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CLASSIFICATION OF THE POSETS OF MINMAX TYPES WHICH ARE
SYMMETRIC OVERSUPERCRITICAL POSETS OF THE EIGHTH ORDER

Classification of the posets which are closely related (with respect to their Tits
quadratic forms) to generalizations of the critical and supercritical posets which at
first appeared in Kleiner’s and Nazarova’s criteria on representation types of
posets is given. These criteria were first in a new representation theory which was
initiated by L. O. Nazarova and A. V. Roiter in 1972. The method of minimax
isomorphism (introduced by the first author) plays the main role in presented
investigation.
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Introduction. Through this paper, all posets are finite with strict order
relations < and without elements denoted by 0 and they are identified with
their Hasse diagrams. All considered subposets are assumed to be full and
one-element subsets are identified with their elements. For fixed posets A,
B, the phrases «A is included in B», «B contains a subposet of the form
A », etc. mean that there is a subposet X of B isomorphic to A.

The direct sum of posets Si,...,S,, k>1 (ie pairwise disjoint union

without comparable elements between them), is denoted by S, LIS, II...11.S,
or (5y,8,,...,5,). If S, is a chain of length m (equivalently, a linearly orde-

red set of orderm) then we often write m instead of S,. A subposet A of a

poset B which is its direct summand is called isolated (in B).

In the representation theory of posets (initiated by L. O. Nazarova and
A. V. Roiter in [8]), the first criteria were criteria for posets to be of finite and
tame representation types obtained respectively by M. M. Kleiner [6] and
L. O. Nazarova [7].

Theorem 1. A poset S is of finite representation type over a field K if
and only if it does not contain subposets of the form K, =(1,1,1,1), K, =(2,2,2),
K, =(1,3,3), K, =(4,dV) and K; =(1,2,5).

Theorem 2. A poset S is of tame representation type over a field K if
and only if it does not contain subposets of the form N,=(1,1,1,1,1), N, =
=(1,1,1,2), N; =(2,2,3), N, =(1,3,4), N; =(5,V) and Ny =(1,2,6).

Here ¢V is the Hasse diagram of the poset with elements 1, 2, 3, 4 and
relations 1 <2, 3 <4, 1<4.

In what follows, we will call K,,K,,...,K; and N;,N,,...,N, critical and

supercritical posets, respectively.

The first author suggested to consider a family of (pairwise nonisomor-
phic) posets that differ from supercritical posets to the same extent as super-
critical differ from critical ones, and to call these posets 1-oversupercritical or
simply oversupercritical. In more detail [1], if we take all five critical posets
and consider all their one-element extensions such that either the new ele-
ment is isolated or it forms a new isolated chain together with the elements of
some old isolated chain, and then choose all minimal posets of the obtained
class of posets (with respect to the full inclusion of posets <), then we obtain
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as a result all supercritical posets. If the same procedure is already done with
the supercritical posets, then the resulting posets (which are -called
oversupercritical) will be the following:

B =(,1,11,11), B,=(11112), B;=(1,122),

B, =(1,1,13), B;=(233), B;=(224), B;,=(144),
By =(1,3,5), By =(1,2,7), By, =(6,N).

Recall that a poset T is called dual to a poset S and is denoted by S°P
if T=S as usual sets and x <y in T if and only if x>y in S. We have

from the above that all critical, supercritical and oversupercritical posets are
self-dual.

In a number of previous papers we classified the posets which are closely
related (with respect to their Tits quadratic forms) to oversupercritical ones
with the group of automorphisms of order not equal to 2, and also studied
their combinatorial properties.

In this paper we continue our investigations using the method of mini-
max isomorphism [9] as the main method.

1. Minimax isomorphism of posets. Let S be a poset, a be its minimal
or maximal element and T = ga denote the following new poset: T =S as
usual sets, T\a = S\a as posets, the element a is, respectively, maximal or
minimal element in T (i.e. vice versa), and a is comparable with another
element in T if and only if they are incomparable in S .

A poset S is called minimax equivalent to a poset S, if it is obtained
from S by successive application of a finite number m of such operations
(the minimax equivalence is an equivalence, since the reflexivity follows from

the case m =0 and the symmetry follows from the fact that T = Sa implies

S =T, )- Then each poset T isomorphic to S is called minimax isomorphic
to S.
For example, the posets T of the forms (Fig. 1, Fig. 2)

Fig. 1 Fig. 2

are, respectively, minimax equivalent to the posets S of the forms (see Fig. 3,
Fig. 4).

Fig. 3 Fig. 4
In the first case the operations must be applied to the minimal point 3 of S
and the maximal point 4 of S3, and in the second case to the minimal points
1,3,50f S, El, [7'3, respectively, with U = S'l.
The main motivation for introducing [9] the notion of minimax isomor-
phism was the fact that the Tits quadratic form gs(z) of a poset S given, by

definition, by the equality
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as@) =25+ ) 2 + X, 22, -2 ) 2
ieS i<j ieS
i,j€S
is Z -equivalent to the Tits quadratic form of any poset T which is minimax
isomorphic to S'.

The concept of minimax isomorphism is used by the authors to solve
many problems.

Let’s give two examples.

A poset S is called positive (respectively, non-negative) if so is its Tits
quadratic form.

We call a poset P -critical (respectively, NP -critical) if it is not positive
(respectively, non-negative), but all its proper subposets already are (an emp-
ty poset is positive since g,(z) = 2[2) )-

Theorem 3 [2]. A poset S is P -critical if and only if it is minimax iso-
morphic to some critical poset.

Theorem 4 [3]. A poset S is NP -critical if and only if it is minimax iso-
morphic to some supercritical poset.

These theorems allowed the authors to describe all P -critical and NP -
critical posets. Up to isomorphism and duality, their number is equal to 75
(see [2] or [18]) and 115 (see [4]), respectively.

An efficient algorithm for describing all posets that are minimax
isomorphic to a given one is presented in Section 3.

2. Main result. Theorems 3 and 4, as well as other results by the authors
(see, e.g., the description of the positive posets [2]) show the importance of the
problem on this topic describing the posets that are minimax isomorphic to
posets from a natural class. For a fixed poset P, we call a poset S of
minimax type (briefly, MM-type) P if S is minimax isomorphic to P [14]. In
this paper, continuing research of [1, 14, 15] (for P = Bg,By), [13] (for
P=B,,B,,B,,B,), [16] (for P = B,,) we consider the case of oversupercritical

posets B; of order 8 that are symmetric (ie. have automorphism of order 2).
Such are the posets By =(2,3,3) and By =(2,2,4).
For formal reasons we denote the posets B, and B; by E, and F, re-

spectively:
Table 1
E, F

Theorem 5. Up to isomorphism and duality, the complete set of posets of
MM-types E,, F, consist of, in addition to E;, F, themselves, respectively, the

posets indicated in the following tables:
Table 2
E, E, E, E, E, E;
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12

13

14

Table 3
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3. Proof of Theorem 5. We denote the poset S. for a minimal (respecti-

vely, maximal) element of a poset S (see Section 1) by SZ (respectively, Si ).
In this definition an element a can be replaced by a lower (respectively,
upper) subposet A, ie. such A that x € A whenever x <y (respectively,
x>1vy)and y € A. In more detail, the poset T = Sl; (respectively, T = Si) is
defined as follows:

1°) T =S as usual sets;

2°) partial orders on A and S \ a are the same as before;

3°) comparability and incomparability between elements x € A and
y e S\ A are interchanged, and the new comparability can only be of the

form x > y (respectively, x < y).

Two subposets X and X' of a poset S are called strongly isomorphic if
there exists an automorphism ¢ of S such that ¢(X)= X'. Similarly, pairs

(Y,X) and (Y',X') of subposets of S are called strongly isomorphic if
¢(Y)=Y' and ¢(X)= X' for some automorphism ¢. The inequality X <Y
for subposets X, Y of S means that x <y forany xre X, yeVY.

In [2], the authors proposed the following algorithm for finding (up to
isomorphism) all posets that are minimax isomorphic to a given poset S'.
I. Describe, up to strong isomorphism, all lower subposets P # S in S,

and for each of them, construct the poset S; (P = is not excluded).
II. Describe, up to strong isomorphism, all pairs (Q,P) consisting of a
proper lower subposet @ in S and a nonempty lower subposet P in @ such

that P < S\ @, and for every such pair, construct the poset (Sg )l

III. Among the posets obtained in I and II, choose one from each class of
isomorphic posets.

Now we apply this three-step algorithm to the posets E, and F;.

For each posets E;, F;, (see the Table 1), we number the points with
1,2,...,8 in such a way that i <j whenever 7 <j or 7 is to the left of j.
Then 1<2, 3<4<5, 6<7<8 for E) and 1<2, 3<4, 5<6<7<8 for
F,.

Step L First, we describe (up to strong isomorphism) all lower subposets.
They are the following

for E:
Xy =9, X, ={l}, X,={3},
X; ={1,2}, X, ={1,3}, X, ={3,4}, X, ={3,6},
X, = 12,3}, X, = (13,4}, X, = (13,6},
X, =13,4,5}, X;, ={3,4,6},
X, =1{1,2,3,4}, X3 ={1,2,3,6},
X, ={1,3,4,5}, X, ={1,3,4,6},
X5 =1{3,4,5,6}, X, =1{3,4,6,7},

X, =11,2,3,4,5}, X, ={1,2,3,4,6}, X,, ={1,3,4,5,6},



X, ={1,3,4,6,7}, X,, ={3,4,5,6,7},
X,, ={1,2,3,4,5,6}, X,, ={1,2,3,4,6,7},
X, ={1,3,4,5,6,7}, X,; = {3,4,5,6,7,8},
X,, ={1,2,3,4,5,6,7}, X,, ={1,3,4,5,6,7,8};
for F,:
Y, =@, Y, ={1}, Y, ={5},
Y, ={L2}, v, ={1,3}, Y; ={1,5},
Y, = {5,6}, Y, = {1,2,3}, Y, = {1,2,5},
Y, ={1,3,5}, Y, ={1,5,6}, Y}, = {5,6,7},
Y, ={1,2,3,4}, Y,; ={1,2,3,5}, Y, = {1,2,5,6},
Yy, = {1,3,5,6}, Y, ={1,5,6,7}, Y,, ={5,6,7,8},
Y = {1,2,3,4, 5}, Y, = {1,2,3,5,6}, Y,, = {1,2,5,6,7},
Y, =1{1,3,5,6,7}, Y,, ={1,5,6,7,8},
Y,; = {1,2,3,4,5,6}, Y,, ={1,2,3,5,6,7},
s ={1,2,5,6,7,8}, Y, ={1,3,5,6,7,8},
Y,, ={1,2,3,4,5,6,7}, Y, ={1,2,3,5,6,7,8}.
Let’s denote by K,; (respectively, K,;), where 1< j <28 the poset S

for S=E;,, V= X, (respectively, S =F,, V = Y, ):

Kio2Ey, K;=2E, K,=zE, K;=E, K ,k=E;,

~ ~ ~ IoP ~ ~ F°P
K1,5 = ES’ K1,6 = EIG’ K1,7 = EG ’ K1,8 = E14’ K1,9 = E18 ’
~ ~ ~ ROP ~ ROP
Kl,lO = El’ Kl,ll = E12’ K1,12 = E3 ’ K1,13 = EIS ’

Kiww=E;, K5 =2E;,; K s=E, K,;=2E;,

~ EOP

Kis = Eyy, Ky = Ej

~ R°P ~ FOP
K1,18 = El ’ K1,19 = E12’

~ ~ FOP ~ FOP ~ F°P
K1,22 = EG’ K1,23 =E ’ K1,24 = Elﬁ’ K1,25 = E15 ’

~ [OP ~ FOP ~ FOP.
Ky =B, Ky = Ep7, Kigg =Ej;

Kyo=Fy, Ky, =F, Kyy =2Fy, Kyy=2F,, Ky, =Fy,

~ ~ ~ [°P ~ ~ F°P
K2,5 :FIG’ K2,6 :FIQ’ K2,7 = K ’ K2,8 :F7’ K2,9 :F19 ’

~ ~ ~ JOP ~ 0P ~
K2,10 =F,, Kz,n = Fy, K2,12 =K, K2,13 =Fy, K2,14 = F,

~ ~ ~ ~ RoP ~ FOP
K2,15 = FZO’ K2,16 = F15’ K2,17 = Fl’ K2,18 = FQ ’ K2,19 = F17 ’
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~ JOP ~ ~
K2,20 = F’i ’ K2,21 = F19’ K2,22 = FG’
op op ~ JOP
K223—F12’ K224—F16’ K2,25:F4 ’
op ~ TOP ~ [oP
K226—F18’ K227—F14’ K228—F11'

Step II. Describe (up to strong isomorphism) all pairs of lower subposets
(see the algorithm). They are the following

for E,:
X) = (Xp5,{6}), Xy = (Xp0,{6}), X3 =(Xp,{6,7), X} = (X, {1});
for F,:
Y| = (Y5, {5}), Y. ( Yy5,{5}), ¥y =( 23,{5 6}), Y, = (Y5, {5}),
Yy = (Y, {5, 6}) = (Yy;,{5,6 7}) = ( 28’{3})
Let’s denote by K|, the poset (S5)% for S=E,, (V,W)=X, and by

K, ; the poset (Sy) 1, for S =F,, (V,W)=

K11 = E3P, K{yz = E,, KL3 =~ E,, K{A = E,,
K,, =F", Ky, =Fy, Ky; =F;, Ky, =Fj,
25—F10’ K26—F K27:F

Step IIL It is easy to verify that in I and II each of the posets E;, F,;, in-

dicated in Tables 2 and 3 in the formulation of Theorem 5 or dual to it (in the
non-dual case) occurs only once.

Thus Theorem 5 is proved. ¢
4. Applications. Posets arise in the study of various problems in mathe-
matics and its applications. Among such problems an important role is played

by combinatorial ones associated with the study of various parameters (see,
eg., [9, 11, 12, 19—30]). The present section is devoted to the analysis of some

combinatorial properties of the posets of MM-types E;, and F,, namely, the

calculation of their coefficient of transitivity; such properties, for some other
classes of posets, were studied by the authors earlier in [13—16].

For a poset S, let S%:={(x,y)|x,y €S,z <y}. Elements x and y of
S are called neighboring, if (x,y) € S2 and there is no z satisfying x <z <
=n,(S):
(a,y) of neighboring elements of S. On the language of the Hasse diagram of
S, n,

of all its paths, up to parallelism, going from bottom to top (two paths are
called parallel if they start and end at the same points). The ratio k, = k,(S)

<y. Put n, ‘Sz‘ and denote by m, =n,(S) the number of pairs

is equal to the number of all its edges and n, is equal to the number

of the numbers n, —n, and n,, is called the coefficient of transitivity of S,

for n, =0, it is assumed that k, =0 [10]. Obviously, dual posets have the
same coefficient of transitivity.

It is clear that the coefficient of transitivity of S is the probability that
its comparable elements are not neighboring.

The main result of this section is the following theorem.

11



Theorem 6. The following holds for posets E,, F; shown in Tables 4, 5

and 6. The coefficients of transitivity k, are calculated up to the fifth decimal
place. If the number of decimal places is less than five, then the decimal
fraction is finite, and if it is five, then infinite. If two decimal fractions are
equal up to five digits, then they are exactly equal.

Table 4
N n, n, k,
E, 5 7 0.28471
F, 5 8 0.375
Table 5

N n, | n, k, N n, | n, k,
E | 7 | 22 |o068182] E, 12 | 05

E, | 8 | 22 |063636 | E;, | 6 | 10 |04

E; | 7 | 19 |063158l E, | 7 | 14 |05

E, 7 19 | 063158 || E,4 7 15 | 0.53333
Eg 8 19 | 057895 || E,, 7 16 0.5625
Eg 7 18 | 061111 || E,4 7 13 | 046154
E,; 7 21 | 0.66667 || E,4 7 11 | 0.36364
E; | 6 | 15 |06 E,| 8 | 13 | 038462
E, | 7 | 15 | 053333 E, | 8 | 12 | 033333

Table 6
n, | n, k, n, | n, k,

F 24 | 0.70833 || Fy, 6 13 | 0.53846
F, | 8 | 24 | 066667 F, | 6 | 12 |05

Fy 8 24 | 0.66667 || F, 7 12 | 041667
F, | 7| 20 | o065 F,| 6 | 9 |033333
F; 8 20 | 0.6 F 7 16 | 0.5625
F, 7 21 | 0.66667 || F, 7 12 | 041667
F, 7 17 | 058824 || F, 7 13 | 046154
Fy 7 16 | 0.5625 F, 7 16 | 0.5625
F, | 6 | 17 |o064706 | F, | 8 | 13 | 038462
F, 7 17 | 058824 || F, 8 12 | 0.33333

P r o o f. For proving Theorem 6 we need some lemmas [17].
We will represent a poset as a direct sum H’f X, of chains X,,i=2,...,k,
with additional relations y < z for y and z belonging to the different chains

(this is possible due to Dilworth’s theorem). The chains a; <...<ag,

b <...<b,, ¢, <...<c, are denoted by A_, B, C,, respectively.

12



Lemma 1. Let S =S, 1IS,. Then
(a) n,(S) =n,(S5;) +n,(S,);
(b) n,(S) =n,(S;)+n,(S,).
Lemma 2. Let S = A, . Then
(a) n,(S)=m-1;
(b) n,(S)= w
Lemma 3. Let S ={A_ IIB,, a; < bj}. Then
(a) n,(S)=m+n-1;

(m-1m+(n-1)
2

Lemma 4. Let S ={4,, lIB,, a;, <b;,a; <b,}, where i <i', j<j.Then

b  n,(S)= ™ im—j+1).

(a) n,(S)=m+mn;

(m-1m+(n-1)
2

Lemma 5. Let S ={4,, B, lIC, a; <b;,b; <c,}, where j>j.Then

(b) n,(S)= R ritm—§+ )+ - ).

(@ mn,(S)=m+n+s-1;

_(m-)m+(n-Dn+(s-1s
2

Now Theorem 6 can be easily proven by direct calculations using Lem-

mas 1,2 for N =E,,F,, Lemma3 for N=E E; E, E;,E F, F,, F F F,,
Lemmas 1-3 for N=EgE,E,, F,F, F, F,, Lemma4 for N=E,,E_F,,

F,,F,, Lemmas 1, 2, 4 for N = E,,F,,F,, Lemma 5 for N = E,,,E;,E,,,E,;,
E ., F. F.,F

1527162 717» E F19’F20'

(b)  n,(S) +i(n—j+1)+j(s-k+1).

F; and direct calculations for N = E

162 17> -18»

Theorem 6 is proved. ¢

An element of a poset is called nodal, if it is comparable with all other
elements. A subposet X of S is said to be nodal if all its elements are nodal
and dense if there isno x;,x, € X, y € S\ X such that x; <y < x,.

Since dual posets have the same coefficient of transitivity, Theorem 6
implies the following corollary.

Corollary 1. Among all posets of MM-type E, (respectively, F,), there is,

up to isomorphism and duality, only one with largest dense nodal subposet.
Any other poset of MM-type E, (respectively, F,), that is not isomorphism
neither to it nor to its dual has a smaller coefficient of transitivity.
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KNACU®IKALIA YACTKOBO BNMOPAOKOBAHUX MHOXWH, MIHIMAKCHUM TUMOM AKUX €
CUMETPUYHI HAOCYNEPKPUTUYHI YHACTKOBO BMOPAOKOBAHI MHOXWHWU NMOPALOKY 8

Hagedeno xnacugixayito wacmro8o enopadKo8aHUxr MHOMCUHK, WO MICHO 108’ a3aHi (cmo-
cosHo ceoix keadpamuunux gopm Timca) 3 Y3aearbHeHHAMU KPUMUUHUL T CYNEPKPU-
MULHUL UACTVKOBO BNOPAOKOBAHUX MHOMCUH, AKI 6nepule MOSBUAUCS Y KPUMePILX
Kaetinepa ma Ha3aposoi cmocosHO 300PAHCYBANLBHUT MUNIE UACMKOBO 8NOPAOKOBAHUL
muoxcun. L kpumepii 6yau mepwumu 6 HO8IU Meopil 300paxcerd, 3anoUamKro8aHil
JI. O. Hasapoeoto ma A. B. Poiumepom y 1972 p. Memod wminimarcHnozo i3omopgpiamy
(3anposadiceruti nepuLum a8mopom) 8i0izpae 0OCHOBHY POAb Y NOOAHOMY O0CAIOHCEHHT.

Karouoei caosa: diazpama I'acce, ksadpamuuna gopma Timca, xpumuuni, Hadxpumuu-
HI MA CYNePHAOKPUMUUHT MHOHCUHU, MIHIMAKCHUU mun, Koediyienm mpaHsu-
musHocmi, 8Y3n08uUll enemenm, WitbHa NIOMHONCUHA.

! Institute of Mathematics of NAS of Ukraine, Kyiv, Received
2 Polissia National University, Zhytomyr 10.01.23

15





