Взаємодія тріщини і включення у циліндричному тілі при коливаннях поздовжнього зсуву

O. I. Kyrylova, V. G. Popov

Анотація


Розв’язано задачу про визначення напруженого стану в нескінченно довгому циліндрі довільного поперечного перерізу при коливаннях поздовжнього зсуву та взаємодії наскрізних дефектів (тріщина і тонке жорстке включення). Застосовано метод, який дозволяє задовольнити умови на поверхнях дефектів та крайові умови гармонічного за часом навантаження. Отримано наближені формули для розрахунку коефіцієнтів інтенсивності напружень, за допомогою яких досліджено вплив геометричних параметрів перерізу циліндра на значення резонансних частот.

 

Зразок для цитування: О. І. Кирилова, В. Г. Попов, “Взаємодія тріщини і включення у циліндричному тілі при коливаннях поздовжнього зсуву,” Мат. методи та фіз.-мех. поля, 64, No. 3, 131–141 (2021), https://doi.org/10.15407/mmpmf2021.64.3.131-141

Translation: O. I. Kyrylova, V. G. Popov, “Interaction of a crack with inclusion in a cylindrical body under longitudinal shear vibrations,” J. Math. Sci., 278, No. 5, 894–907 (2024), https://doi.org/10.1007/s10958-024-06967-8


Ключові слова


нескінченно довгий циліндр, тріщина, включення, гармонічні коливання, коефіцієнти інтенсивності напружень, резонансні ефекти

Посилання


S. M. Belotserkovskii, I. K. Lifanov, Numerical Methods in Singular Integral Equations and Their Application in Aerodynamics, Theory of Elasticity, and Electrodynamics [in Russian], Nauka, Moscow (1985).

A. A. Bobylev, Yu. A. Dobrova, “Application of the boundary-element method to the calculation of forced vibrations of elastic bodies of finite sizes with cracks,” Visn. Kharkiv Univ., Mat. Model. Inform. Technol. Avtom. Syst. Upravl., Issue 1, No. 590, 49–54 (2003).

I. N. Vekua, New Methods for Solving Elliptic Equations [Eng. translation], Vol 1 of North-Holland series in applied mathematics and mechanics, North-Holland Publishing Company (1967).

O. I. Kyrylova, V. H. Popov, “Harmonic longitudinal shear vibrations of an infinite cylinder of arbitrary cross-section with a system of tunnel cracks,” Probl. Obchysl. Mekh. Mitsn. Konstr., No. 20, 183–191 (2012).

O. I. Kyrylova, V. H. Popov, “Stressed state of a hollow cylinder with a system of cracks under longitudinal shear harmonic oscillations,” Probl. Mashynobud., 22, No. 1, 16–24 (2019), https://doi.org/10.15407/pmach2019.01.016

O. I. Kyrylova, V. G. Popov, “Stress state in an infinite cylinder of any cross section with tunnel defect under harmonic oscillations of longitudinal shear,” Mat. Met. Fiz.-Mekh. Polya, 55, No. 3, 61–71 (2012); English translation: J. Math. Sci., 194, No. 2, 198–212 (2013), https://doi.org/10.1007/s10958-013-1520-5

V. I. Krylov, Approximate Calculation of Integrals [in Russian], Nauka, Moscow (1967).

V. V. Mykhas’kiv, O. M. Khai, “Time boundary integral equations of three-dimensional problems of diffraction of elastic waves on thin rigid inclusions,” Dopov. Nats. Akad. Nauk Ukr., No. 6, 66–71 (2001).

V. G. Popov, “Interaction between elastic longitudinal shear waves and radially distributed cracks,” Prikl. Mekh., 34, No. 2, 60–66 (1998); English translation: Int. Appl. Mech., 34, No. 2, 157–163 (1998).

V. G. Popov, “Comparison of fields of displacements and stresses under diffraction of elastic shear waves on different defects: a cracks and a thin rigid inclusion,” Dinam. Sist., Issue 12, 35–41 (1993).

H. T. Sulym, Foundations of the Mathematical Theory of Thermoelastic Equilibrium of Deformable Solid Bodies with Thin Inclusions [in Ukrainian], NTSh Research and Publishing Center, Lviv (2007).

M. H. Aliabadi, The Boundary Element Method, Vol. 2: Applications in Solids and Structures, J. Wiley & Sons, London (2002).

F. Chirino, J. Dominguez, “Dynamic analysis of cracks using boundary element method,” Eng. Fract. Mech., 34, Nos. 5-6, 1051–1061 (1989), https://doi.org/10.1016/0013-7944(89)90266-X

S. Ebrahimi, A.-V. Phan, “Dynamic analysis of cracks using the SGBEM for elastodynamics in the Laplace-space frequency domain,” Eng. Anal. Bound. Elem., 37, No. 11, 1378–1391 (2013), https://doi.org/10.1016/j.enganabound.2013.07.004

P. Fedelinski, M. H. Aliabadi, D. P. Rooke, “Boundary element formulations for the dynamic analysis of cracked structures,” Eng. Anal. Bound. Elem., 17, No. 1, 45–56 (1996), https://doi.org/10.1016/0955-7997(95)00089-5

Y.-D. Feng, Y.-S. Wang, Z.-M. Zhang, “Transient scattering of SH waves from an inclusion with a unilateral frictional interface: a 2D time domain boundary element analysis,” Commun. Numer. Meth. Eng., 19, No. 1, 25–36 (2003), https://doi.org/10.1002/cnm.566

J. Helsing, G. Peters, “Integral equation methods and numerical solutions of crack and inclusion problems in planar elastostatics,” SIAM J. Appl. Math., 59, No. 3, 965–982 (1999), https://doi.org/10.1137/S0036139998332938

P. Hosseini-Tehrani, A. R. Hosseini-Godarzi, M. Tavangar, “Boundary element analysis of stress intensity factor KI in some two-dimensional dynamic thermoelastic problems,” Eng. Anal. Bound. Elem., 29, No. 3, 232–240 (2005), https://doi.org/10.1016/j.enganabound.2004.12.009

M. Kitahara, Boundary Integral Equation Methods in Eigenvalue Problems of Elastodynamics and Thin Plates, Elsevier, New York (1985).

O. I. Kyrylova, V. G. Popov, “Harmonic oscillations of a longitudinal shear infinite hollow cylinder arbitrary cross-section with a tunnel crack,” J. Phys. Conf. Ser., 991, Article No. 012051 (2018), https://doi.org/10.1088/1742-6596/991/1/012051

O. Kyrylova, V. Popov, “Stress state of a hollow cylindrical body with a system of cracks under oscillations of longitudinal shear,” in: E. E. Groutos (editor), Proc. of the 2nd Int. Conf. on Theoretical, Applied, and Experimental Mechanics (ICTAEM 2019), Ser.: Structural Integrity, Vol. 8, Springer, Cham (2019), pp. 236–241, https://doi.org/10.1007/978-3-030-21894-2_44

V. Mykhas’kiv, I. Zhbadynskyi, Ch. Zhang “Elastodynamic analysis of multiple crack problem in 3-D bi-materials by a BEM,” Int. J. Numer. Meth. Bio. Eng., 26, No. 12, 1934–1946 (2010), https://doi.org/10.1002/cnm.1285

T. Nishioka, S. N. Atluri, “Numerical modeling of dynamic crack propagation in finite bodies, by moving singular elements – Part 1: Formulation,” J. Appl. Mech., 47, No. 3, 570–576 (1980), https://doi.org/10.1115/1.3153733

T. Nishioka, S. N. Atluri, “Numerical modeling of dynamic crack propagation in finite bodies, by moving singular elements – Part 2: Results,” J. Appl. Mech., 47, No. 3, 577–582 (1980), https://doi.org/10.1115/1.3153734

I. Nistor, O. Pantale, S. Caperaa, “Numerical implementation of the extended finite element method for dynamic crack analysis,” Adv. Eng. Softw., 39, No. 7, 573–587 (2008), https:/doi.org/10.1016/j.advengsoft.2007.06.003

A. R. Shahani, M. R. Amini, “Dynamic fracture analysis using an uncoupled arbitrary Lagrangian finite element formulation,” J. Solid Mech., 3, No. 3, 228–243 (2011).

Ch. Zhang, “A 2D hypersingular time-domain traction BEM for transient elastodynamic crack analysis,” Wave Motion, 35, No. 1, 17–40 (2002), https://doi.org/10.1016/S0165-2125(01)00081-6

J. Y. Zhang, T. R. Hsu, I. Q. Wang, “Numerical modelling of crack propagation using multi-variable and breakable finite elements,” Commun. Appl. Num. Meth., 6, No. 3, 215–222 (1990), https://doi.org/10.1002/cnm.1630060308

G. Zi, H. Chen, J. Xu, T. Belytschko, “The extended finite element method for dynamic fractures,” Shock Vib., 12, Special Issue, Article ID 729090, 9–23 (2005), https://doi.org/10.1155/2005/729090


Повний текст: PDF

Посилання

  • Поки немає зовнішніх посилань.


Creative Commons License
Ця робота ліцензована Creative Commons Attribution 3.0 License.