Некласичні лінійні теорії континуальної механіки

O. R. Hrytsyna

Анотація


Наведено короткий огляд некласичних лінійних теорій механіки суцільних середовищ. Стисло охарактеризовано нелокальну теорію пружності Ерінґена–Еделена, теорії полярних і мікрополярних середовищ, моментну теорію пружності Тупіна, мікроморфну теорію Ерінгена–Сухубі–Міндліна, ґрадієнтну теорію пружності Міндліна, а також локально ґрадієнтну теорію деформування пружних середовищ, що враховує локальне зміщення маси.

 

Зразок для цитування: О. Р. Грицина, “Некласичні лінійні теорії континуальної механіки,” Мат. методи та фіз.-мех. поля, 63, No. 3, 85–106 (2020), https://doi.org/10.15407/mmpmf2020.63.3.85-106

Translation: О. R. Hrytsyna, “Nonclassical linear theories of continuum mechanics,” J. Math. Sci., 272, No. 1, 101–123 (2023), https://doi.org/10.1007/s10958-023-06487-x


Ключові слова


лінійна пружність, некласичні моделі, нелокальна пружність, ґрадієнтного типу теорії, теорії з некласичною кінематикою

Посилання


S. A. Ambartsumyan, Micropolar Theory of Shells and Plates [in Russian], Izd. NAS of Armenia, Yerevan (1999).

È. L. Aero, E. V. Kuvshinskii, “Fundamental equations of the theory of elastic media with rotationally interacting particles,” Fiz. Tv. Tela, 2, No. 7, 1399–1409 (1960); English translation: Sov. Phys. Solid State, 2, 1272–1281 (1961).

P. A. Belov, S. A. Lurie, “A continuum model of microheterogeneous media,” Prikl. Mat. Mekh., 73, No. 5, 833–848 (2009); English translation: J. Appl. Math. Mech., 73, No. 5, 599–608 (2009), https://doi.org/10.1016/j.jappmathmech.2009.11.013

Ya. Yo. Burak, Ye. Ya. Chaplya, V. F. Kondrat, O. R. Hrytsyna, “Mathematical modeling of thermomechanical processes in elastic bodies with regard for a local mass displacement,” Dop. Nats. Akad. Nauk Ukr., No. 6, 45–49 (2007) (in Ukrainian).

Ya. I. Burak, T. S. Nagirnii, “Theoretical principles for computing local-gradient thermomechanical systems with allowance for subsurface phenomena,” Fiz.-Khim. Mekh. Mater., 29, No. 4, 24–30 (1993); English translation: Mater. Sci., . 29, No. 4, 349–354 (1994), https://doi.org/10.1007/BF00566442

Ya. Yo. Burak, “Defining relations of the local-gradient thermomechanics,” Dop. Akad. Nauk UkrSSR, Ser. A, No. 12, 19–23 (1987) (in Ukrainian).

O. Hrytsyna, “On description of the effect of local mass displacement on the shear stresses,” Fiz. Mat. Modelyuv. Inform. Tekhnol., No. 16, 61–75 (2012) (in Ukrainian).

O. Hrytsyna, “Determination of surface energy of solids,” Fiz. Mat. Modelyuv. Inform. Tekhnol., No. 17, 43–54 (2013) (in Ukrainian).

O. R. Hrytsyna, “Influence of subsurface inhomogeneity on the propagation of SH waves in isotropic materials,” Fiz.-Khim. Mekh. Mater., 53, No. 2, 128–134 (2017); English translation: Mater. Sci., 53, No. 2, 273–281 (2017), https://doi.org/10.1007/s11003-017-0072-0

O. Hrytsyna, T. Nahirnyi, K. Chervinka, “Local gradient approach in thermomechanics,” Fiz. Mat. Modelyuv. Inform. Tekhnol., No. 3, 72–83 (2006) (in Ukrainian).

O. Hrytsyna, V. Kondrat, Thermomechanics of Condensed Systems with Regard for the Local Mass Displacement. I. Foundations of Theory [in Ukrainian], Rastr-7, Lviv (2017).

O. Hrytsyna, V. Kondrat, Thermomechanics of Condensed Systems with Regard for the Local Mass Displacement. II. Applied Investigations [in Ukrainian], Rastr-7, Lviv (2019).

V. I. Erofeev, Wave Processes in Solids with Microstructure [in Russian], Izd. Mosk. Univ., Moscow (1999).

V. F. Kondrat, O. R. Hrytsyna, “Relations of gradient thermomechanics taking into account the irreversibility and inertia of local mass displacement,” Mat. Met. Fiz.-Mekh. Polya, 54, No. 1, 91–100 (2011); English translation: J. Math. Sci., 183, No. 1, 100–111 (2012), https://doi.org/10.1007/s10958-012-0800-9

V. Kondrat, T. Nahirnyi, O. Hrytsyna, “Generation and interaction of subsurface inhomogeneities in elastic layer taking into account the irreversibility of local mass displacement,” Mashynoznavstvo, No. 3(129), 31–36 (2008) (in Ukrainian).

E. V. Kuvshinskii, È. L. Aero, “Continuum theory of asymmetric elasticity. Allowance for “internal” rotation,” Fiz. Tv. Tela, 5, No. 9, 2591–2598 (1963) (in Russian).

I. A. Kunin, Theory of elastic media with microstructure. Nonlocal theory of elasticity [in Russian], Nauka, Moscow (1975).

S. A. Lisina, A. I. Potapov, “Generalized continuum models in nanomechanics,” Dokl. Ross. Akad. Nauk, 420, No 3, 328–330 (2008) (in Russian).

S. A. Lurie, P. A. Belov, “Theory of media with conserved dislocations. Special cases: Cosserat media and Aero–Kuvshinskii’s media, porous media, and media with “twinning”, in: Proc. Conf. “Modern Problems of Mechanics of Heterogeneous Media”, Inst. Appl. Mech. Ross. Akad. Nauk (2005), pp. 235–267 (in Russian).

T. Nahirnyi, K. Tchervinka, Thermodynamical Models and Methods of Thermomechanics with Allowance of Subsurface and Structural Nonhomogeneities. Foundations of Nanomechanics I [in Ukrainian], Spolom, Lviv (2012).

V. Nowacki, Theory of Elasticity [in Russian], Mir, Moscow (1975).

Ya. S. Podstrigach, “On a nonlocal theory of solid body deformation,” Prikl. Mech., 3, No. 2, 71–76 (1967), English translation: Sov. Appl. Mech., 3, No. 2, 44–46 (1967), https://doi.org/10.1007/BF00885584

G. N. Savin, The Foundations of the Plane Problem of Moment Theory of Elasticity [in Russian], Kyiv State Univ., Kyiv (1965).

G. N. Savin, A. A. Lukashev, E. M. Lysko, S. V. Veremeenko, G. G. Agas'ev, “Elastic wave propagation in a Cosserat continuum with constrained particle rotation,” Prikl. Mech., 6, No. 6, 37–41 (1970), English translation: Sov. Appl. Mech., 6, No. 6, 599–602 (1970), https://doi.org/10.1007/BF00888458

G. N. Savin, Y. N. Nemish, “Investigations into stress concentration in the moment theory of elasticity (a survey),” Prikl. Mech., 4, No. 12, 1–17 (1968), English translation: Sov. Appl. Mech., 4, No. 12, 1–15 (1968), https://doi.org/10.1007/BF00886725

S. O. Sargsyan, “Micropolar theory of thin beams, plates, and shells,” Izv. Nats. Akad. Nauk Arm., Ser. Mekh., 58, No. 2, 84–95 (2005) (in Russian).

S. O. Sargsyan, “General mathematical models of micropolar elastic thin plates,” Izv. Nats. Akad. Nauk Arm., Ser. Mekh., 64, No. 1, 58–67 (2011) (in Russian).

A. M. Abazari, S. M. Safavi, G. Rezazadeh, L. G. Villanueva, “Modelling the size effects on the mechanical properties of micro/nano structures,” Sensors, 15, No. 11, 28543–28562 (2015), https://doi.org/10.3390/s151128543

E. C. Aifantis, “Update on a class of gradient theories,” Mech. Mater., 35, No. 3-6, 259–280 (2003), https://doi.org/10.1016/S0167-6636(02)00278-8

E. C. Aifantis, “Exploring the applicability of gradient elasticity to certain micro/ nano reliability problems,” Microsyst. Technol., 15, No. 1, 109–115 (2009), https://doi.org/10.1007/s00542-008-0699-8

E. C. Aifantis, “A concise review of gradient models in mechanics and physics,” Front. Phys., 7, Art. 239, 8 p., (2020), https://doi.org/10.3389/fphy.2019.00239

B. S. Altan, E. C. Aifantis, “On some aspects in the special theory of gradient elasticity,” J. Mech. Behav. Mater., 8, No. 3, 231–282 (1997), https://doi.org/10.1515/JMBM.1997.8.3.231

J. Altenbach, H. Altenbach, V. Eremeyev, “On generalized Cosserat-type theories of plates and shells: a short review and bibliography,” Arch. Appl. Mech., 80, No 1, 73–92 (2010), https://doi.org/10.1007/s00419-009-0365-3

B. Arash, Q. Wang, “A review on the application of nonlocal elastic models in modeling of carbon nanotubes and graphenes,” Comput. Mater. Sci., 51, No. 1, 303–313 (2012), https://doi.org/10.1016/j.commatsci.2011.07.040

H. Askes, E. C. Aifantis, “Gradient elasticity in statics and dynamics: An overview of formulations, length scale identification procedures, finite element implementations and new results,” Int. J. Solids Struct., 48, No. 13, 1962–1990 (2011), https://doi.org/10.1016/j.ijsolstr.2011.03.006

J. D. Axe, J. Harada, G. Shirane, “Anomalous acoustic dispersion in centrosymmetric crystals with soft optic phonons,” Phys. Rev. B, 1, No. 3, 1227–1234 (1970), https://doi.org/10.1103/PhysRevB.1.1227

L. Behera, S. Chakraverty, “Recent researches on nonlocal elasticity theory in the vibration of carbon nanotubes using beam models: A review,” Arch. Comput. Meth. Eng., 24, No. 3, 481–494 (2017), https://doi.org/10.1007/s11831-016-9179-y

Y. Chen, J. D. Lee, A. Eskandarian, “Atomistic viewpoint of the applicability of microcontinuum theories,” Int. J. Solids Struct., 41, No. 8, 2085–2097 (2004), https://doi.org/10.1016/j.ijsolstr.2003.11.030

N. Cordero, A Strain Gradient Approach to the Mechanics of Micro and Nanocrystals, École Nationale Supérieure des Mines de Paris (2011).

E. Cosserat, F. Cosserat, Théorie des Corps Déformable, Hermann et Fils, Paris (1909).

S. Cuenot, C. Frétigny, S. Demoustier-Champagne, B. Nysten, “Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy,” Phys. Rev. B, 69, No. 16, Art. 165410, 5 p. (2004), https://doi.org/10.1103/PhysRevB.69.165410

F. Dell’Isola, A. D. Corte, I. Giorgio, “Higher-gradient continua: The legacy of Piola, Mindlin, Sedov and Toupin and some future research perspectives,” Math. Mech. Solids, 22, No. 4, 852–872 (2017), https://doi.org/10.1177/1081286515616034

M. A. Eltaher, M. E. Khater, S. A. Emam, “A review on nonlocal elastic models for bending, buckling, vibrations, and wave propagation of nanoscale beams,” Appl. Math. Model., 40, No. 5-6, 4109–4128 (2016), https://doi.org/10.1016/j.apm.2015.11.026

J. Engelbrecht, M. Braun, “Nonlinear waves in nonlocal media,” Appl. Mech. Rev., 51, No. 8, 475–488 (1998), https://doi.org/10.1115/1.3099016

A. C. Eringen, “Linear theory of micropolar elasticity,” Indiana J. Math. Mech., 15, No. 6, 909–923 (1966), https://doi.org/10.1512/iumj.1966.15.15060

A. C. Eringen, “Mechanics of micromorphic continua,” in: E. Kröner (ed.), Mechanics of Generalized Continua, Springer–Verlag, Berlin (1968), pp. 18–35, https://doi.org/10.1007/978-3-662-30257-6_2

A. C. Eringen, “Theory of micropolar elasticity,” in: H. Liebowitz (ed.), Fracture: An Advanced Treatise, Vol. II. Mathematical Fundamentals, Academic Press, New York (1968), Chap. 7, pp. 621–729.

A. C. Eringen, “On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves,” J. Appl. Phys., 54, No. 9, 4703–4710 (1983), https://doi.org/10.1063/1.332803

A. C. Eringen, Microcontinuum field theories. 1. Foundation and solids, Springer-Verlag, New York, 1999.

A. C. Eringen, Nonlocal continuum field theories, Springer-Verlag, New York, 2002.

A. C. Eringen, C. B. Kafadar, Polar field theories, in: Continuum Physics, Chap. 1 of Vol. IV: Polar and nonlocal field theories (ed. A. C. Eringen), Academic Press, New York, 1976, https://doi.org/10.1016/B978-0-12-240804-5.50007-5

A. C. Eringen, E. S. Suhubi, “Nonlinear theory of simple microelastic solids – I,” Int. J. Eng. Sci. , 2, No. 2, 189–203 (1964), https://doi.org/10.1016/0020-7225(64)90004-7

J. Fernández-Sáez, R. Zaera, J. A. Loya, J. N. Reddy, “Bending of Euler – Bernoulli beams using Eringen’s integral formulation: A paradox resolved,” Int. J. Engng. Sci., 99, 107–116 (2016), https://doi.org/10.1016/j.ijengsci.2015.10.013

N. A. Fleck, J. W. Hutchinson, “A phenomenological theory for strain gradient effects in plasticity,” J. Mech. Phys. Solids, 41, No 12, 1825–1857 (1993), https://doi.org/10.1016/0022-5096(93)90072-N

S. Forest, “Micromorphic approach for gradient elasticity, viscoplasticity, and damage,” J. Eng. Mech., 135, No. 3, 117–131 (2009), https://doi.org/10.1061/(ASCE)0733-9399(2009)135:3(117)

S. Forest, N. M. Cordero, E. P. Busso, “First vs. second gradient of strain theory for capillarity effects in an elastic fluid at small length scales,” Comput. Mater. Sci., 50, No. 4, 1299–1304 (2011), https://doi.org/10.1016/j.commatsci.2010.03.048

X.-L. Gao, S. K. Park, “Variational formulation of a simplified strain gradient elasticity theory and its application to a pressurized thick-walled cylinder problem,” Int. J. Solids Struct., 44, No. 22-23, 7486–7499 (2007), https://doi.org/10.1016/j.ijsolstr.2007.04.022

P. Germain, “The method of virtual power in continuum mechanics. Part 2. Micro-structure,” SIAM J. Appl. Math., 25, No. 3, 556–575 (1973), https://doi.org/10.1137/0125053

I.-D. Ghiba, P. Neff, A. Madeo, I. Münch, “A variant of the linear isotropic indeterminate couple-stress model with symmetric local force-stress, symmetric nonlocal force-stress, symmetric couple-stresses and orthogonal boundary conditions,” Math. Mech. Solids, 22, No. 6, 1221–1266 (2017), https://doi.org/10.1177/1081286515625535

A. E. Green, R. S. Rivlin, “Simple force and stress multipoles,” Arch. Ration. Mech. Analysis, 16, No. 5, 325–353 (1964), https://doi.org/10.1007/BF00281725

A. E. Green, R. S. Rivlin, “Multipolar continuum mechanics,” Arch. Ration. Mech. Analysis, 17, No. 2, 113–147 (1964), https://doi.org/10.1007/BF00253051

A. A. Gusev, S. A. Lurie, “Symmetry conditions in strain gradient elasticity,” Math. Mech. Solids., 22, No. 4, 683–691 (2017), https://doi.org/10.1177/1081286515606960

A. R. Hadjesfandiari, G. F. Dargush, “Couple stress theory for solids,” Int. J. Solids Struct., 48, No. 18, 2496–2510 (2011), https://doi.org/10.1016/j.ijsolstr.2011.05.002

A. R. Hadjesfandiari , G. F. Dargush, Evolution of generalized couple-stress continuum theories: a critical analysis (2015), Preprint arXiv: 1501.03112.

S. Hassanpour, G. R. Heppler, “Micropolar elasticity theory: A survey of linear isotropic equations, representative notations, and experimental investigations,” Math. Mech. Solids, 22, No. 2, 224–242 (2017), https://doi.org/10.1177/1081286515581183

O. R. Hrytsyna, “Applications of the local gradient elasticity to the description of the size effect of shear modulus,” SN Appl. Sci., 2, No. 8, Art. 1453 (9 p.) (2020), https://doi.org/10.1007/s42452-020-03217-9

O. Hrytsyna, “A Bernoulli – Euler beam model based on local gradient theory of elasticity,” J. Mech. Mater. Struct. , 15, No. 4, 471–487 (2020), https://doi.org/10.2140/jomms.2020.15.471

T. J. Jaramillo, A generalization of the energy function of elasticity theory. Dissertation, University of Chicago, 1929.

G. Y. Jing, H. L. Duan, X. M. Sun, Z. S. Zhang, J. Xu, Y. D. Li, J. X. Wang, D. P. Yu, “Surface effects on elastic properties of silver nanowires: Contact atomic-force microscopy,” Phys. Rev. B, 73, No. 23, Art. 235409 (2006), https://doi.org/10.1103/PhysRevB.73.235409

M. Jirásek, “Nonlocal theories in continuum mechanics,” Acta Polytechnica, 44, No. 5-6, 16-34 (2004), https://doi.org/10.14311/610

C. B. Kafadar, A. C. Eringen, “Micropolar media–I: The classical theory,” Int. J. Engng. Sci., 9, No. 3, 271–305 (1971), https://doi.org/10.1016/0020-7225(71)90040-1

C. B. Kafadar, A. C. Eringen, “Micropolar media–II: The relativistic theory,” Int. J. Engng. Sci., 9, No. 3, 307–329 (1971), https://doi.org/10.1016/0020-7225(71)90041-3

K. Kiani, “Free longitudinal vibration of tapered nanowires in the context of nonlocal continuum theory via a perturbation technique,” Physica E, 43, No. 1, 387–397 (2010), https://doi.org/10.1016/j.physe.2010.08.022

S. Kong, S. Zhou, Z. Nie, K. Wang, “Static and dynamic analysis of micro beams based on strain gradient elasticity theory,” Int. J. Engng. Sci., 47, No. 4, 487–498 (2009), https://doi.org/10.1016/j.ijengsci.2008.08.008

R. Lakes, “Cosserat micromechanics of structured media experimental methods,” in: Proc. of the American Society for Composites, Third technical conf. "Integrated composites technology” (September 25–29, Seattle, Washington, 1988), pp. 505–516.

R. Lakes, “Experimental methods for study of Cosserat elastic solids and other generalized elastic continua,” in: H. Mühlaus (ed.), Continuum models for materials with microstructure, Wiley, New York (1995), pp. 1–22.

D. C. C. Lam, F. Yang, A. C. M. Chong, J. Wang, P. Tong, “Experiments and theory in strain gradient elasticity,” J. Mech. Phys. Solids, 51, No. 8, 1477–1508 (2003), https://doi.org/10.1016/S0022-5096(03)00053-X

C. Liebold, W. H. Müller, “Applications of strain gradient theories to the size effect in submicro-structures incl. experimental analysis of elastic material parameters,” Bulletin of TICMI, 19, No. 1, 45–55 (2015).

K. M. Liew, Yang Zhang, L. W. Zhang, “Nonlocal elasticity theory for graphene modeling and simulation: prospects and challenges,” J. Model. Mech. Mater., 1, No. 1, Art. 20160159, 9 p. (2017), https://doi.org/10.1515/jmmm-2016-0159

C. W. Lim, G. Zhang, J. N. Reddy, “A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation,” J. Mech. Phys. Solids, 78, 298–313 (2015), https://doi.org/10.1016/j.jmps.2015.02.001

P. Lu, P. Q. Zhang, H. P. Lee, C. M. Wang, J. N. Reddy, “Non-local elastic plate theories,” Proc. R. Soc. A, 463, No. 2088, 3225–3240 (2007), https://doi.org/10.1098/rspa.2007.1903

H. M. Ma, X.-L. Gao, J. N. Reddy, “A microstructure-dependent Timoshenko beam model based on a modified couple stress theory,” J. Mech. Phys. Solids, 56, No. 12, 3379–3391 (2008), https://doi.org/10.1016/j.jmps.2008.09.007

R. Maranganti, P. Sharma, “A novel atomistic approach to determine strain gradient elasticity constants: tabulation and comparison for various metals, semiconductors, silica, polymers and the (ir)relevance for nanotechnologies,” J. Mech. Phys. Solids, 55, No. 9, 1823–1852 (2007), https://doi.org/10.1016/j.jmps.2007.02.011

G. A. Maugin, “Generalized continuum mechanics: What do we mean by that?” in: G. Maugin, A. Metrikine (eds), Mechanics of Generalized Continua. Advances in Mechanics and Mathematics, Vol. 21, Springer (2010), pp. 3–13, https://doi.org/10.1007/978-1-4419-5695-8_1

A. W. McFarland, J. S. Colton, “Role of material microstructure in plate stiffness with relevance to microcantilever sensors,” J. Micromech. Microeng., 15, No. 5, 1060–1067 (2005), https://doi.org/10.1088/0960-1317/15/5/024

R. D. Mindlin, “Micro-structure in linear elasticity,” Arch. Ration. Mech. Anal., 16, No. 1, 51–78 (1964), https://doi.org/10.1007/BF00248490

R. D. Mindlin, “Second gradient of strain and surface-tension in linear elasticity,” Int. J. Solids Struct., 1, No. 4, 417–438 (1965), https://doi.org/10.1016/0020-7683(65)90006-5

R. D. Mindlin, “Theories of elastic continua and crystal lattice theories,” in: E. Kröner (ed.), Mechanics of Generalized Continua, Proc. of IUTAM Symposia (Stuttgart, 1967), Springer-Verlag, Berlin (1968), pp. 312–320, https://doi.org/10.1007/978-3-662-30257-6_38

R. D. Mindlin, “Elasticity, piezoelectricity and crystal lattice dynamics,” J. Elasticity, 2, No. 4, 217–282 (1972), https://doi.org/10.1007/BF00045712

R. D. Mindlin, H. F. Tiersten, “Effects of couple-stresses in linear elasticity,” Arch. Ration. Mech. Anal., 11, No. 1, 415–448 (1962), https://doi.org/10.1007/BF00253946

A. Naderi, A. R. Saidi, “Common nonlocal elastic constitutive relation and material-behavior modeling of nanostructures,” Proc. of the Inst. of Mechanical Engineers, Part N: Journal of Nanomaterials, Nanoengineering and Nanosystems, 231, No. 2, 83–87, (2017), https://doi.org/10.1177/2397791417712870

T. Nahirnyj, K. Tchervinka, “Mathematical modeling of structural and near-surface non-homogeneities in thermoelastic thin films,” Int. J. Engng. Sci., 91, 49–62, (2015), https://doi.org/10.1016/j.ijengsci.2015.02.001

J. Niiranen, V. Balobanov, J. Kiendl, S. B. Hosseini, “Variational formulations, model comparisons and numerical methods for Euler – Bernoulli micro- and nano-beam models,” Math. Mech. Solids, 24, No. 1, 312–335 (2019), https://doi.org/10.1177/1081286517739669

W. Nowacki, Theory of micropolar elasticity, Springer-Verlag, Wien (1970).

F. Ojaghnezhad, H. M. Shodja, “A combined first principles and analytical determination of the modulus of cohesion, surface energy, and the additional constants in the second strain gradient elasticity,” Int. J. Solids Struct., 50, No. 24, 3967–3974 (2013), https://doi.org/10.1016/j.ijsolstr.2013.08.004

S. Papargyri-Beskou, D. E. Beskos, “Static, stability and dynamic analysis of gradient elastic flexural Kirchhoff plates,” Arch. Appl. Mech., 78, No. 8, 625–635 (2008), https://doi.org/10.1007/s00419-007-0166-5

C. Papenfuss, S. Forest, “Thermodynamical frameworks for higher grade material theories with internal variables or additional degrees of freedom,” J. Non-Equilib. Thermodyn., 31, No. 4, 319–353 (2006), https://doi.org/10.1515/jnetdy.2006.014

S. K. Park, X.-L. Gao, “Bernoulli – Euler beam model based on a modified couple stress theory,” J. Micromech. Microeng., 16, No. 11, 2355–2359 (2006), https://doi.org/10.1088/0960-1317/16/11/015

C. Polizzotto, “Nonlocal elasticity and related variational principles,” Int. J. Solids Struct., 38, No. 42-43, 7359–7380 (2001), https://doi.org/10.1016/S0020-7683(01)00039-7

C. Polizzotto, “A unifying variational framework for stress gradient and strain gradient elasticity theories,” Eur. J. Mech. A-Solids, 49, 430–440, 2015https://doi.org/10.1016/j.euromechsol.2014.08.013

C. Polizzotto, “A hierarchy of simplified constitutive models within isotropic strain gradient elasticity,” Eur. J. Mech. A-Solids, 61, 92–109 (2017), https://doi.org/10.1016/j.euromechsol.2016.09.006

Yu. Z. Povstenko, “Straight disclinations in nonlocal elasticity,” Int. J. Engng. Sci., 33, No. 4, 575–582 (1995), https://doi.org/10.1016/0020-7225(94)00070-0

J. N. Reddy, “Nonlocal theories for bending, buckling and vibration of beams,” Int. J. Engng. Sci., 45, No. 2-8, 288–307 (2007), https://doi.org/10.1016/j.ijengsci.2007.04.004

M. Repka, V. Sladek, J. Sladek, “Gradient elasticity theory enrichment of plate ben-ding theories,” Compos. Struct., 202, 447–457 (2018), https://doi.org/10.1016/j.compstruct.2018.02.065

G. Romano, R. Barretta, “Nonlocal elasticity in nanobeams: the stress-driven integral model,” Int. J. Engng. Sci., 115, 14–27 (2017), https://doi.org/10.1016/j.ijengsci.2017.03.002

M. B. Rubin, Cosserat theories: shells, rods and points, Ser. Solid mechanics and its applications, G. M. L. Gladwell (ed.), Vol. 79, Kluwer Academic Publishers, Dordrecht–Boston–London (2000). – https://doi.org/10.1007/978-94-015-9379-3

M. M. Shokrieh, I. Zibaei, “Determination of the appropriate gradient elasticity theory for bending analysis of nano-beams by considering boundary conditions effect,” Lat. Am. J. Solids Struct. , 12, No. 12, 2208–2230 (2015), https://doi.org/10.1590/1679-78251589

J. Sladek, V. Sladek, M. Repka, S. Schmauder, “Gradient theory for crack problems in quasicrystals,” Eur. J. Mech. A-Solids, 77, Art. 103813, https://doi.org/10.1016/j.euromechsol.2019.103813

E. S. Suhubi, A. C. Eringen, “Nonlinear theory of simple microelastic solids – II,” Int. J. Engng. Sci., 2, No. 4, 389–404 (1964), https://doi.org/10.1016/0020-7225(64)90017-5

V. Sundararaghavan, A. Waas, “Non-local continuum modeling of carbon nanotubes: Physical interpretation of non-local kernels using atomistic simulations,” J. Mech. Phys. Solids, 59, No. 6, 1191–1203 (2011), https://doi.org/10.1016/j.jmps.2011.03.009

C. Tang, G. Alici, “Evaluation of length-scale effects for mechanical behaviour of micro- and nanocantilevers: I. Experimental determination of length-scale factors,” J. Phys. D: Appl. Phys. , 44, No. 33, Art. 335501 (2011), https://doi.org/10.1088/0022-3727/44/33/335501

C. Tekoğlu, P. R. Onck, “Size effects in two-dimensional Voronoi foams: A comparison between generalized continua and discrete models,” J. Mech. Phys. Solids, 56, No. 12, 3541–3564 (2008), https://doi.org/10.1016/j.jmps.2008.06.007

H.-T. Thai, T. P. Vo, T.-K. Nguyen, S.-E. Kim, “A review of continuum mechanics models for size-dependent analysis of beams and plates,” Compos. Struct., 177, 196–219 (2017), https://doi.org/10.1016/j.compstruct.2017.06.040

R. A. Toupin, “Elastic materials with couple-stresses,” Arch. Rat. Mech. Anal., 11, No. 1, 385–414 (1962), https://doi.org/10.1007/BF00253945

J. Vila, R. Zaera, J. Fernández-Sáez, “Axisymmetric free vibration of closed thin spherical nanoshells with bending effects,” J. Vibr. Control, 22, No. 18, 3789–3806 (2016), https://doi.org/10.1177/1077546314565808

Q. Wang, K. M. Liew, “Application of nonlocal continuum mechanics to static analysis of micro- and nano-structures,” Phys. Lett. A, 363, No. 3, 236–242 (2007), https://doi.org/10.1016/j.physleta.2006.10.093

Q. Wang, C. M. Wang, “The constitutive relation and small scale parameter of nonlocal continuum mechanics for modelling carbon nanotubes,” Nanotechnology, 18, No. 7, Art. 075702 (2007), https://doi.org/10.1088/0957-4484/18/7/075702

K. F. Wang, B. L. Wang, T. Kitamura, “A review on the application of modified continuum models in modeling and simulation of nanostructures,” Acta Mech. Sinica, 32, No. 1, 83–100 (2016), https://doi.org/10.1007/s10409-015-0508-4

C.-P. Wu, J.-J. Yu, “A review of mechanical analyses of rectangular nanobeams and single-, double-, and multi-walled carbon nanotubes using Eringen’s nonlocal elasticity theory,” Arch. Appl. Mech., 89, No. 9, 1761–1792 (2019), https://doi.org/10.1007/s00419-019-01542-z

S. T. Yaghoubi, V. Balobanov, S. M. Mousavi, J. Niiranen, “Variational formulations and isogeometric analysis for the dynamics of anisotropic gradient-elastic Euler–Bernoulli and shear-deformable beams,” Eur. J. Mech. A-Solids, 69, 113–123 (2018), https://doi.org/10.1016/j.euromechsol.2017.11.012

B. Yakaiah, A. Srihari Rao, “Higher order nonlocal strain gradient approach for wave characteristics of carbon nanorod,” Nonlin. Analysis Model. Control, 19, No. 4, 660–668 (2014), https://doi.org/10.15388/NA.2014.4.10

F. Yang, A. C. M. Chong, D. C. C. Lam, P. Tong, “Couple stress based strain gradient theory for elasticity,” Int. J. Solids Struct. , 39, No. 10, 2731–2743 (2002), https://doi.org/10.1016/S0020-7683(02)00152-X


Повний текст: PDF

Посилання

  • Поки немає зовнішніх посилань.


Creative Commons License
Ця робота ліцензована Creative Commons Attribution 3.0 License.