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МАТЕМАТИЧНЕ МОДЕЛЮВАННЯ ПОТОКІВ ДОМІШКИ 
У ДВОФАЗНІЙ СМУЗІ З КУЛЬОВИМИ ВКЛЮЧЕННЯМИ  
ЗА СУМІРНИХ ОБ’ЄМНИХ ЧАСТОК ФАЗ 
 

Досліджено потік домішкової речовини у двофазному тілі з випадково розмі-
щеними кульовими включеннями за умови сумірних об’ємних часток фаз. На 
основі подання функції концентрації у вигляді інтегрального ряду Неймана 
та застосування першого закону Фіка отримано загальну формулу для 
дифузійного потоку у двофазному тілі. При цьому використано кореляційну 
функцію та усереднену функцію структури тіла. Одержано розрахункові 
формули для усередненого потоку та середньої кількості домішкової речови-
ни, що пройшла через заданий переріз двофазного тіла з випадково розміще-
ними кульовими включеннями. Розроблено програмні модулі та проведено 
чисельний аналіз відповідних характеристик процесу масоперенесення. 

Ключові слова: дифузійний потік, випадкова неоднорідна структура, кульове 
включення, рівномірний розподіл, ряд Неймана, усереднення за ансамблем 
конфігурацій фаз. 

 
Вступ. Моделювання процесів перенесення маси у тілах з неоднорід-

ною внутрішньою будовою дозволяє оптимізовувати властивості матеріалів, 
покращувати технології виробництва, прогнозувати поведінку матеріалів в 
екстремальних умовах експлуатації тощо [5, 8, 10]. При цьому, разом із 
концентрацією домішки, однією з основних характеристик процесу перене-
сення маси у тілі, що потребує дослідження, є дифузійний потік.  

Для вивчення дифузійного потоку у випадково неоднорідних структу-
рах застосовують процедуру усереднення за ансамблем конфігурацій фаз. 
Однак ця процедура може викликати значні труднощі, особливо коли потік 
визначається за першим законом Фіка, оскільки, як правило, функції коре-
ляції випадкового поля концентрації та стохастичного коефіцієнта дифузії 
залишаються невідомими. З огляду на це в роботах [6, 12, 15] для дослід-
ження стохастичного потоку маси використано балансові співвідношення 
для пористих тіл. Ці співвідношення записано для гомогенізованих середо-
вищ з фізичними характеристиками, які є усередненими величинами. При 
цьому враховують відмінності між фазами, але нехтують взаємодією між 
ними. У роботах [3, 7] запропоновано альтернативний підхід, відповідно до 
якого випадковий потік маси у багатофазних випадково неоднорідних тілах 
досліджується на основі рівняння дифузії, сформульованого безпосередньо 
для функції потоку. Цей підхід дозволяє детальніше враховувати вплив 
неоднорідностей і взаємодію між фазами, але потребує більш складного 
математичного обґрунтування і додаткових умов на функцію потоку, що 
ускладнює його застосування у випадку тривимірної постановки задачі.  

У цій роботі досліджуємо дифузійний потік у двофазному тілі з кульо-
вими включеннями за умови сумірних об’ємних часток фаз на основі подан-
ня концентрації домішкової речовини у вигляді інтегрального ряду Нейма-
на. При цьому враховано, що застосування першого закону Фіка безпосе-
редньо до одержаної розрахункової формули для концентрації з метою 
отримання формули для потоку дає менш точний результат, ніж диферен-
ціювання відповідної функції концентрації до етапу усереднення за ансам-
блем конфігурацій фаз. 

1. Математична модель потоку домішкової речовини у випадку 
сумірних об’ємних часток фаз. Нехай у смузі товщини 0z , що складається 

з основної фази (скелету) та випадково розміщених кульових включень, 
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відбувається дифузія домішкової речовини. Приймаємо, що об’ємна частка 
жодної з фаз не є домінуючою, тобто в середовищі не можна виділити ба-
зової фази. Крім того, вважаємо, що кульові включення розміщені за рівно-
мірним законом розподілу, а характеристики фаз (коефіцієнти дифузії d  
та густини  ) є сталими в межах кожної з фаз. У початковий момент часу 

домішкова речовина в тілі відсутня, на верхній границі тіла 0z   підтри-
мується стале значення концентрації домішкової речовини c , а на нижній 

границі 0z z  концентрація дорівнює нулю. На границях поділу фаз прий-

маємо умови неідеального контакту. 
Зазначимо, що у випадку сумірних об’ємних часток фаз для одержан-

ня розв’язку контактно-крайової задачі здійснюють моделювання скелета 
тіла щільною упаковкою з m  куль різного радіуса jR , 1, ,j m  , при цьо-

му виділяють також N m  характерних радіусів включень jR , j   

1, ,m N   . Детально процес розв’язання відповідної контактно-крайової 
задачі для функції концентрації ( , )c tr , сформульованої у тривимірній по-
становці, розглянуто у [4]. Він полягає у зведенні вихідної задачі до рівнян-
ня масоперенесення для тіла в цілому, одержанні еквівалентного інтегро-
диференціального рівняння та знаходженні його розв’язку у вигляді інтег-
рального ряду Неймана розвиненням в околі розв’язку однорідної крайової 
задачі з усередненими характеристиками, в результаті чого маємо 

 
0

( , ) ( , ) ( , , , ) ( , ) ( , )
t

a
a a s a

V

c t c z t G t t L t c z t d dt         r r r r r  

 
0

( , , , ) ( , )
t

a
a s

V

G t t L t      r r r  

 
0

( , , , ) ( , ) ( , )
t

a
a s a

V

G t t L t c z t d dt d dt


              r r r r r  

 
0 0

( , , , ) ( , ) ( , , , ) ( , )
t t

a a
a s a s

V V

G t t L t G t t L t


             r r r r r r  

 
0

( , , , ) ( , )
t

a
a s

V

G t t L t


        r r r  

 ( , )ac z t d dt d dt d dt        r r r  . (1) 

Тут ( , )ac tr  – розв’язок однорідної крайової задачі дифузії в однорідному 
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об’ємна частка куль радіуса jR , що визначається співвідношенням [2] 
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Випадковий оператор ( , )a
sL tr  у співвідношенні (1) при цьому визна-

чається так [4]: 
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де ( )ij r  – випадкова функція структури [11], 
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У нових позначеннях ряд Неймана (1) подамо як 
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Потік дифундуючих частинок ( , )tJ r , тобто кількість частинок, які за 
одиницю часу проходять через одиницю площі плоского перерізу тіла, пер-
пендикулярного до ґрадієнта концентрації, визначається за першим зако-
ном Фіка 

 ( , ) ( ) ( , )t d c t  J r r r . (7) 
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ймаючи, що включення розподілені за рівномірним законом вздовж усіх ко-
ординатних осей, одержуємо коефіцієнти дифузії, які є однаковими вздовж 
різних осей. 
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Використовуючи подання коефіцієнта дифузії через випадкову функ-
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2. Усереднення потоку домішкової речовини за ансамблем конфігу-
рацій фаз у випадку сумірних об’ємних часток. Проведемо усереднення 
виразу (8) за ансамблем конфігурацій фаз, приймаючи рівномірний розпо-
діл кульових включень в області тіла. Приймемо, що випадковою величи-
ною є радіус-вектор  ijr  центра кулі, від якого залежить тільки функція 

структури ( )ij r . Тоді одержимо  

 conf conf

( , )
( , ) ( ) a

k sk
k s

c z t
t d

z


   
J r r  

 
10

( , , , ) ( , ) ( , )
t N

j
k a s a

k s jV

d G t t L t c z t


         r r r r ( )  

 
conf

1

( ) ( )
jn

sk ij
i

d dt


      r r r  

 
0

( , , , )
t

k a
k s V

d G t t     r r r ( )  

 
1 10

( , ) ( , , , ) ( , ) ( , )
tN N

j j
s a s a

j jV

L t G t t L t c z t


 

            r r r r   

 
1 1

conf
1 1

( ) ( ) ( )
n n

sk ij pj
i p

d dt d dt
 

          r r r r r  . 

Зазначимо, що виконуються такі співвідношення [1, 14]: 
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де ( , )
 r r  – кореляційна функція, ( , , )

  r r r  – кумулятивна функція. 

У подальшому обмежимось першими двома членами ряду Неймана (8), 
тоді для усередненого потоку домішкової речовини отримаємо співвідно-
шення: 
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Враховуючи, що випадковою величиною є радіус-вектор центра кулі 
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Розглянемо перший доданок у правій частині рівності (9): 
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де skr  – внутрішня точка s -ї однозв’язної області ( )k
sV( ) фази k . 

У випадку двофазного тіла отримаємо 0 0 1 1( )k sk
k s

d d v d v   r . 

Прийнявши, що густина функції рівномірного розподілу дорівнює 1/V , 
і всі сферичні включення повністю розміщені в області тіла, після переходу 
до сферичної системи координат одержимо таке співвідношення для усе-
редненої функції структури [4]: 
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Врахуємо рівність (10) у формулі (9) для усередненого потоку: 
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Функція Ґріна (3) при дії на неї набла-оператора Гамільтона набуває 
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Підставимо одержані співвідношення у вираз для дифузійного потоку 
(11) та проінтегруємо за відповідними змінними. Зазначимо, що, відповідно 
до [13], маємо 
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Отже, коефіцієнти у рівності (12) біля ортів i  та j , а також доданок із 

множником ( , )
 r r  у формулі (11) дорівнюють нулеві. Отже, вираз для 

дифузійного потоку (11) не залежить від функції кореляції ( , )
 r r  і є ну-

льовим уздовж осей Ox  та Oy . 
Проінтегрувавши вираз (11) за всіма змінними, одержимо розрахунко-

ву формулу для усередненого за ансамблем конфігурацій фаз дифузійного 
потоку у двофазному тілі з кульовими включеннями, розподіленими за рів-
номірним законом, у випадку сумірних об’ємних часток фаз: 
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 Середню кількість домішкової речовини, що пройшла через поверхню 
z z  за час t , визначаємо таким чином: 
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Відмітимо, що кількість домішкової речовини, що пройшла через зада-
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0/z z  , 2
0 0/d t z  . Точність обчислення рядів за s  становить 710 , а за q  

– 910 . 
На рис. 1 наведено залежність від часу   потоку маси ( , ) /J c   до-

мішкових частинок через поверхню 0z z  (у безрозмірних змінних 1  ). 

Приймаємо, що 5N  , 3m  , тобто маємо три типи куль різного радіуса 
для моделювання упаковки скелету та два типи куль різного радіуса для 
опису кульових включень. Вважаємо, що 1 0.001R   ( 1 0.2v  ), 2 0.001R   

( 2 0.3v  ), 3 0.0001R   ( 3 0.1v  ), 4 0.001R   ( 4 0.3v  ) та 5 0.0001R   ( 5v   

0.1 ). Нехай коефіцієнт дифузії домішкової речовини у скелеті дорівнює 
1.5  ( 1 2 3 1.5d d d   ), а у включеннях – 0.8  ( 4 5 0.8d d  ). Для густин 

відповідних фаз приймаємо 1 2 3 1.8       та 4 5 1.2    . Тоді усеред-

нені по об’єму тіла характеристики становлять 1.22ad  , 1.56a  . 
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 а) б) 
Рис. 1 

На рис. 1a криву 1 побудовано для значень коефіцієнтів дифузії 

1 1.5d   та 4 1.1d  , криву 2 – 1 1.5d   та 4 1.2d  , криву 3 – 1 2.5d   та 

4 0.5d  , криву 4 – 1 2.5d   та 4 0.8d  , криву 5 – 1 2.5d   та 4 1.2d  . 
Залежність усередненого потоку домішкової речовини, що проходить через 
нижню границю тіла, для різних коефіцієнтів густини фаз наведено на 
рис. 1б, зокрема, для 1 1.8   та 4 1.2   (крива 1), 1 1.5   та 4 1.2   

(крива 2), 1 1.8   та 4 1.1   (крива 3), 1 1.2   та 4 1.5   (крива 4), 

1 1.1   та 4 1.8   (крива 5).  
Збільшення коефіцієнтів дифузії як у включеннях, так і в скелеті тіла 

призводить до зростання усередненого потоку домішкової речовини (криві 
1, 2, рис. 1a). Зменшення густини скелету приводить до зростання усе-
редненого потоку (криві 1, 2, рис. 1б), аналогічно як і зменшення густини 
кульових включень (крива 1 та крива 3 на рис. 1б). Зазначимо, що для 
вибраних вхідних даних чисельного дослідження усереднені потоки доміш-
кової речовини виходять на усталений режим для 0.45   (рис. 1). Зазна-
чимо, що для різних значень коефіцієнтів дифузії усталений режим є 
також різним (рис. 1a), тоді як для різних коефіцієнтів густини усталений 
режим є однаковим (рис. 1б). 

На рис. 2 наведено залежності від безрозмірного часу   розподілів се-

редньої кількості домішкової речовини Q c / , що пройшла через шар за 

час  . Рис. 2a ілюструє значення функції Q c /  для різних перерізів: 

0.3, 0.6, 1   (криві 1/1–3/3). Криві 1–3 (суцільні лінії) побудовано для 
співвідношень коефіцієнтів дифузії та густини у скелеті, які є більшими, 
ніж у включеннях: 1 2 3 1.5d d d    та 1 2 3 1.8       (у скелеті), 4d   

5 0.8d   та 4 5 1.2     (у включеннях), а криві 1–3 (штрихові лінії) – 

для протилежних співвідношень: 1 2 3 0.8d d d    та 1 2 3 1.2       (у 

скелеті), 4 5 1.5d d   та 4 5 1.8     (у включеннях). 

На рис. 2б наведено графіки середньої кількості речовини Q c / , що 

пройшла через нижню границю шару 1  , для різних співвідношень 

об’ємних часток. Крива 1 відповідає значенням 1 0.2v  , 2 0.3v  , 3 0.1v  , 

4 0.3v  , 5 0.1v   ( skel 0.6v  , incl 0.4v  ), крива 2 – 1 0.1v  , 2 0.3v  , 3v   

0.1 , 4 0.3v  , 5 0.2v   ( skel 0.5v  , incl 0.5v  ), крива 3 – 1 0.1v  , 2 0.1v  , 

3 0.1v  , 4 0.5v  , 5 0.2v   ( skel 0.3v  , incl 0.7v  ), крива 4 – 1 0.5v  , 2v   

0.1 , 3 0.1v  , 4 0.1v  , 5 0.2v   ( skel 0.7v  , incl 0.3v  ), крива 5 – 1 0.3v  , 

2 0.3v  , 3 0.2v  , 4 0.1v  , 5 0.1v   ( skel 0.8v  , incl 0.2v  ). 
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 а) б) 

Рис. 2 
У випадку, коли коефіцієнти дифузії та густини у скелеті є більшими, 

ніж у включеннях, для вибраного співвідношення об’ємних часток фаз 
( skel 0.6v  , incl 0.4v  ) зі збільшенням глибини перерізу     збільшуєть-

ся кількість домішкової речовини, що пройшла через цей переріз (рис. 2a, 
криві 1–3), при цьому функція /Q c   зростає і є опуклою вгору функці-

єю. Якщо skel incld d  та skel incl   , то зі збільшенням значення   кіль-

кість домішкової речовини зменшується, при цьому функція /Q c   також 

зростає, але є опуклою вниз функцією (рис. 2a, криві 1–3).  
Зазначимо, що збільшення об’ємної частки включень може викликати 

як зростання функції * */Q c , так і її спадання, залежно від перерозподілу 

об’ємних часток між кульовими включеннями різних радіусів. 
Висновки. Таким чином, досліджено потік домішкової речовини у дво-

фазному тілі з кульовими включеннями, рівномірно розподілених в області 
тіла, за умови сумірних об’ємних часток фаз. Із застосуванням першого за-
кону Фіка до подання концентрації домішкової речовини через інтеграль-
ний ряд Неймана одержано вираз для випадкового дифузійного потоку. 
Проведено усереднення за ансамблем конфігурацій фаз перших двох чле-
нів ряду Неймана. З використанням кореляційної функції та виразу для 
усередненої функції структури тіла у випадку рівномірного розподілу ку-
льових включень отримано загальну формулу для дифузійного потоку у 
двофазному тілі за умови сумірних об’ємних часток фаз. Для конкретних 
функцій Ґріна та концентрації домішкової речовини в тілі з усередненими 
характеристиками одержано розрахункову формулу для усередненого по-
току та кількості домішкової речовини, що пройшла через заданий переріз 
двофазного тіла. На основі розрахункових формул розроблено програмні мо-
дулі та проведено числовий аналіз процесів перенесення маси у двофазному 
тілі з кульовими включеннями за умови сумірних об’ємних часток фаз. 
Зокрема, показано, що чим менші значення густини скелету і/або кульових 
включень, тим більшою є величина усередненого дифузійного потоку. 
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MATHEMATICAL MODELING OF ADMIXTURE FLOWS IN A TWO-PHASE STRIP WITH 
SPHERICAL INCLUSIONS AT COMMENSURABLE VOLUME FRACTIONS OF PHASES  
 
The flow of admixture in a two-phase body with randomly located spherical inclusions 
is investigated under the condition of commensurable volume fractions of phases. Based 
on the representation of the concentration function via the Neumann series and using 
the first Fick’s law, a general formula for the diffusion flow in the two-phase body is 
obtained. In this case, the correlation function and the averaged function of the body 
structure are used. Calculation formulas for the averaged flow and the mean number of 
admixture that passed through the given cross-section of the two-phase body with 
randomly located spherical inclusions are obtained. Software modules are developed and 
numerical analysis of appropriate characteristics of the mass transfer process is carried 
out. 

Key words: diffusion flow, randomly inhomogeneous structure, spherical inclusion, 
uniform distribution, Neumann series, averaging over the ensemble of phase con-
figurations. 
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