Фундаментальний розв’язок задачі Коші для вироджених параболічних рівнянь типу Колмогорова довільного порядку з виродженням на початковій гіперплощині

O. H. Voznyak, I. P. Medynskyi

Анотація


Розглянуто вироджені параболічні рівняння типу Колмогорова довільного порядку з двома групами просторових змінних виродження, які до того ж мають виродження на початковій гіперплощині, і коефіцієнтами, залежними від усіх змінних. Для таких рівнянь побудовано фундаментальний розв’язок задачі Коші. Отримано оцінки цього розв’язку та його похідних.

 

Зразок для цитування: О. Г. Возняк, І. П. Мединський, “Фундаментальний розв’язок задачі Коші для вироджених параболічних рівнянь типу Колмогорова довільного порядку з виродженням на початковій гіперплощині”, Мат. методи та фіз.-мех. поля, 67, №1-2, 26–44 (2024), https://doi.org/10.15407/mmpmf2024.67.1-2.26-44


Ключові слова


параболічне рівняння довільного порядку, вироджене параболічне рівняння типу Колмогорова, виродження на початковій гіперплощині, фунда-ментальний розв’язок задачі Коші, метод Леві

Посилання


O. H. Voznyak, S. D. Ivasyshen, “Fundamental solutions of the Cauchy problem for a class of degenerate parabolic equations and their application,” Dop. Nats. Akad. Nauk Ukr., No. 10, 11–16 (1996) (in Ukrainian).

O. H. Voznyak, S. D. Ivasyshen, I. P. Medyns’kyi, “On the fundamental solution of the Cauchy problem for the Kolmogorov ultraparabolic equation with degeneration in the initial hyperplane,” Bukov. Mat. Zh., 3, No. 3-4, 41–51 (2015) (in Ukrainian).

O. H. Voznyak, S. D. Ivasyshen, I. P. Medyns’kyi, “On the fundamental solution of the Cauchy problem for the Kolmogorov ultraparabolic equation with two groups of space variables and degeneration in the initial hyperplane,” Visn. Nats. Univ. “L’vivs’ka Politekhnika”, Ser. Fiz.-Mat. Nauky, No. 871, 46–64 (2017) (in Ukrainian).

O. H. Voznyak, S. D. Ivasyshen, I. P. Medyns’kyi, “Fundamental solution of the Cauchy problem for the Kolmogorov ultraparabolic equation with two groups of space variables and degeneration in the initial hyperplane,” Visn. Nats. Univ. “L’vivs’ka Politekhnika”, Ser. Fiz.-Mat. Nauky, No. 898, 13–21 (2018) (in Ukrainian).

O. Voznyak, S. Ivasyshen, I. Medyns’kyi, “Fundamental solution of the Cauchy problem for ultraparabolic Kolmogorov-type equations with three groups of space variables and degeneration in the initial hyperplane,” Visn. L’viv. Univ., Ser. Mekh.-Mat., Iss. 88, 107–127 (2019) (in Ukrainian), http://doi.org/10.30970/vmm.2019.88.107-127

S. D. Eidel’man, L. M. Tychyns’ka, “Construction of fundamental solutions for some degenerate parabolic equations of any order,” Dop. Akad. Nauk UkrRSR. Ser. A, No. 11, 896–899 (1979) (in Ukrainian).

S. D. Ivasyshen, “On the initial values of solutions of ultraparabolic equations,” Usp. Mat. Nauk, 43, No. 4 (262), 188–189 (1988) (in Russian).

S. D. Ivasyshen, L. N. Androsova, “On an integral representation of solutions of a class of degenerate parabolic equations of the Kolmogorov type”, Differents. Uravn., 27, No. 3, 479–487 (1991) (in Russian).

S. D. Ivasyshen and L. N. Androsova, “On the integral representation and initial values of solutions of some degenerating parabolic equations”, Dop. Akad. Nauk UkrSSR. Ser. A, No. 1, 16–19 (1989) (in Ukrainian).

S. D. Ivasyshen, I. P. Medynskyi, “Properties of fundamental solutions, theorems on integral representations of solutions and correct solvability of the Cauchy problem for ultraparabolic Kolmogorov-type equations with two groups of space variables of degeneration,” Mat. Met. Fiz.-Mekh. Polya, 61, No. 4, 7–16 (2018) (in Ukrainian); English translation: J. Math. Sci., 256, No. 4, 363–374 (2021), https://doi.org/10.1007/s10958-021-05432-0

S. D. Ivasyshen, I. P. Medynskyi, “Classical fundamental solution of a degenerate Kolmogorov-type equation whose coefficients are independent of the variables of degeneration,” Bukov. Mat. Zh., 2, No. 2-3, 94–106 (2014) (in Ukrainian).

S. D. Ivasyshen, I. P. Medynsky, “Classical fundamental solution of the Cauchy problem for ultraparabolic Kolmogorov-type equations with two groups of spatial variables of degeneration. I,” Mat. Met. Fiz.-Mekh. Polya, 60, No. 3, 9–31 (2017) (in Ukrainian); English translation: J. Math. Sci., 246, No. 2, 121–151 (2020), https://doi.org/10.1007/s10958-020-04726-z

S. D. Ivasyshen, I. P. Medynsky, “Classical fundamental solution of the Cauchy problem for ultraparabolic Kolmogorov-type equations with two groups of spatial variables of degeneration. II,” Mat. Met. Fiz.-Mekh. Polya, 60, No. 4, 7–24 (2017) (in Ukrainian); English translation: J. Math. Sci., 247, No. 1, 1–23 (2020), https://doi.org/10.1007/s10958-020-04786-1

S. D. Ivasyshen, I. P. Medyns’kyi, “Classical fundamental solutions of the Cauchy problem for ultraparabolic Kolmogorov-type equations with two groups of spatial variables,” in: V. A. Mykhailets’ (editor), Differential Equations and Related Problems of Analysis, Collection of Works, Institute of Mathematics of National Academy of Sciences of Ukraine, Vol. 13, No. 1, Kyiv (2016), pp. 108–155 (in Ukrainian).

S. D. Ivasyshen, I. P. Medyns’kyi, “On the classical fundamental solutions of the Cauchy problem for ultraparabolic Kolmogorov-type equations with two groups of spatial variables,” Mat. Met. Fiz.-Mekh. Polya, 59, No. 2, 28–42 (2016) (in Ukrainian); English translation: J. Math. Sci., 231, No. 4, 507–526 (2018), https://doi.org/10.1007/s10958-018-3830-0

S. D. Ivasyshen, I. P. Medynsky, “Fundamental solution of the Cauchy problem for degenerate parabolic Kolmogorov-type equations of any order,” Mat. Met. Fiz.-Mekh. Polya, 62, No. 1, 7–24 (2019) (in Ukrainian); English translation: J. Math. Sci., 258, No. 4, 369–391 (2021), https://doi.org/10.1007/s10958-021-05554-5

A. P. Malitskaya, “Degenerate parabolic equations whose coefficients are increasing,” Ukr. Mat. Zh., 41, No. 2, 176–181 (1989) (in Russian); English translation: Ukr. Math. J., 41, No. 1, 158–163 (1989).

A. P. Malitskaya, “Construction of a fundamental solution for a class of high-order degenerate parabolic equations,” Ukr. Mat. Zh., 32, No. 6, 754–762 (1980) (in Russian); English translation: Ukr. Math. J., 32, No. 6, 508–514 (1980), https://doi.org/10.1007/BF01087180

A. P. Malitskaya, “Construction of the fundamental solutions of some ultraparabolic equations of high order,” Ukr. Mat. Zh., 37, No. 6, 713–718 (1985) (in Russian); English translation: “Structure of the fundamental solutions of some ultraparabolic equations of high order,” Ukr. Math. J., 37, No. 6, 582–587 (1985), https://doi.org/10.1007/BF01057424

A. P. Malitskaya, “Fundamental solutions of one class of degenerate parabolic equations,” in: Approximate Methods of Integration of Differential and Integral Equations [in Russian], Kiev Pedagogical Institute, Kyiv (1973), pp. 109–130.

I. P. Medynsky, “Correct solvability of the Cauchy problem and integral representations of solutions for ultraparabolic Kolmogorov-type equations with two groups of spatial variables of degeneration,” Mat. Met. Fiz. Mekh. Polya, 62, No. 4, 39–48 (2019) (in Ukrainian); English translation: J. Math. Sci., 265, No. 3, 382–393 (2022), https://doi.org/10.1007/s10958-022-06059-5

N. P. Protsakh, B. Yo. Ptashnyk, Nonlinear Ultraparabolic Equations and Variational Inequalities [in Ukrainian], Naukova Dumka, Kyiv (2017).

S. D. Eidel’man, A. P. Malitskaya, “On the fundamental solutions and stabilization of the solution of the Cauchy problem for a class of degenerate parabolic equations,” Differents. Uravn., 11, No. 7, 1316–1330 (1975) (in Russian).

G. Citti, A. Pascucci, S. Polidoro, “On the regularity of solutions to a nonlinear ultraparabolic equations arising in mathematical finance,” Differ. Integral Equat., 14, No. 6, 701–738 (2001), https://doi.org/10.57262/die/1356123243

S. D. Eidelman, S. D. Ivasyshen, “On solutions of parabolic equations from families of Banach spaces dependent on time,” in Adamyan V. M. et al. (eds), Differential Operators and Related Topics, Ser. Operator Theory: Adv. and Appl., Vol. 117, Birkhäuser, Basel (2000), pp. 111–125, https://doi.org/10.1007/978-3-0348-8403-7_10

S. D. Eidelman, S. D. Ivasyshen, A. N. Kochubei, Analytic Methods in the Theory of Differential and Pseudo-Differential Equations of Parabolic Type, Ser. Operator Theory: Adv. and Appl., Vol. 152, Birkhäuser, Basel (2004), https://doi.org/10.1007/978-3-0348-7844-9.

P. Foschi, A. Pascucci, “Kolmogorov equations arising in finance: direct and inverse problems”, in: Lect. Notes of Seminario Interdisciplinare di Matematica. Universita degli Studi della Basilicata, Vol. VI (2007), pp. 145–156.

M. Di Francesco, A. Pascucci, “A continuous dependence result for ultraparabolic equations in option pricing,” J. Math. Anal. Appl., 336, No. 2, 1026–1041 (2007); https://doi.org/10.1016/j.jmaa.2007.03.031

M. Di Francesco, A. Pascucci, “On a class of degenerate parabolic equations of Kolmogorov type,” Appl. Math. Res. Express., 2005, No. 3, 77–116 (2005); https://doi.org/10.1155/AMRX.2005.77

S. D. Ivasishen, I. P. Medynsky, “The Fokker–Planck–Kolmogorov equations for some degenerate diffusion processes,” Theory Stoch. Process., 16(32), No. 1, 57–66 (2010).

S. D. Ivasyshen, I. P. Medynsky, “On applications of the Levi method in the theory of parabolic equations,” Mat. Stud., 47, No. 1, 33–46 (2017), https://doi.org/10.15330/ms.47.1.33-46

A. Kolmogoroff, “Zufällige Bewegungen (Zur Theorie der Brownschen Bewegung),” Ann. Math., 35, No. 1, 116–117 (1934), https://doi.org/10.2307/1968123

E. Lanconelli, S. Polidoro, “On a class of hypoelliptic evolution operators,” Rend. Sem. Mat. Univ. Politec. Torino. Partial Diff. Eqs., 52, No. 1, 29–63 (1994).

A. Pascucci, “Kolmogorov equations in physics and in finance,” in: H. Brezis (editor), Elliptic and Parabolic Problems, Ser. Progress in Nonlinear Differential Equations and their Applications, Vol, 63, Birkhauser, Basel (2005), pp. 353–364, https://doi.org/10.1007/3-7643-7384-9_35

S. Polidoro, “On a class of ultraparabolic operators of Kolmogorov–Fokker–Planck type,” Le Matematiche, 49, No. 1, 53–105 (1994).

O. G. Voznyak, V. S. Dron, I. P. Medynskyi, “Properties of fundamental solutions, correct solvability of the Cauchy problem and integral representations of solutions for ultraparabolic Kolmogorov-type equations with three groups of spatial variables and with degeneration on the initial hyperplane,” Math. Model. Comput., 9, No. 3, 779–790 (2022), https://doi.org/10.23939/mmc2022.03.779


Посилання

  • Поки немає зовнішніх посилань.


Creative Commons License
Ця робота ліцензована Creative Commons Attribution 3.0 License.