Напiвгрупа монотонних ко-скiнченних часткових гомеоморфiзмiв дiйсної прямої
Анотація
Ключові слова
Посилання
L. A. Beklaryan, Groups of homeomorphisms of the line and the circle. Topological characteristics and metric invariants, Russian Math. Surveys 59:4 (2004), 599-660.
L. A. Beklaryan, Groups of line and circle homeomorphisms. Metric invariants and questions of classification, Russian Math. Surveys 70:2 (2015), 203-248.
Gluskīn, L. M. The semi-group of homeomorphic mappings of an interval. (Russian) Mat. Sb. (N.S.) 49 (91) (1959) 13-28.
Gluskīn, L. M. Semigroups of topological mappings. (Russian) Dokl. Akad. Nauk SSSR 125 (1959) 699-702.
Gluskīn, L. M. Transitive semigroups of transformations. (Russian) Dokl. Akad. Nauk SSSR 129 (1959) 16--18.
Gluskīn, L. M. Ideals of semigroups of transformations. (Russian) Mat. Sb. (N.S.) 47 (89) (1959) 111-130.
Gluskīn, L. M. On a semigroup of continuous functions. (Ukrainian) Dopovidi Akad. Nauk Ukraïn. RSR (1960) 582--585.
Gluskīn, L. M. The semigroup of homeomorphic mappings of an interval. Amer. Math. Soc. Transl. (2) 30 (1963) 273-290.
Inasaridze, H. N. On simple semigroups. (Russian) Mat. Sb. (N.S.) 57 (99) (1962) 225--232.
Šneperman, L. B. Semigroups of continuous transformations. (Russian) Dokl. Akad. Nauk SSSR 144 (1962) 509-511.
Šneperman, L. B. Semigroups of continuous transformations and homeomorphisms of a simple arc. (Russian) Dokl. Akad. Nauk SSSR 146 1962 1301--1304.
Šneperman, L. B. Semigroups of continuous transformations of metric spaces. (Russian) Mat. Sb. (N.S.) 61 (103) (1963) 306--318.
Šneperman, L. B. Semigroups of continuous transformations of closed sets of the number axis. (Russian) Izv. Vysš. Učebn. Zaved. Matematika 1965 (1965) no. 6 (49) 166-175.
Šneperman, L. B. Semigroups of continuous mappings of topological spaces. (Russian) Sibirsk. Mat. Ž. 6 (1965) 221--229.
Šneperman, L. B. The semigroups of the homeomorphisms of a simple arc. (Russian) Izv. Vysš. Učebn. Zaved. Matematika (1966) no. 2 (51) 127-136.
Šutov, È. G. Homomorphisms of certain semigroups of continuous functions. (Russian) Sibirsk. Mat. Ž. 4 1963 695--701.
Šutov, È. G. Homomorphisms of certain semigroups of continuous monotonic functions. (Russian) Sibirsk. Mat. Ž. 4 (1963) 944--950.
R. D. Anderson, The algebraic simplicity of certain groups of homeomorphisms, Amer. J. Math. 80:4 (1958), 955-963.
F. A. Cezus, Green's relations in semigroups of functions, Ph.D. Thesis, Australian National University, Canberra, Australia, 1972.
I. Chuchman, On a semigroup of closed connected partial homeomorphisms of the unit interval with a fixed point, Algebra Discr. Math. 12 (2011), 38-52.
A. H. Clifford and G. B. Preston, The Algebraic Theory of Semigroups, Vols. I and II, Amer. Math. Soc. Surveys 7, Providence, R.I., 1961 and 1967.
R. Engelking, General Topology, 2nd ed., Heldermann, Berlin, 1989.
L. M. Gluskin, B. M. Schein, L. B.Sneperman, I. S. Yaroker, Addendum to a survey of semigroups of continuous self-maps, Semigroup Forum 14 (1977), 95-125.
V. Jarnik, et V. Knichal, Sur l'approximation des fonctions continues par les superpositlons de deux fonctlons, Fund. Math. 24 (1935), 206-208.
A. Katok, B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Encyclopedia of Mathematics and its Applications, vol. 54, Cambridge University Press, Cambridge, 1995.
M. Lawson, Inverse Semigroups. The Theory of Partial Symmetries, Singapore: World Scientific, 1998.
K. D. Magill, jr., A survey of semigroups of continuous selfmaps, Semigroup Forum 11 (1975/1976), 189-282.
R. McFadden and L. O'Carroll, F-inverse semigroups, Proc. Lond. Math. Soc., III. Ser. 22 (1971), 652-666.
J. V. Mioduszewski, On a quasi-ordering in the class of continuous mappings of a closed interval into itself, Colloq. Math. 9 (1962), 233-240.
W. D. Munn, Uniform semilattices and bisimple inverse semigroups, Quart. J. Math., 17:1 (1966), 151-159.
S. B. O'Reilly, The characteristic semigroup of topological space, Gen. Topoi. Appl. 5 (1975), 95-106.
M. Petrich, Inverse Semigroups, John Wiley & Sons, New York, 1984.
J. V. Rosicky, Remarks on topologies uniquely determined by their continuous self maps, Czechoslovak Math. J. 24:3 (1974), 373-377.
J. V. Rosicky, The topology of the unit interval is not uniquely determined by its continuous self maps among set systems, Colloq. Math. 31 (1974), 179-188.
J. C. Warndof, Topologies uniquely determined by their continuous selfmaps, Fund. Math. 66:1 (1969), 25-43.
Посилання
- Поки немає зовнішніх посилань.
Ця робота ліцензована Creative Commons Attribution 3.0 License.