Аналіз класичної теорії Абрагама-Лоренца маси електрона. Част. 1: Перегляд аспектів закону Ампера

Anatolij Prykarpatski

Анотація


Упершій частині праці подано огляд нових класичних моделей взаємодіючих заряджених точкових частинок та деякі пов’язані з ними фізичні аспекти. Грунтуючись на зробленому автором негеометричному вакуумно-польовому підході, запропоновані як Лагранжеве так і Гамільтонове переформулювання альтернативних електродинамічних моделей.

Ключові слова


Amper's law, Lorentz type force, Lorenz constraint, Maxwell electromagnetic equations, Jefimenko equations, Lagrangian and Hamiltonian form, Feynman's approach legacy, vacuum field theory approach, Abraham-Lorentz electron mass problem

Посилання


R.Abraham, J.Marsden, Foundations of Mechanics, Benjamin Cummings, NY, 1978.

Y.Aharonov, D.Bohm, Significance of electromagnetic potentials in the quantum theory, Phys. Rev. (2) 115 (1959) 485--491.

Y.Aharonov, D.Rohrlich, Quantum Paradoxes: Quantum Theory for the Perplexed, VCH, Weinheim (2005).

G.Amelino-Camelia, L.Freidel, J.Kowalski-Glikman, L.Smolin, Relative locality: a deepening of the relativity principle, General Relativity and Gravitation, 43:10 (2011) 2547-2553.

F.Aquino, Mathematical foundations of the relativistic theory of quantum gravity, The Pacific Journal of Science and Technology, 11:1 (2010) 173--232.

V.I.Arnold, Mathematical Methods of Classical Mechanics, Springer, NY, 1978.

T.W.Barrett, Electromagnetic phenomena not explained by Maxwell's equations,textquotedblright, in: A.

Lakhtakia (ed.), Essays on the Formal Aspects of Maxwell Theory (World Scientific, 1993), pp. 8--86.

R.Becker, Theorie der Elektrizitat. Bd. II.,

Elektronentheorie, Berlin: B.G. Teubner, 1933.

I.Bialynicki-Birula, On the linearity of the Schroedinger equation, Braz. Jour. Phys. 35 (2005) 211.

D.Blackmore, A.K.Prykarpatsky, V.Hr.Samoylenko, Nonlinear dynamical systems of mathematical physics: spectral and differential-geometrical integrability analysis, World Scientific Publ., NJ, USA, 2011.

D.Blackmore, A.K.Prykarpatsky, N.N.Bogolubov (Jr.), Mathematical foundations of the classical Maxwell-Lorentz electrodynamic models in the canonical Lagrangian and Hamiltonian formalisms, Universal Journal of Physics and Application. 1:2 (2013) 160-178.

D. Blackmore, A.K.Prykarpatsky, The Analysis of Lagrangian and Hamiltonian Properties of the Classical Relativistic Electrodynamics Models and Their Quantization, Found. Phys. 40 (2010) 469-493.

N.N.Bogolubov (Jr.), A.K.Prykarpatsky, The Lagrangian and Hamiltonian formalisms for the classical relativistic electrodynamical models revisited, arXiv:0810.4254v1 [gr-qc] 23 Oct 2008.

N.N.Bogolubov, D.V.Shirkov, Introduction to quantized field theory, "Nauka'' Publ., Moscow, 1984 (in Russian).

T.H.Boyer, Classical electromagnetic deflections and lag effects associated with quantum interference pattern shifts: considerations related to the Aharonov-Bohm effect, Phys. Rev. D 8:6 (1973), p.1679.

C.H.Brans, R.H.Dicke, Mach's principle and a relativistic theory of gravitation, Phys. Rev., 124 (1961) 925-935.

L.Brillouin, Relativity reexamined, Academic Press Publ., NY & London, 1970.

A.Caprez, H.Batelaan, Feynman's Relativistic Electrodynamics Paradox and the Aharonov-Bohm Effect, Foundations of Physics, 39 (2009) 295-306.

O.Darrigol, Les equations de Maxwell, de MacCullagh'a, Lorentz, Collection Belin Sur Histoire des Sciences-Physique, Belin, 2005.

S.Deser, R.Jackiw, Time travel?, arXiv:hep-th/9206094, 1992.

B.Di Bartolo, Classical theory of electromagnetism, World Scientific, NY, 2004.

P.A.M.Dirac, An extensible model of the electron, Proc. Roy. Soc. Ser. A, 167 (1938) 148-169.

P.A.M.Dirac, Generalized Hamiltonian dynamics, Canad. J. of Math. 2:2, 1950, 129-148.

V.G.Drinfeld, Quantum Groups, Proc. of Intern. Congress of Math., MRSI Berkeley, (1986) p.798.

B.A.Dubrovin, S.P.Novikov, A.T.Fomenko, Modern geometry, Nauka, Moscow, 1986 (in Russian).

G.Dunner, R.Jackiw, "Peierls substitution" and Chern-Simons quantum mechanics, Nucl. Phys. B Proc. Suppl. 33:3 (1993) 114-118.

F.J.Dyson, Feynman's proof of the Maxwell equations, Am. J. Phys. 58 (1990) 209-211.

F.J.Dyson, Feynman at Cornell, Phys. Today 42:2 (1989) 32-38.

E.Fermi, Alcuni teoremi di meccanica analitica importanti per la teoria dei quanti, Nuovo Cimento, 25 (1923) p.159.

R.Feynman, R.Leighton, M.Sands, The Feynman Lectures on Physics. Electrodynamics, v.2, Addison-Wesley, Publ. Co., Massachusetts, 1964.

V.A.Fock, Konfigurationsraum und zweite Quantelung, Zeischrift Phys. Bd. 75 (1932) 622-647.

D.C.Gabuzda, Magnetic force due to a current-carrying wire. A paradox and its resolution, Am. J. Phys. 55:5 (1987) 420.

T.L.Gill, W.W.Zachary, Two mathematically equivalent versions of Maxwell's equations, Found. Physics 4 (2011) 99-128.

T.L.Gill, W.W.Zachary, J.Lindsey, The classical electron problem, Found. Physics, 31:9 (2001) 1299-1355.

R.J.Glauber, Quantum Theory of Optical Coherence, Selected Papers and Lectures, Wiley-VCH, Weinheim, 2007.

S.Hajra, Classical interpretations of relativistic fenomena, J. Modern Physics, 3 (2012) 187-189.

R.T.Hammond, Relativistic Particle Motion and Radiation Reaction, Electronic J. Theoretical Physics, 23 (2010) 221-258.

R.T.Hammond, Electrodynamics and Radiation reaction. Found. Physics, 43 (2013) 201-209.

D.Holm, B.Kupershmidt, Poisson structures of superfluids, Phys. Lett., 91A (1982) 425--430.

R.Jackiw, A.P.Polychronakos, Dynamical Poincare symmetry realized by field-dependent diffeomorhisms, arXiv:hep-th/9809123, 1998.

J.D.Jackson, Classical electrodynamics, 3-rd Edition., NY, Wiley, 1999.

O.D.Jefimenko, Electricity and Magnetism: An Introduction to the Theory of Electric and Magnetic Fields, Appleton-Century-Crofts (New-York - 1966). 2nd ed.: Electret Scientific, Star City, 1989.

O.D.Jefimenko, A relativistic paradox seemingly violating conservation of momentum law in electromagnetic systems, Eur. J. Phys. 20 (1999) 39-44.

O.D.Jefimenko, "Does special relativity prohibit superluminal velocities?" in: Instantaneous Action at a Distance in Modern Physics: "Pro" and "Contra", A. E. Chubykalo, Ed., (Nova Science, New York, 1999).

O.D.Jefimenko, Causality, Electromagnetic Induction and Gravitation, Electret Scientific Company, Star City, 2000.

O.D.Jefimenko, What is the Physical Nature of Electric and Magnetic Forces?, in Has the Last Word Been Said on Classical Electrodynamics? -- New Horizons, A. E. Chubykalo, Ed., Rinton Press, Paramus, 2004.

T.W.B.Kibble, Lorentz invariance and the gravitational field, Journal of Math. Physics, 2:2 (1961) 212-221.

I.A.Klymyshyn, Relativistic astronomy, Kyiv, "Naukova Dumka" Publ., 1980 (in Ukrainian).

B.A.Kupershmidt, Infinite-dimensional analogs of the minimal coupling principle and of the Poincare lemma for differential two-forms, Diff. Geom. & Appl. 2 (1992) 275-293.

L.D.Landau, E.M.Lifshitz, Field theory. v. 2, Nauka Publ., Moscow, 1973.

L.D. Landau, E.M. Lifshitz, Quantum mechanics. v. 6, Nauka Publisher, Moscow, 1974.

A.A.Logunov, The Theory of Gravity, ``Nauka'' Publ., Moscow, 2000.

A.A.Logunov, M.A.Mestvirishvili, Relativistic theory of gravitation, ``Nauka'' Publ., Moscow, 1989 (In Russian).

H.A.Lorentz, Electromagnetic phenomena in a system moving with any velocity smaller than that of light, Proc. Royal Netherlands Academy of Arts and Sci. 6 (1904) 809-831.

St.Marinov, The Electric Intensity Induced in a Wire at Rest by a Moving Magnet, Galilean Electrodynamics, 8:6 (1997) p.117.

St.Marinov, Forces Between Current Elements, Galilean Electrodynamics, 9:2 {(1998)} p.36.

J.Marsden, A.Chorin, Mathematical foundations of the mechanics of liquid, Springer, New York, 1993.

A.A.Martins, M.J.Pinheiro, On the electromagnetic origin of inertia and inertial mass, Int. J. Theor. Phys., 47 (2008) 2706-2715.

N.D.Mermin, Relativity without light, Am. J. Phys., 52 (1984) 119-124.

N.D.Mermin, It's About Time: Understanding Einstein's Relativity, Princeton, NJ., Princeton University Press, 2005.

R.P.Newman, The Global Structure of Simple Space-Times, Comm. Mathem. Physics, 123 (1989) 17--52.

G.V.Nikolaev, Modern electrodynamics and reasons of its paradoxicity. Prospects of construction of not inconsistent electrodynamics. Theories, Experiments, Paradoxes, The Second edition, Tomsk Polytechnical University, 2003 (in Russian).

L.Page, N. I. Adams (Jr.), Action and reaction between moving charges, Am. J. Phys. 13 (1945) 141-147.

W.Pauli, Theory of Relativity, Oxford Publ., 1958.

R.Penrose, Twistor algebra, Journal of Math. Physics, 8:2 (1966) 345--366.

P.C.Peters, Is what frame is a current-carrying conductor neutral?, Am. J. Phys. 55:12 (1985) 420-422.

Y.Pierseaux, G.Rousseaux, Les structures fines de l'electromagnetisme classique et de la relativite restreinte, arXiv:physics/0601023v1, 5 Jan 2006.

A.K.Prykarpatsky, N.N.Bogolubov (Jr.), U.Taneri, The vacuum structure, special relativity and quantum mechanics revisited: a field theory no-geometry approach, Theor. Math. Phys. 160:2 (2009), 1079-1095.

A.K.Prykarpatsky, N.N.Bogolubov (Jr.), U.Taneri, The field structure of vacuum, Maxwell equations and relativity theory aspects, Preprint ICTP, Trieste, IC/2008/051 (http://publications.ictp.it).

A.K.Prykarpatsky, N.N.Bogolubov (Jr.), U.Taneri, The Relativistic Electrodynamics Least Action Principles Revisited: New Charged Point Particle and Hadronic String Models Analysis, Int. J. Theor. Phys. 49 (2010) 798-820.

A.K.Prykarpatsky, I.V.Mykytyuk, Algebraic Integrability of nonlinear dynamical systems on manifolds: classical and quantum aspects, Kluwer Academic Publishers, the Netherlands, 1998, 553p.

Y.A.Prykarpatsky, A.M.Samoilenko, A.K.Prykarpatsky, The geometric properties of canonically reduced symplectic spaces with symmetry and their relationship with structures on associated principal fiber bundles and some applications, Opuscula Mathematica. 25:2 (2005), 287-298.

H.E.Puthoff, Casimir vacuum energy and the semicalssical electron, Int. J. Theor. Phys., 46 (2007) 3005-3008.

O.Repchenko, Field Physics, Moscow, Galeria Publ., 2005 (in Russian).

W.Rindler, J. Denur, A simple relativistic paradox about electrostatic energy, Am. J. Phys. 56:9 (1988), 795.

G.Rousseaux, The gauge non-invariance of classical electromagnetism, arXiv:physics/0506203v1, 2005.

J.J.D.Scanio, Conservation of momentum in electrodynamics - an example, Am. J. Phys. 43:3 (1975) 258-260.

R.M.Santilli, The etherino and/or neutrino hypothesis, Found. Physics, 37:415 (2007) 670-694.

G.A.Schott, Electromagnetic Radiation, Cambridge Univ. Publ., Cambridge, 1912.

Y.Schwineger, Source Theory Discussion of Deep Inelastic Scattering with Polarized Particles, Proc. National Acad. Sci. U.S.A. 72:4 (1975) 1559-1563.

L. Smolin, Fermions and Topology, arXive:9404010/gr-qc arXiv:hep-ph/0106235, 2002.

I.I. Smulski, Interaction theory, Novosibirsk University Publisher, 1999 (in Russian).

W.Thirring, Classical Mathematical Physics, Springer, Third Edition, 1992.

G.T. Trammel, Aharonov-Bohm Paradox, Phys. Rev. 134 (1964) B1183-N1184.

M. Urban, F. Couchot, X. Sarazin, A. Djannati-Atai, The quantum vacuum as the origin of the speed of light, Europ. Phys. J. D. 67:3 (2013) 58; arxiv.org/1302.6165v1, 2013.

R. Weinstock, New approach to special relativity. Am. J. Phys., 33 (1965) 640--645.

F. Wilczek, QCD and natural phylosophy, Ann. Henry Poincare, 4 (2003) 211--228.

Y. Yaremko, V. Tretyak, Radiation Reaction in Classical Field Theory, LAP LAMBERT Academic Publishing, Germany, 2012.


Повний текст: PDF (English)

Посилання

  • Поки немає зовнішніх посилань.


Creative Commons License
Ця робота ліцензована Creative Commons Attribution 3.0 License.