Скінченноелементний аналіз параметрів руйнування в п’єзоелектричному біматеріалі з міжфазною тріщиною при різних типах граничних умов на її берегах

V. J. Adlucky, M. S. Levchenko, V. V. Loboda

Анотація


Методом скінченних елементів досліджується напружено-деформований стан міжфазної тріщини в п’єзоелектричному біматеріалі, поляризованому перпендикулярно до берегів тріщини, при заданні на нескінченності електричного поля, паралельного до тріщини, та напружень, паралельних до осі поляризації. На берегах тріщини розглядаються основні варіанти електростатичних граничних умов: непроникність (ізольованість), електропроникність, електропровідність, а також варіант змішаних граничних умов – електропровідність середньої частини верхнього берега та ізольованість решти тріщини. Допускається утворення зон механічного контакту між берегами. Задача розглядається у постановці плоскої деформації. Визначення швидкостей вивільнення енергії реалізується за допомогою інтегрального методу віртуального закриття тріщини. Показано, що тип граничних умов істотно впливає на параметри руйнування.

 

Зразок для цитування: В. Я. Адлуцький, М. С. Левченко, В. В. Лобода, “Скінченноелементний аналіз параметрів руйнування в п’єзоелектричному біматеріалі з міжфазною тріщиною при різних типах граничних умов на її берегах,” Мат. методи та фіз.-мех. поля, 64, No. 4, 55–67 (2021), https://doi.org/10.15407/mmpmf2021.64.4.55-67

Translation: V. J. Adlucky, M. S. Levchenko, V. V. Loboda, “Finite-element analysis of the parameters of fracture in a piezoelectric bimaterial with interface crack for various types of boundary conditions on its faces,” J. Math. Sci., 279, No. 2, 181–196 (2024), https://doi.org/10.1007/s10958-024-07004-4


Ключові слова


п’єзоелектричний біматеріал, міжфазна тріщина, метод скінченних елементів, параметри руйнування, інтегральний метод віртуального закриття тріщин

Посилання


V. J. Adlutsky, V. V. Loboda, “Finite-element analysis of the elastoplastic state of a plane with elliptic inclusion in the presence of interface crack,” Mat. Met. Fiz.-Mekh. Polya, 63, No. 1, 65–74 (2020), https://doi.org/10.15407/mmpmf2020.63.1.65-74; English translation: J. Math. Sci., 270, No. 1, 76–86 (2023), https://doi.org/10.1007/s10958-023-06333-0

N. Benkaci, G. Maugin, “J integral computation for piezo-ceramics,” Rev. Eur. Élém. Finis, 10, No. 1, 99–128 (2001), https://doi.org/10.1080/12506559.2001.11869241

H. G. Beom, S. N. Atluri, “Conducting cracks in dissimilar piezoelectric media,” Int. J. Fract., 118, No. 4, 285–301 (2002), https://doi.org/10.1023/A:1023381215338

C.-F. Gao, M. Zhao, P. Tong, T.-Y. Zhang, “The energy release rate and the J-integral of an electrically insulated crack in a piezoelectric material,” Int. J. Eng. Sci., 42, Nos. 19-20, 2175–2192 (2004), https://doi.org/10.1016/j.ijengsci.2004.08.007

D. Fang, J. Liu, Fracture Mechanics of Piezoelectric and Ferroelectric Solids, Tsinghua Univ. Press, Beijing (2013).

T. Fett, M. Kamlah, D. Munz, G. Thun, “Crack resistance and fracture toughness of PZT ceramics,” in: Proc. SPIE, 4333, Smart Structures and Materials 2001: Active Materials: Behavior and Mechanics (2001), pp. 221–230, https://doi.org/10.1117/12.432760

O. Gruebner, M. Kamlah, D. Munz, “Finite element analysis of cracks in piezoelectric materials taking into account the permittivity of the crack medium,” Eng. Fract. Mech., 70, No. 11, 1399–1413 (2003), https://doi.org/10.1016/S0013-7944(02)00117-0

K. P. Herrmann, V. V. Loboda, V. B. Govorukha, “On contact zone models for an electrically impermeable interface crack in a piezoelectric bimaterial,” Int. J. Fract., 111, No. 3, 203–227 (2001), https://doi.org/10.1023/A:1012269616735

S. Kumar, R. N. Singh, “Crack propagation in piezoelectric materials under combined mechanical and electrical loadings,” Acta Mater., 44, No. 1, 173–200 (1996), https://doi.org/10.1016/1359-6454(95)00175-3

S. Kumar, R. N. Singh, “Effect of the mechanical boundary condition at the crack surfaces on the stress distribution at the crack tip in piezoelectric materials,” Mater. Sci. Eng. A, 252, No. 1, 64–77 (1998), https://doi.org/10.1016/S0921-5093(98)00629-7

S. Kumar, R. N. Singh, “Influence of applied electric field and mechanical boundary condition on the stress distribution at the crack tip in piezoelectric materials,” Mater. Sci. Eng. A, 231, Nos. 1-2, 1–9 (1997), https://doi.org/10.1016/S0921-5093(97)00038-5

M. Kuna, “Finite element analyses of crack problems in piezoelectric structures,” Comput. Mater. Sci., 13, Nos 1-3, 67–80 (1998), https://doi.org/10.1016/S0927-0256(98)00047-0

M. Kuna, “Finite element analyses of cracks in piezoelectric structures,” Key Eng. Mater., 348-349, 629–632 (2007), https://doi.org/10.4028/www.scientific.net/KEM.348-349.629

B. N. Rao, M. Kuna, “Interaction integrals for fracture analysis of functionally graded piezoelectric materials,” Int. J. Solids Struct., 45, No. 20, 5237–5257 (2008), https://doi.org/10.1016/j.ijsolstr.2008.05.020

V. Loboda, R. Mahnken, “An investigation of an electrode at the interface of a piezoelectric bimaterial space under remote electromechanical loading,” Acta Mech., 221, Nos. 3-4, 327–339 (2011), https://doi.org/10.1007/s00707-011-0519-6

V. Loboda, A. Sheveleva, Y. Lapusta, “An electrically conducting interface crack with a contact zone in a piezoelectric bimaterial,” Int. J. Solids Struct., 51, No. 1, 63–73 (2014), https://doi.org/10.1016/j.ijsolstr.2013.09.012

R. M. McMeeking, “The energy release rate for a Griffith crack in a piezoelectric material,” Eng. Fract. Mech., 71, Nos. 7-8, 1149–1163 (2004), https://doi.org/10.1016/S0013-7944(03)00135-8

S. B. Park, C. T. Sun, “Effect of electric field on fracture of piezoelectric ceramics,” Int. J. Fract., 70, No. 3, 203–216 (1993), https://doi.org/10.1007/BF00012935

S. B. Park, C. T. Sun, “Fracture criteria for piezoelectric ceramics,” J. Am. Ceram. Soc., 78, No. 6, 1475–1480 (1995), https://doi.org/10.1111/j.1151-2916.1995.tb08840.x

V. Z. Parton, B. A. Kudryavtsev, Electromagnetoelasticity, Gordon & Breach Sci. Publ., New York (1988).

E. F. Rybicki, M. F. Kanninen, “A finite element calculation of stress intensity factors by a modified crack closure integral,” Eng. Fract. Mech., 9, No. 4, 931–938 (1977), https://doi.org/10.1016/0013-7944(77)90013-3

O. C. Zienkiewicz, R. L. Taylor, The Finite Element Method for Solid and Structural Mechanics, Vol. 2, Elsevier, Oxford (2005).


Повний текст: PDF

Посилання

  • Поки немає зовнішніх посилань.


Creative Commons License
Ця робота ліцензована Creative Commons Attribution 3.0 License.