Асимптотичний підхід у динамічних задачах теорії пружності для тіл з тонкими пружними включеннями

Ya. I. Kunets, V. V. Matus

Анотація


Запропоновано єдиний підхід до дослідження процесів динамічної взаємодії тонких пружних неоднорідностей з оточуючим пружним середовищем. Він базується на методах теорії сингулярних збурень при побудові математичних моделей контакту складових пружної системи з подальшим використанням методу нульового поля для вивчення хвильових полів у композитах. Підхід ефективний при дослідженні явища взаємодії пружних хвиль із ло кальними чи множинними тонкими пружними неоднорідностями, а також при розв’язанні відповідних обернених задач.

 

Зразок для цитування: Я. І. Кунець, В. В. Матус, “Асимптотичний підхід у динамічних задачах теорії пружності для тіл з тонкими пружними включеннями,” Мат. методи та фіз.-мех. поля, 63, No. 1, 75–93 (2020).


Ключові слова


тонкі пружні включення, композити з наповнювачами неканонічної форми, теорія сингулярних збурень, метод нульового поля, динамічні навантаження

Посилання


V. M. Aleksandrov, B. I. Smetanin, B. V. Sobol’, Thin Stress Concentrators in Elastic Bodies [in Russian], Fizmatlit, Moscow (1993).

M. van Dyke, Perturbation Methods in Fluid Mechanics [in Russian], Mir, Moscow (1967).

I. I. Vorovich, “Some results and problems of asymptotic theory of plates and shells,” in: Proc. I All-Union School on Theory and Numer. Methods of Calc. of Plates and Shells (Tbilisi, 1974), Izd. Tbilisk. Univ., Tbilisi (1975), pp. 50–149 (in Russian).

D. V. Grylits’kyi, G. T. Sulym, “Development of the theory of thin-layer inclusions at the Lviv State University,” Visn. Lviv. Univ., Ser. Mekh.-Mat., No. 27, 3–9 (1987) (in Ukrainian).

V. F. Emets, G. S. Kit, Ya. I. Kunets’,”Asymptotic behavior of the solution of the problem of scattering of an elastic wave by a thin-walled foreign inclusion,” Izv. RAN. Mekh. Tv. Tela, N0. 3, 55–64 (1999) (in Russian).

E. I. Zino, È. A. Tropp, Asymptotic Methods in the Problems of Thermal Conductivity and Thermoelasticity [in Russian], Izd. Leningr. Univ., Leningrad (1978) (in Russian).

A. M. Il’in, Matching of Asymptotic Expansions of Solutions of Boundary-Value Problems [in Russian], Nauka, Moscow (1989).

S. K. Kanaun, V. M. Levin, Effective Field Method in Mechanics of Composite Materials [in Russian], Izd. Petrozavodsk. Gos. Univ., Petrozavodsk (1993).

G. S. Kit, Krivtsun M. G., Plane Problems of Thermoelasticity for Bodies with Cracks [in Russian], Naukova Dumka, Kiev (1983).

G. S. Kit, Ya. I. Kunets, V. V. Mikhas'kiv, “Interaction of a stationary wave with a thin low stiffness penny-shaped inclusion in an elastic body,” Izv. RAN, Mekh. Tv. Tela, No. 5, 82–89 (2004) (in Russian).

G. S. Kit, O. V. Poberezhnyj, Nonstationary Processes in Bodies with Crack-like Defects [in Russian], Naukova Dumla, Kiev (1992).

G. S. Kit, Ya. S. Podstrigach, “Determination of the stationary temperature field and stresses in the vicinity of a slit possessing heat resistance,” Fiz.-Khim. Mekh. Mater., 2, No. 3, 247–252 (1966); English translation: Sov. Mater. Sci., 2, No. 3, 177–181 (1967), https://doi.org/10.1007/BF00714662

G. S. Kit, M. V. Khai, Method of Potentials in Three-Dimensional Thermoelasticity Problems for Cracked Bodies [in Russian], Nauk. Dumka, Kiev (1989).

G. S. Kit, V. F. Emets’, Ya. I. Kunets’, “A model of the elastodynamic interaction of a thin-walled inclusion with a matrix under antiplanar shear,” Mat. Met. Fiz.-Mekh. Polya, 41, No. 1, 54–61 (1998); English translation: J. Math. Sci., 97, No. 1, 3810–3816 (1999), https://doi.org/10.1007/BF02364919

G. S. Kit, Ya. I. Kunets’, V. V. Mykhas’kiv, “Dynamic stress concentration in an infinite body with thin elastic penny-shaped inclusion,” Dop. NAN Ukrainy, No. 8, 41–44 (2003) (in Ukrainian)

G. S. Kit, Ya. I. Kunets’, V. O. Mishchenko, “Interaction of SH-wave pulses with thin elastic soft inhomogeneities,” Visn. Donetsk. Univ, Ser. A, No. 1, 109–113 (2002) (in Ukrainian).

Ya. I. Kunets’, “Axisymmetric torsion of an elastic space with a thin elastic inclusion,” Prikl. Matem. Mekh., 49, No. 2, 638–645 (1988); English translation: J. Appl. Math. Mech., 51, No. 4, 497–503 (1987), https://doi.org/10.1016/0021-8928(87)90090-6

Ya. I. Kunets’, Dynamic Problems of the Elasticity Theory for Bodies with Thin Elastic Inclusions [in Ukrainian], Doctoral Thesis, Lviv (2006).

Ya. I. Kunets’, “Elastic equilibrium of the body with a thin peaked soft inclusion at longitudinal shear,” Mat. Met. Fiz.-Mekh. Polya, 47, No. 3, 144–148 (2004) (in Ukrainian).

Ya. I. Kunets, V. V. Matus, “Effective dynamical parameters of matrix composite with partially debonded noncanonical fibres,” Akust. Visn., 15, No. 4, 39–45 (2012) (in Ukrainian).

Ya. I. Kunets’, V. V. Matus, “Modeling of flexural vibrations of a Kirchhoff plate with a thin-walled elastic inclusion of weak contrast,” Mat. Met. Fiz.-Mekh. Polya, 54, No. 4, 106–112 (2011); English translation: J. Math. Sci., 187, No. 5, 667–674 (2012), https://doi.org/10.1007/s10958-012-1091-x

Ya. I. Kunets’, V. V. Matus, M. D. Hrylyts’kyi, “Remote determination of mechanical parameters of thin flat inclusions of low contrast,” Fiz.-Khim. Mekh. Mater., 47, No. 5, 118–123 (2011); English translation: Mater. Sci., 47, No. 5, 703–709 (2012), https://doi.org/10.1007/s11003-012-9447-4

Ya. I. Kunets’, V. V. Matus, V. O. Mishchenko, “Remote evaluation of physicomechanical parameters of thin-walled defects,” Fiz.-Khim. Mekh. Mater., 36, No. 5, 117–118 (2000); English translation: Mater. Sci., 36, No. 5, 776–779 (2000), https://doi.org/10.1023/A:1011380429273

Ya. I. Kunets’, V. V. Matus, V. O. Mishchenko, “Scattering of flexural waves from a hole of nonclassical form in plates using Timoshenko-Mindlin theory,” Prykl. Probl. Mekh. Mat., No. 14, 53–57 (2016) (in Ukrainian).

Ya. I. Kunets’, V. V. Matus, V. O. Mishchenko, V. V. Porokhovskyi, “Scattering of a SH-wave by an elastic fiber with thin peaked interphase inclusion of low rigidity,” Prykl. Probl. Mekh. Mat., No. 13, 82–87 (2015) (in Ukrainian).

Ya. I. Kunets’, V. V. Matus, V. O. Mishchenko, R. V. Rabosh “SH-wave pulses scattering by a thin linear piezoelectric inclusion of low rigidity in elastic medium,” Prykl. Probl. Mekh. Mat., No. 11, 129–134 (2013) (in Ukrainian).

Ya. I. Kunets’, V. V. Matus, V. V. Porokhovskyi, “Dynamic stress concentration in the vicinity of submerged thin plane inclusion of low rigidity under antiplane strain,” Mat. Met. Fiz.-Mekh. Polya, 50, No. 1, 136–139 (2007) (in Ukrainian).

Ya. I. Kunets’, V. V. Matus, V. V. Porokhovskyi, “Investigation of echo-signals of SH-waves from thin-walled elastic rigidly supported inclusions,” Mat. Met. Fiz.-Mekh. Polya, 47, No. 1, 115–119 (2004) (in Ukrainian).

Ya. I. Kunets’, V. V. Matus, V. V. Porokhovskyi, “Null-field method in the problem of scattering on a thin-walled elastic curvilinear inclusion,” Mat. Met. Fiz.-Mekh. Polya, 43, No. 2, 163–170 (2000) (in Ukrainian).

Ya. I. Kunets’, V. V. Matus, V. V. Porokhovskyi, “Elastic SH-wave pulse scattering on a thin-walled elastic curvilinear inclusion,” Mat. Met. Fiz.-Mekh. Polya, 43, No. 4, 150–154 (2000) (in Ukrainian).

Ya. I. Kunets’, R. V. Rabosh, “Longitudinal shear of an elastic medium with a thin rectilinear sharp-pointed piezoelectric inclusion of low rigidity,” Mat. Met. Fiz.-Mekh. Polya, 53, No. 3, 141–147 (2010); English translation: J. Math. Sci., 180, No. 2, 153–160 (2012), https://doi.org/10.1007/s10958-011-0637-7

Ya. Kunets’, V. Matus, “Scattering of SH-wave by an elastic fiber of noncanonical cross-section comprising a thin interphase layer,” Fiz.-Mat. Model. Inform. Tekhnol., No. 20, 132–139 (2014) (in Ukrainian).

Ya. Kunets’, V. Matus, V. Porokhovskyi, “Vibration of infinite medium with elastic fiber and thin interphase inhomogeneity of low rigidity,” Fiz.-Mat. Model. Inform. Tekhnol., No. 22, 77–85 (2015) (in Ukrainian).

Yu. I. Maksymiv, Yu. V.Porokhovsky, R. V. Rabosh, V. O. Mishchenko, Ya. I. Kunets, “Dynamic interaction of a thin metallic inclusion with a piezoceramic matrix,”Prykl. Probl. Mekh. Mat., No. 17, 134–138 (2019) (in Ukrainian), https://doi.org/10.15407/apmm2019.17.134-138

Yu. І. Maksymiv, R. V. Rabosh, Ja. І. Kunets, V. V. Porokhovskyi, “SH-waves interaction with a thin piezoelectric noncontrast inclusion in the elastic half-space,” Prykl. Probl. Mekh. Mat., No. 15, 97–101 (2017) (in Ukrainian).

R. M. Martyniak, Kh. I. Serednytska, Contact Problems of Thermoelasticity for Interphase Cracks in Bi-materials [in Ukrainian], Rastr-7, Lviv (2017).

V. V. Matus, “Scattering matrix for flexural waves in a thin plate [in Ukrainian],” Dop. NAN Ukrainy, No. 6, 73–78 (2009).

V. V. Matus, “Null field method in problems of diffraction of elastic waves on fibers with thin interphase inhomogeneities,” Prykl. Probl. Mekh. Mat., No. 15, 164–170 (2017) (in Ukrainian).

V. V. Matus, “Modified null field method in a problem of scattering of SH-waves by a partially debonded elastic inclusion with a piecewise smooth contour,” Mat. Met. Fiz.-Mekh. Polya, 52, No. 4, 145–149 (2009); English translation: J. Math. Sci., 174, No. 3, 303–308 (2011), https://doi.org/10.1007/s10958-011-0299-5

V. V. Matus, Wave Processes in Elastic Composite Bodies with Interphase and Distributed Thin Inhomogeneities [in Ukrainian], Doctoral Thesis, Lviv (2019).

V. V. Matus, Ya. I. Kunets’, “Scattering of flexural waves by a through rigid inclusion in a semi-infinite thin plate,” Prykl. Probl. Mekh. Mat., No. 9, 130–134 (2011) (in Ukrainian).

V. Mykhaskiv, Y. Kunets, V. Matus, “Effective velocity of longitudinal wave in elastic medium with distributed disk-shaped inclusions of low contrast,” Fiz.-Mat. Model. Inform. Tekhnol., No. 17, 131–139 (2013) (in Ukrainian).

V. V. Mykhas’kiv, Y. І. Kunets’, V. V. Matus, O. V. Burchak, O. K. Balalaev, “Parametrization of the propagation of elastic waves in a medium with ensembles of disc-shaped inclusions,” Fiz.-Khim. Mekh. Mater., 54, No. 1, 126–132 (2018); English translation: Mater. Sci., 54, No. 1, 130–137 (2018), https://doi.org/10.1007/s11003-018-0167-2

V. V. Mykhas’kiv, Ya. I. Kunets’, V. O. Mishchenko, “Stresses in a threedimensional body with thin compliant inclusion behind the front of pulsed waves,” Fiz.-Khim. Mekh. Mater., 39, No. 3, 63–68 (2003); English translation: Mater. Sci., 39, No. 3, 377–384 (2003), https://doi.org/10.1023/B:MASC.0000010743.83076.50

A. B. Movchan, S. A. Nazarov, “Stress-strain state of a plane domain with thin elastic finite inclusion,” Izv. AN SSSR, Mekh. Tv. Tela, No. 1, 75–83 (1987) (in Russian).

S. A. Nazarov, Introduction to Asymptotic Methods of Elasticity Theory [in Russian], Izd. Leningrad. Gos. Univ., Leningrad (1983).

V. J. Novokšenov, “A singural integral equation with small parameter on a finite interval,” Mat. Sb., 105, No. 4, 543–573 (1978); English translation: Math. USSR-Sbornik, 34, No. 4, 475–502 (1978), https://doi.org/10.1070/SM1978v034n04ABEH001222.

V. V. Panasiuk, M. M. Stadnik, V. P. Silovaniuk, Stress Concentrations in three-dimensional bodies with thin inclusions [in Russian], Naukova Dumka, Kiev (1986).

Ya. M. Pasternak, Mathematical Models and Finite-Element Method of Step Functions for Solution of the Problems of Thermomagnetoelectroelasticity of Structural Non-homogeneous Bodies [in Ukrainian], Doctoral Thesis, Lviv (2015).

Ya. Pasternak, H. Sulym, R. Pasternak, “Dynamic stress concentration at thin elastic inclusions under the antiplane deformation,” Fiz.-Mat. Model. Inform. Tekhnol., No. 18, 157–164 (2013) (in Ukrainian).

Ya. S. Pidstryhach, “Conditions for the jump of stresses and displacements on a thin-walled elastic inclusion in continuous medium,” Dop. NAN Ukrainy, Ser. A, No. 12, 29–31 (1982).

Ya. S. Pidstryhach, “The conditions of thermal contact of solids,” Dop. NAN Ukrainy, No. 7, 872–874 (1963).

A. P. Poddubnyak, “Integral equations of the problem of the torsion of an elastic body with a thin disc-like inclusion,” Prikl. Matem. Mekh., 50, No. 4, 644–650 (1986); English translation: Appl. Mech. Math., 50, No. 4, 492–497 (1986), https://doi.org/10.1016/0021-8928(86)90014-6

Ya. S. Pidstryhach, “Temperature field in a system of solids conjugated by a thin intermediate layer,” Inzh.-Fiz. Zh., 6, No. 10, 129–136 (1963) (in Russian).

Ya. S. Podstrigach, G. S. Kit, “Determination of the temperature fields and stresses in the vicinity of heat-conducting cracks,” Thermal Stess. Elem. Struct., No. 7, 194–201 (1967) (in Russian).

V. G. Popov, Method of Discontinuous Solutions in Plane Dynamic Problems of Elasticity Theory [in Russian], Doctoral Thesis, Odessa (1995).

V. G. Popov, Concentration of Elastic Stresses near Punches, Cuts, Thin Inclusions, and Reinforcements [in Russian], Nauka, Moscow (1982).

V. V. Porokhovskyi, Ya. I. Kunets’, “Diffraction of elastic wave pulses by thin weak inhomogeneities,”

Mat. Met. Fiz.-Mekh. Polya, 42, No. 2, 168–174 (1999).

V. Porokhovskyi, Ya. Kunets’, V. Mishchenko, I. Zhelavska, “The stress-strain state near a sharp tip of rigid reinforced soft inclusion,” Visn. Lviv. Univ., Ser. Mekh.-Mat., No. 57, 142–145 (2000) (in Ukrainian).

R. V. Rabosh, “Dynamic interaction of an elastic medium with a thin-walled curvilinear piezoelectric inclusion under longitudinal vibrations of a composite,” Mat. Met. Fiz.-Mekh. Polya, 52, No. 1, 101–106 (2009); English translation: J. Math. Sci., 168, No. 5, 625–632 (2010), https://doi.org/10.1007/s10958-010-0013-z

R. V. Rabosh, Yu. I. Maksymiv, V. V. Porokhovs'kyi, V. O. Mishchenko, Ya. I. Kunets, “Mathematical model of SH-wave propagation in composites with distributed thin piezoelectric inclusions,” Prykl. Probl. Mekh. Mat., No. 16, 107–111 (2018) (in Ukrainian), https://doi.org/10.15407/apmm2018.16.107-111

È. Sanchez-Palencia, Non-homogeneous Media and Vibration Theory [in Russian], Mir, Moscow (1984).

V. P. Sylovanyuk, Fracture of Preliminary Stressed and Transversely-Isotropic Bodies with Defects [in Ukrainian], Fiz.-Mekh. Inst. Im. Karpenka, Lviv (2000).

H. T. Sulym, Foundations of the Mathematical Theory of Thermoelastic Equilibrium of Deformable Solids with Thin Inclusions [in Ukrainian], Doslid.-Vydavnych. Tsentr NTSh, Lviv (2007).

H. T. Sulym, Ya. І. Kunets, R. V. Rabosh, “Asymptotic analysis of dynamic interaction of thin rectilinear piezoelectric inclusion and elastic medium under longitudinal shear,” Visn. Donetsk. Univ., No. 1, 137–141 (2008) (in Ukrainian).

H. T. Sulym, Yo. Z. Piskozub, “Conditions of contact interaction of bodies (A Survey),” Mat. Met. Fiz.-Mekh. Polya, 47, No. 3, 110–125 (2004) (in Ukrainian).

K. O. Friedrichs, “Asymptotic phenomena in mathematical physics,” Matematika, 1, No. 2, 79–94 (1957) (in Russian).

V. F. Emets, H. S. Kit, Ya. I. Kunets, “Interaction of time-harmonic SH waves with a crack like inclusion: edge region analysis,” Int. J. Fract., 94, No. 1, 51–62 (1998), https://doi.org/10.1023/A:1007541214562

V. F. Emets, Ya. I. Kunets, V. V. Matus, “Scattering of SH waves by an elastic thin-walled rigidly supported inclusion,” Arch. Appl. Mech., 73, No. 11-12, 769–780 (2004), https://doi.org/10.1007/s00419-004-0323-z

V. F. Emets, J. Rogowski, Mathematical-Numerical Modelling of Ultrasonic Scattering Data From a Closed Obstacles and Inverse Analysis, Acad. Publ. House EXIT, Warsaw (2013).

L. E. Fraenkel, “On the method of matched asymptotic expansions. Part I: A matching principle,” Math. Proc. Camb. Phil. Soc., 65, No. 1, 209–231 (1969), https://doi.org/10.1017/S0305004100044212

S. K. Kanaun, V. M. Levin, Self-Consistent Methods for Composites. Vol. 2: Wave Propagation in Heterogeneous Materials, Springer, Heidelberg (2008), https://doi.org/10.1007/978-1-4020-6968-0

H. S. Kit, Ya. I. Kunets, V. F. Yemets, “Elastodynamic scattering from a thin-walled inclusion of low rigidity,” Int. J. Eng. Sci., 37, No. 3, 331–345 (1999), https://doi.org/10.1016/S0020-7225(98)00069-X

Y. Kunets, R. Kushnir, V. Matus, O. Trofymchuk, “Interaction of antiplane shear waves with elastic fiber in the presence of a thin interphase piezoceramic layer,” in: Proc. of the 1st Int. Conf. on Theoretical, Applied and Experimental Mechanics (edited by E. Gdoutos), Springer (2019), pp. 401–403.

Y. I. Kunets, V. V. Matus, V. V. Mykhas’kiv, A. Boström, Ch. Zhang, “Scattering of a SH -wave by an elastic fiber of nonclassical cross section with an interface crack,” Mech. Compos. Mater., 44, No. 2, 165–172 (2008), https://doi.org/10.1007/s11029-008-9002-4

R. Kushnir, Y. Kunets, V. Matus, O. Trofymchuk, “Plane scattering problem for an inclusion of non-classical shape with a thin interphase layer,” in: Proc. of the 2nd Int. Conf. on Theoretical, Applied and Experimental Mechanics (edited by E. Gdoutos), Springer (2019), pp. 209–214.

V. V. Matus, V. F. Emets, “T-matrix method formulation applied to the study of flexural waves scattering from a through obstacle in a plate,” J. Sound Vib., 329, No. 14, 2843–2850 (2010), https://doi.org/10.1016/j.jsv.2010.01.004.

V. Matus, Y. Kunets, V. Mykhas’kiv, A. Boström, Ch. Zhang, “Wave propagation in 2D elastic composites with partially debonded fibres by the null field approach,” Waves in Random and Complex Media, 19, No. 4, 654–669 (2009), https://doi.org/10.1080/17455030903267087

V. Mykhas’kiv, Ya. Kunets, V. Matus, O. Khay, “Elastic wave dispersion and attenuation caused by multiple types of disc-shaped inclusions,” Int. J. Struct. Integr., 9, No. 2, 219–232 (2018), https://doi.org/10.1108/IJSI-06-2017-0040

Ia. Pasternak, “Doubly periodic arrays of cracks and thin inhomogeneities in an infinite magnetoelectroelastic medium,” Eng. Anal. Bound. Elem., 36, No. 5, 799–811 (2012), https://doi.org/10.1016/j.enganabound.2011.12.004

R. V. Rabosh, Y. I. Kunets, Y. I. Maksymiv, "Effective dynamical parameters of piezoelectric medium with randomly distributed piezoelectric inclusions," in: Proc. XXIII Int. Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED–2018), Tbilisi (2018), pp. 153–156, https://doi.org/10.1109/DIPED.2018.8543266

V. V. Varadan, A. Lakhtakia, V. K. Varadan, “Comments on recent criticism of the T-matrix method,” J. Acoust. Soc. Am., 84, No. 6., 2280–2284 (1988), https://doi.org/10.1121/1.397025

P. C. Waterman, “Matrix theory of elastic wave scattering,” J. Acoust. Soc. Am., 60, No. 3, 567–580 (1976), https://doi.org/10.1121/1.381130

P. C. Waterman, “New formulation of acoustic scattering,” J. Acoust. Soc. Am., 45, No. 6., 1417–1429 (1968), https://doi.org/10.1121/1.1911619


Посилання

  • Поки немає зовнішніх посилань.


Creative Commons License
Ця робота ліцензована Creative Commons Attribution 3.0 License.