Оптимізація параметрів стоп і законів руху двоногого крокуючого робота

M. V. Demydyuk, B. A. Lytwyn

Анотація


Досліджується задача сукупної оптимізації лінійних розмірів стоп і законів руху двоногого крокуючого робота. Робот моделюється плоскою системою дев’яти твердих тіл, хода розглядається на проміжку подвійного кроку, де враховуються основні ритмічні, кінематичні та динамічні умови антропоморфного переміщення. На опорні реакції стоп накладаються двосторонні нестаціонарні обмеження, за критерій оптимальності руху системи вибирається квадратичний (за керуваннями) функціонал. Запропоновано алгоритм побудови субоптимального розв’язку задачі, який ґрунтується на апроксимації узагальнених координат робота кубічними згладжувальними сплайнами з невідомими параметрами, а також використанні чисельних процедур нелінійного програмування.

 

Зразок для цитування: М. В. Демидюк, Б. А. Литвин, “Оптимізація параметрів стоп і законів руху двоногого крокуючого робота,” Мат. методи та фіз.-мех. поля, 63, No. 1, 181–200 (2020).


Ключові слова


хода двоногого робота, математичне моделювання, оптимальне керування, оптимізація розмірів стоп, сплайн-апроксимація, параметрична оптимізація, нелінійне програмування

Посилання


V. V. Avetisyan, L. D. Akulenko, N. N. Bolotnik, “Optimization of control modes of manipulation robots with regard of the energy consumption,” Izv. Akad. Nauk SSSR. Tekhn. Kibernet., No. 3, 100–107 (1987) (in Russian).

V. V. Beletskiĭ, Two-Legged Walking—Model Problems of Dynamics and Control [in Russian], Nauka, Moscow (1984).

V. E. Berbyuk, Dynamics and Optimization of Robototechnical Systems [in Russian], Naukova Dumka, Kiev (1989).

V. E. Berbyuk, M. V. Demydyuk, B. A. Lytvyn, “Mathematical modeling and optimization of walking of human being with prosthesis of crus,” Probl. Uprav. Inform., No. 3, 128–144 (2005); English translation: J. Autom. Inform. Sci., 37, No. 6, 46–60 (2005), https://doi.org/10.1615/J Automat Inf Scien.v37.i6.60

N. N. Bolotnik, F. L. Chernousko, “Optimization of manipulation robot control,” Izv. Akad. Nauk SSSR. Tekhn. Kibernet., No. 1, 189–238 (1990); English translation: Sov. J. Comput. Systems Sci., 28, No. 5, 127–169 (1990).

B. A. Bordyug, V. B. Larin, A. G. Timoshenko, Problems in the Control of Walking Machines [in Russian], Nauk. Dumka, Kiev (1985).

Ph. E. Gill, W. Murray, M. H. Wright, Practical Optimization [in Russian], Mir, Moscow (1985); Academic Press, London (1981).

M. V. Demydyuk, B. A. Lytvyn, B. M. Holub, “Parametric optimization of bipedal robot gait,” Mat. Met. Fiz.-Mekh. Polya, 48, No. 3, 162–171 (2005) (in Ukrainian).

M. V. Demydyuk, B. A. Lytvyn, “Optimization of the parameters and motion control modes of the bilegged walking robot,” Probl. Upravl. Inform., No. 6, 32–44 (2016); English translation: J. Autom. Inform. Sci., 48, No. 12, 48–61 (2016), https://doi.org/10.1615/JAutomatInfScien.v48.i12.50

Yu. S. Zavyalov, B. I. Kvasov, V. L. Miroshnichenko, Methods of Spline Functions [in Russian], Nauka, Moscow (1980).

M. Kentu, Delphi 7: For Professionals [in Russian], Piter, Saint-Petersburg (2004).

B. Lytwyn, “Modification of the parallel real-coded genetics algorithm,” Visn. Lviv Nats. Univ. Ser. Appl. Math. Inform., 18, 229–239 (2012) (in Ukrainian).

A. I. Lurie, Analytical Mechanics [in Russian], Fizmatgiz, Moscow (1961).

L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, E. F. Mishchenko, The Mathematical Theory of Optimal Processes [in Russian], Nauka, Moscow (1976); Wiley, New York (1962).

D. V. Skvortsov, Clinical Analysis of Movements. Gait Analysis [in Russian], Stimul, Ivanovo (1996).

R. P. Fedorchenko, Approximate Solution of Optimal Control Problems [in Russian], Nauka, Moscow (1978).

A M. Formalsky, Displacement of Anthropomorphous Mechanisms [in Russian], Nauka, Moscow (1982).

H. F. N. Al-Shuka, B. J. Corves, W.-H. Zhu, “On the dynamic optimization of biped robot,” Lecture Notes on Software Engineering, 1, No. 3, 237–243 (2013), https://doi.org/10.7763/LNSE.2013.V1.52

H. P. H. Anh, T. T. Huan, “Optimal walking gait generator for biped robot using modified Jaya optimization technique,” Int. J. Comput. Intell. Syst., 13, No. 1, 382–399 (2020), https://doi.org/10.2991/ijcis.d.200323.001

V. Berbyuk, A. E. Boström, B. Lytwyn, B. Peterson, “Energy-optimal control of bipedal locomotion systems,” J. Stability and Control: Theory and Application (SACTA), 4, No. 2, 74–89 (2002).

V. Berbyuk, B. Lytwyn, M. Demydyuk, “Energy-optimal control of underactuated bipedal locomotion systems,” in: Proc. “Multibody Dynamics 2005”, ECCOMAS Thematic Conf. on Advances in Computational Multibody Dynamics (21–24 June, 2005, Madrid, Spain), 1–15 (2005).

G. Bessonnet, P. Seguin, P. Sardain, “A parametric optimization approach to walking pattern synthesis,” Int. J. Robotics Res., 24, No. 7, 523–536 (2005), https://doi.org/10.1177/0278364905055377

J. T. Betts, Practical Methods for Optimal Control Using Nonlinear Programming, SIAM, Philadelphia (2001).

G. Cabodevila, G. Abba, “Quasi optimal gait for a biped robot using genetic algorithm,” in: Proc. of IEEE Int. Conf. on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation (12-15 Oct. 1997, Orlando, USA), Vol. 4, 3960–3965 (1997), https://doi.org/10.1109/ICSMC.1997.633290

C. Chevallereau, G. Bessonnet, G. Abba, Y. Aoustin, Bipedal Robots: Modeling, Design and Building Walking Robots, Wiley-ISTE: New York (2013).

S. Collins, A. Ruina, R. Tedrake, M. Wisse, “Efficient bipedal robots based on passive-dynamic walkers,” Science, 307, No. 5712, 1082–1085 (2005), https://doi.org/10.1126/science.1107799

M. Garcia, A. Ruina, M. Coleman, A. Chatterjee, “Some results in passive-dynamic walking,” in: Proc. European Mechanics Colloquium EuroMech 375: Biology and Technology of Walking, 268–275 (1998).

D. Gong, J. Yan, G. Zuo, “A review of gait optimization based on evolutionary computation,” Appl. Comput. Intell. Soft Comput., 2010, Special Issue “Theory and Applications of Evolutionary Computation”, Article ID 413179, 12 p. (2010), https://doi.org/10.1155/2010/413179

J. W. Grizzle, C. Chevallereau, R. W. Sinnet, A. D. Ames, “Models, feedback control, and open problems of 3D bipedal robotic walking,” Automatica, 50, No. 8, 1955–1988 (2014), https://doi.org/10.1016/j.automatica.2014.04.021

M. Hardt, O. von Stryk, “Dynamic modeling in the simulation, optimization, and control of bipedal and quadrupedal robots,” Z. angew. Math. Mech., 83, No. 10, 648–662 (2003), https://doi.org/10.1002/zamm.200310068

L. Hu, C. Zhou, Z. Sun, “Biped gait optimization using spline function based probability model,” Proc. 2006 IEEE Conf. on Robotics and Automation (15-19 May 2006, Orlando, FL, USA), 830–835 (2006), https://doi.org/10.1109/ROBOT.2006.1641812

U. Huzaifa, C. Maguire, A. LaViers, “Toward an expressive bipedal robot: Variable gait synthesis and validation in a planar model,” Int. J. Social Robotics, 12, No. 1, 129–141 (2020), https://doi.org/10.1007/s12369-019-00547-6

S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi, H. Hirukawa, “Biped walking pattern generation by using preview control of zero-moment point,” in: Proc. 2003 IEEE Int. Conf. on Robotics and Automation (14–19 September 2003, Taipei, Taiwan), Vol. 2, 1620–1626 (2003), https://doi.org/10.1109/ROBOT.2003.1241826

I.-S. Lim, O. Kwon, J. H. Park, “Gait optimization of biped robots based on human motion analysis,” Robotics & Autonomous Systems, 62, No. 2, 229–240 (2014), https://doi.org/10.1016/j.robot.2013.08.014

C. Mummolo, L. Mangialardi, J. H. Kim, “Concurrent contact planning and trajectory optimization in one step walking motion,” in: Proc. ASME 2015 Int. Design Engineering Technical Conf. & Computers and Information in Engineering Conf. (IDETC/CIE 2015), Vol. 8: 27th Conf. on Mechanical Vibration and Noise (2-5 August, 2015, Boston, USA), Paper No: DETC2015-47745, 7 p. (2015), https://doi.org/10.1115/DETC2015-47745

J. H. Park, M. Choi, “Generation of an optimal gait trajectory for biped robots using a genetic algorithm,” JSME Int. J. Ser. C: Mechanical Systems, Machine Elements and Manufacturing, 47, No. 2, 715–721 (2004).

R. V. Rao, “Jaya: a simple and new optimization algorithm for solving constrained and unconstrained optimization problems,” Int. J. Industr. Eng. Comput., 7, No. 1, 19–34 (2016), https://doi.org/10.5267/j.ijiec.2015.8.004

D. Roberts, J. Quacinella, J. H. Kim, “Energy expenditure of a biped walking robot: instantaneous and degree-of-freedom-based instrumentation with human gait implications,” Robotica, 35, No. 5, 1054–1071 (2017), https://doi.org/10.1017/S0263574715000983

T. Saidouni, “Numerical synthesis of three-dimensional gait cycles by dynamics optimization,” Robotica, 29, No. 3, 445–459 (2011).

G. Saurel, J. Carpentier, N. Mansard, J.-P. Laumond, “A simulation framework for simultaneous design and control of passivity based walkers,” in: Proc. 2016 IEEE Int. Conf. on Simulation, Modeling and Programming for Autonomous Robots SIMPAR (13-16 December, 2016, San Francisco), 1–9 (2016), https://doi.org/10.1109/SIMPAR.2016.7862383

P. Seguin, G. Bessonnet, “Generating optimal walking cycles using spline-based state-parameterization,” Int. J. Humanoid Robotics, 2, No. 1, 47–80 (2005), https://doi.org/10.1142/S0219843605000399

J. Tacué, C. Rengifo, D. Bravo, “An experimental energy consumption comparison between trajectories generated by using the cart-table model and an optimization approach for the Bioloid robot,” Int. J. Adv. Robotics Syst., 17, No. 2, 1–14 (2020), https://doi.org/10.1177/1729881420917808

D. Tlalolini, Y. Aoustin, C. Chevallereau, “Design of a walking cyclic gait with single support phases and impacts for the locomotor system of a thirteen-link 3D biped using the parametric optimization,” Multibody Syst. Dyn., 23, No. 1, 33–56 (2010), https://doi.org/10.1007/s11044-009-9175-1

M. Vukobratović, B. Borovac, “Zero-moment point – thirty five years of its life,” Int. J. Humanoid Robotics, 1, No. 1, 157–173 (2004), https://doi.org/10.1142/S0219843604000083

M. Vukobratović, B. Borovac, D. Surla, D. Stokić, Biped Locomotion: Dynamics, Stability, Control and Application, Springer-Verlag, Berlin (1990).

E. R. Westervelt, J. W. Grizzle, C. Chevallereau, J. H. Choi, B. Morris, Feedback Control of Dynamic Bipedal Robot Locomotion, CRC Press, Boca Raton (2007).

D. A. Winter, Biomechanics and Motor Control of Human Movement, Wiley, New York (2009), https://doi.org/10.1002/9780470549148


Посилання

  • Поки немає зовнішніх посилань.


Creative Commons License
Ця робота ліцензована Creative Commons Attribution 3.0 License.