekh. Mater., 46, No. 1, 7–18 (2010); English translation: Mater Sci., 46, No. 1, 1–15 (2011), https://doi.org/10.1007/s11003-010-9258-4

F. Akbari, A. Khojasteh, M. Rahimian “Three-dimensional interfacial Green’s function for exponentially graded transversely isotropic bi-materials,” Civ. Eng. Infrastruct. J., 49, No. 1, 71–96 (2016), https://doi.org/10.7508/ceij.2016.01.006

D. S. Boiko, Y. V. Tokovyy, “Determination of three-dimensional stresses in a semi-infinite elastic transversely isotropic composite,” Mech. Compos. Mater., 57, No. 4, 481–492 (2021), https://doi.org/10.1007/s11029-021-09971-0

P.-F. Hou, A. Y. T. Leung, Y.-J. He, “Three-dimensional Green’s functions for transversely isotropic thermoelastic bimaterials,” Int. J. Solids Struct., 45, No. 24, 6100–6113 (2008), https://doi.org/10.1016/j.ijsolstr.2008.07.022

P.-F. Hou, Z.-S. Li, Y. Zhang, “Three-dimensional quasi-static Green’s function for an infinite transversely isotropic pyroelectric material under a step point heat source,” Mech. Res. Commun., 62, 66–76 (2014), https://doi.org/10.1016/j.mechrescom.2014.08.008

P.-F. Hou, M. Zhao, J. Tong, B. Fu, “Three-dimensional steady-state Green’s functions for fluid-saturated, transversely isotropic, poroelastic bimaterials,” J. Hydrology, 496, 217–224 (2013), https://doi.org/10.1016/j.jhydrol.2013.05.017

O. F. Kryvyi, Yu. O. Morozov, “Inhomogeneous transversely isotropic space under influence of concentrated power and temperature sources,” J. Phys.: Conf. Ser. Proc. of the 7th Int. Conf. TPCM 2021 “Topical Problems of Continuum Mechanics” (October 4–8, 2021, Tsaghkadzor, Armenia), 2231, Art. 012016 (2022), https://doi.org/10.1088/1742-6596/2231/1/012016

O. F. Kryvyi, Yu. O. Morozov, “The fundamental solution of the problem of thermoelasticity for a piecewise homogeneous transversely isotropic elastic space,” Doslid. Mat. Mekh., 25, No. 1(35), 16–30 (2020), https://doi.org/10.18524/2519-206x.2020.1(35).222294

O. Kryvyi, Yu. Morozov, “Interphase circular inclusion in a piecewise-homogeneous transversely isotropic space under the action of a heat flux,” in: E. Gdoutos (editor), Proc. of the 1st Int. Conf. on Theoretical, Applied and Experimental Mechanics, Springer (2018), pp. 394–396, https://doi.org/10.1007/978-3-319-91989-8_94

O. Kryvyi, Yu. Morozov, “The influence of mixed conditions on the stress concentration in the neighborhood of interfacial inclusions in an inhomogeneous transversely isotropic space,” in: E. Gdoutos and M. Konsta-Gdoutos (editors), Proc. of the 3rd Int. Conf. on Theoretical, Applied and Experimental Mechanics (Structural Integrity, 16), Springer (2020), pp. 204–209, https://doi.org/10.1007/978-3-030-47883-4_38.

O. Kryvyi, Yu. Morozov, “The problem of stationary thermoelasticity for a piecewise homogeneous transversely isotropic space under the influence of a heat flux specified at infinity is considered,” J. Phys.: Conf. Ser. Proc. of the 6th Int. Conf. “Topical Problems of Continuum Mechanics” (October 1–6, 2019, Dilijan, Armenia), 1474, Art. 012025 (2019), https://doi.org/10.1088/1742-6596/1474/1/012025

O. Kryvyi, Yu. Morozov, “Thermally active interphase inclusion in a smooth contact conditions with transversely isotropic halfspaces,” Frat. Integrita Strutt., 14, No. 52, 33–50 (2020), https://doi.org/10.3221/IGF-ESIS.52.04

O. Kryvyy, “The discontinuous solution for the piece-homogeneous transversal isotropic medium,” in: Modern Analysis and Applications, Ser. Operator Theory: Advances and Applications, Vol. 191, Birkhäuser, Basel (2009), pp. 395–406, https://doi.org/10.1007/978-3-7643-9921-4_25

R. Kumar, V. Gupta, “Green’s function for transversely isotropic thermoelastic diffusion bimaterials,” J. Therm. Stresses, 37, No. 10, 1201–1229 (2014), https://doi.org/10.1080/01495739.2014.936248

R. Kushnir, “Book review: Hetnarski R. B., Eslami M. R. Thermal stresses – advanced theory and applications,” J. Therm. Stresses, 33, No. 1, 76–78 (2010), https://doi.org/10.1080/01495730903538421

R. Kushnir, B. Protsiuk, “A method of the Green’s functions for quasistatic thermoelasticity problems in layered thermosensitive bodies under complex heat exchange,” in: Modern Analysis and Applications, Ser. Operator Theory: Advances and Applications, Vol. 191, Birkhäuser, Basel (2009), pp. 143–154, https://doi.org/10.1007/978-3-7643-9921-4_9

X.-F. Li, T.-Y. Fan, “The asymptotic stress field for a rigid circular inclusion at the interface of two bonded dissimilar elastic half-space materials,” Int. J. Solids Struct., 38, No. 44-45, 8019–8035 (2001), https://doi.org/10.1016/S0020-7683(01)00010-5

V. Mantič, L. Távara, J. E. Ortiz, F. París, “Recent developments in the evaluation of the 3D fundamental solution and its derivatives for transversely isotropic elastic materials,” Electron. J. Bound. Elem., 10, No. 1, 1–41 (2012), https://doi.org/10.14713/ejbe.v10i1.1116

E. Pan, W. Chen, “Green’s functions in a transversely isotropic magnetoelectroelastic bimaterial space,” in: E. Pan, W. Chen, Static Green’s Functions in Anisotropic Media, Chapter 7, Cambridge University Press (2015), pp. 220–259, https://doi.org/10.1017/CBO9781139541015.008

K. Sahebkar, M. Eskandari-Ghadi, “Displacement ring load Green’s functions for saturated porous transversely isotropic trimaterial full-space,” Int. J. Numer. Anal. Methods Geomech., 41, No. 3, 359–381 (2017), https://doi.org/10.1002/nag.2560

Yu. Tokovyy, “Direct integration of three-dimensional thermoelasticity equations for a transversely isotropic layer,” J. Therm. Stresses, 42, No. 1, 49–64 (2019), https://doi.org/10.1080/01495739.2018.1526150

Yu. V. Tokovyy, C. C. Ma, “Three-dimensional elastic analysis of transversely-isotropic composites,” J. Mech., 33, No. 6, 821–830 (2017), https://doi.org/10.1017/jmech.2017.91

Z. Q. Yue, “Elastic fields in two joined transversely isotropic solids due to concentrated forces,” Int. J. Eng. Sci., 33, No. 3, 351–369 (1995), https://doi.org/10.1016/0020-7225(94)00063-P

Y. Zafari, M. Shahmohamadi, A. Khojasteh, M. Rahimian, “Asymmetric Green’s functions for a functionally graded transversely isotropic tri-material,” Appl. Math. Model., 72, 176–201 (2019), https://doi.org/10.1016/j.apm.2019.02.038

Y.-F Zhao., M.-H. Zhao, E. Pan, C.-Y. Fan, “Green’s functions and extended displacement discontinuity method for interfacial cracks in three-dimensional transversely isotropic magneto-electro-elastic bi-materials,” Int. J. Solids Struct., 52, 56–71 (2015), https://doi.org/10.1016/j.ijsolstr.2014.09.018


Повний текст: PDF

Посилання

  • Поки немає зовнішніх посилань.


Creative Commons License
Ця робота ліцензована Creative Commons Attribution 3.0 License.