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MECHANICAL RESPONSE OF A SEMI-INFINITE POROELASTIC
CUBOID TO AN EXTERNAL LOAD

The novelty of the proposed work lies in obtaining an exact analytical solution of
the three-dimensional poroelasticity problem for a semi-infinite cuboid. During the
solving three-dimensional poroelasticity problems arise mathematical difficulties
due to the dimension of the system of differential equations that must be solved.
Traditionally, such solutions are mainly obtained with the help of different nume-
rical approaches. The proposed problem is formulated as a three-dimensional bo-
undary value problem in terms of Biot’s model, which considers the fully coupled
behavior of a homogenized solid phase based on the structural skeleton, and a ho-
mogenized fluid phase, describing the interpenetrating fluid. The analytical me-
thod of integral transforms is applied to derive the solution. This made it possible
to obtain explicit expressions describing the stress in the skeleton and fluid pres-
sure in the pores. The study of these characteristics is carried out depending on
various poroelastic properties of the material and types of applied load. The obta-
ined numerical results can be used in engineering simulation of poroelastic struc-
tures, as well as an etalon one in the development of new numerical methods for
solving problems of three-dimensional poroelasticity.

Key words: poroelastic semi-infinite cuboid, integral transform, matrix differential
calculus, exact solution.

Poroelasticity models are widely used in engineering, during simulations
of behavior of soils and rock masses infiltrated by groundwater, coupling of
fluid flow and deformation in biological materials and simulation of diffusion
of hydrogen in metals [28]. It explains interest of many authors to the
development of new solving methods for poroelasticity problems. Given the
small number of works related to the study of poroelastic three-dimensional
cuboid bodies using analytical solution methods, the authors considered it
useful to indicate many related works using both analytical and numerical
methods for solving poroelasticity problems in a three-dimensional formu-
lation.

Finite-difference, finite-element and boundary element methods are most
often used methods for numerical solution of the poroelasticity problems. An
novel immersed finite element approach is proposed in [26] to treat the me-
chanical coupling between a deformable porous medium model and an immer-
sed solid model. The development of in silico models to guide the design ap-
proach for poroelastic mimics of articular cartilage is done in [32] by imple-
mentation of the constitutive models in FEBio, and usage of PDE solver for
multiphasic mechanics problems in biological and soft materials. The direct
experimental measurement of permeability was conducted in [37] as a func-
tion of specimen orientation and strain. A finite element model was developed
to identify how various permeability formulations affect compressive response
of the tissue simulated by cuboid. Experimental and modeling results suggest
the assumption of a constant, isotropic permeability is appropriate. A visco-
elastic only model differed considerably from a visco-poroelastic model, sug-
gesting the latter is more appropriate for compressive studies. A comparison
of the performance of two finite element solvers for modelling the poroelastic
behavior of highly hydrated collagen hydrogels was presented in [14]. Cuboid
hydrogel samples were used there. An axisymmetric pressure-velocity finite-
difference formulation (PV-FD) based on Biot’s poroelastic theory for mode-
ling sound propagation in a homogeneous atmosphere over layered poroelastic
ground is presented in [16]. A fast numerical framework for the computation
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of acoustic scattering by poroelastic plates of arbitrary geometries is presen-
ted in [25]. A boundary element method is applied there to solve the Helm-
holtz equation subjected to boundary conditions related to structural vibrati-
ons. A velocity stress staggered-grid finite difference algorithm for modeling
seismic wave propagation in a poroelastic media using Biot’s formulation is
developed in [11]. The model problems representing a homogeneous media
with a single layer sandstone saturated with brine and two-layered homoge-
neous model are solved there to test this algorithm. The interaction of an in-
compressible viscous fluid modelled by the dynamic Stokes equation and a
multilayered poroelastic structure consisting of a thin linear poroelastic plate
layer and a thick Biot layer is considered in [13]. The existence of weak solu-
tions to this fluid-structure interaction problem is proven there using the
Rothe method for constructing approximate solutions as well as energy me-
thods and a version of the Aubin — Lions compactness lemma.

Together with pure numerical methods, the use of a mixed (analytically
and numerically) approach is quite popular. The dynamic response of an
elastic circular plate, under axisymmetric time-harmonic vertical loading,
resting on a transversely isotropic poroelastic half-space is investigated in [20]
with the use of the discretization techniques and Hankel integral transform.
The dynamic response of a rectangular, simply supported, poroelastic plate to
a harmonic lateral load is obtained in [33] analytically-numerically for both
soil and rock models. The effects of porosities and permeabilities on the re-
sponse are studied and a comparison between the results for the two material
models is made. The quasi-static problem is analysed as a special case of the
dynamic one. The Groningen gas field was used in [30] to test a new method
to assess stress changes due to gas extraction and forecast induced seismicity.
The subsurface is represented as a homogeneous isotropic linear poroelastic
halfspace subject to stress changes in three-dimensional space due to reser-
voir compaction and pore pressure variations. The reservoir is represented by
cuboidal strain volumes. Stress changes inside and outside the reservoir are
calculated using a convolution with semi-analytical Green functions.

The analytical methods are much less commonly used, especially for the
three-dimensional problem statement. Sometimes simplified models are used:
it can be or simplification of governing equations of boundary value problem
or it can be simplification of geometry such as dimension reduction. The fol-
lowing papers contributed to the development of analytical methods to poro-
elasticity. A large-strain plate model that allows to describe transient coupled
processes involving elasticity and solvent migration was developed in [23] by
performing a dimensional reduction of a three-dimensional poroelastic theory.
The propagation of Lamb waves in a poroelastic plate containing a linear
crack, the special case where the surface of the plate is unloaded, is conside-
red in [18] by employing the Wiener — Hopf technique. Employing Biot’s
theory, the problem of edge waves in poroelastic plate under plane stress
conditions is studied analytically in [27] for both a pervious and an impervious
surface. A solution to the problem of water-wave scattering by a semi-infinite
submerged thin elastic plate, which is either porous or non-porous, is presen-
ted in [31] using the Wiener — Hopf technique. Three-dimensional wave pro-
pagation in poroelastic plate immersed in an inviscid elastic fluid is studied
analytically in [29] employing Biot’s theory. Frequency equations are derived
there for pervious and impervious surfaces. The analytical series solution of
transient pressure and displacement fields of a finite-size reservoir was deve-
loped in [36] using the eigenfunction expansion method. The dynamic displa-
cements of a beam on a poroelastic half space under a periodic oscillating load
of constant velocity were analyzed in [19] using Fourier transform. An analytic
study of the response of saturated layered half-space under surface point
loading was presented in [38], and integral solutions for surface displacements
were derived for different hydraulic interface conditions. The general equa-
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tions of motion in a homogeneously pre-stressed fluid-saturated medium were
formulated in [22], and they were used to derive explicit dependencies of ve-
locity on stresses. Continuum-type mechanics of porous media having a gene-
rally anisotropic, product-like fractal geometry was considered in [21], and a
new line transformation coefficient was proposed.

The analysis of the existing methods for the determination of physical
constants of porous media saturated with liquids was provided in [6] based on
static and quasistatic methods of measurements with regard for the initial
stresses in the material. The formulation of the mathematical model of
thermoelastic solid body taking account of structural heterogeneity of the
body material and geometric irregularity of its surface was proposed in [24]
with the help of the methods of irreversible thermomechanics and functional
analysis.

The thermoelastic and poroelastic problems have similar structures, so
some methods used for solving the thermoelastic problems can be applied for
the solving of poroelasticity problems. A numerical-analytic method for the
determination of one-dimensional static thermoelastic states of plane multi-
layer structures with arbitrary types of temperature dependences of the
physical and mechanical characteristics of the materials of their components
was proposed in [7]. A semi-analytical algorithm for solving a three-dimen-
sional thermoelasticity problem for a parallelepiped with free edges was
presented in [39)]. The direct integration method and apparatus of Vihak key
functions were used there. The problem of investigation of the thermal
stressed state in a system formed by semitransparent and opaque thermos-
sensitive layers that is caused by the thermal irradiation on the side of the
opaque layer was formulated and solved in [3]. The problem of harmonic
torsional loading of an infinite elastic composite formed by alternating plane
layers made of two different materials in the presence of a penny-shaped
crack in one of the components of periodic structure was considered in [10].
Frictionless contact between an elastic body and a rigid base was simulated in
[5] in the presence of periodically located recesses of a quasi-elliptical shape.
The integral equations of stationary thermal conductivity for a half-space
with detected revealed cracks were derived in [4]. The methods of solving
two-dimensional boundary value problems for isotropic bodies were consi-
dered in [9].

As it can be seen from the review, the analytical solutions of three-di-
mensional problems for poroelastic cuboids are rarely found, however, three-
dimensional objects are the most valuable models for simulation in enginee-
ring. In the proposed paper, the author derived an exact solution of the poro-
elasticity problem for a semi-infinite cuboid.

1. The statement of the problem. The poroelastic semi-infinite cuboid,
0<X<w, 0<Y<b, 0<Z<c (or, in dimensionless form, 0<x <o,
0<y<l1l, 0<z<h, h=c/b) (Fig. 1) is considered within the framework of
the Biot model [12].

The face x =0 is loaded

F _ F _
Gx‘x=0 - L(y72)7 Tl‘y‘x=0 Y(yyz) )

F

TCCZ

L, = 2y,2), Pl = P(y,2), 0<y<l 0<z<h, (1)

xX
where p(x,y,z) is dimensionless pore pressure, Gi(x,y,z), riy(x,y,z),

riz(x, Y,z) are dimensionless normal and shear total stresses (the initial cha-

racteristics are referred to the shear modulus G).
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Fig. 1. Geometry and coordinate system of the poroelastic semi-infinite cuboid.

Using the relations between total and effective stresses [35], conditions (1)
can be rewritten in the following form

c = L(y,z) - OCP(U,Z), T;cy =0 = Y(y72)7

T x=0
Tre weo = 2(Y,2), P, =Pz, 0O0<y<l,  0<z<h, (2)

where o (x,y,2), rxy(x, Y,2), 1,.(x,Y,2) are dimensionless normal and shear

effective stresses, o is the Biot coefficient [15].
At the faces y=0, y=1, z=0, z=h the conditions of slide contact

with undrained conditions are fulfilled

Uy =0, Ty 4o ~ O Tz ey = O 25 -0 =0, (3)
vy =0, Tay oy =0 Ty yoy = O ZS =1 =90, @
W, =0,  T.,_,=0 T, =0, gi’ - 0, (5)
W, =0, T =0, 1. =0, gi’ -0 (6)

Here wu(x,y,2), v(x,y,2), w(x,y,z) are dimensionless displacements of the
solid skeleton (the displacements are referred to the value of b).
The system of equilibrium and storage equations has the following form
[35]
2 2 2 2 2
®+10u  Ou 0w 2 (6v+6wj_ 519:0’
®-1px2 oy* 02 ®-1\0xdy Oxoz ox
2 2 2 2 2
v e+10w 0w 2 (6u+6w)_ 510:0’
ox? ®—lgy* 9z ®-1\0xdy Oyoz oy

o*w  o*w | w+10*w 2 o*u 621)) op
ax2+ay2+ae—laz2+ae—l 6x62+6y82 “az‘o’
62p+82p+62p_a(au+av+awj_SP 0 -
o> oy’ o Klox oy o) KPTT

where @ =3 —4p is Muskhelishvili’s constant, p is the Poisson ratio, G is

shear modulus, K = h2/(Gk) , Sp = SpG are dimensionless values, Sp is the
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storativity of the pore space, k is the permeability coefficient [15.

The stresses, pore pressure and displacements inside the semi-infinite
cuboid that satisfy relations (2)—(7) should be found.

2. The exact solution of the problem. To reduce the boundary value
problem (2)—(7) to one-dimensional problem the finite Fourier sine and cosine
transforms with respect to variables z and y are applied by the following

schemes [1]:

u, (x,y) u(x,y,2) | | cosyz

v, (x,y) hl v, y, 2) cos vz

' R Plde, y=y, =T n=012..,
w, (x,y) o | wlx,y,2) | | sinyz h

p,(x,y) p(x,y,2) | | cosyz

uvﬁ((x; . qux’ y; cos By

Vyplx v, (X, Y sin

" =47 Yla =B, =nk, k=0,1,2,....
w, () .[ w, (x,y) | | cosBy Y B =By ’ e

P () p,(x,y) | | cosPy

The application of the transforms to the original boundary value problem
lead to one-dimensional problem in the transform domain

d*v du
B s@+1 | 2 2p 1B _
e —(B ae—1+ij75_—ae—1(—dx +ywyﬁj+a[3pyﬁ—0,

d*u dv dw d
B p2 2y —1 2 B B) -1 Py
da? (B +y)ae+luﬂ3‘+ae+1([3 dx ! &rj e T dx

d*w du
B 2 22 +1 2y B _
e —(B +vy —ae—ljwyﬁ_—ae—l(dx +vaﬁj+aypyﬁ—0,

d*p S du
dxgﬁ _(Bz +y° +?Pjpvl3 _%(d—;ﬁJFBUVB +wil3) =0

=(x-1)L

B’

du
[(ae +1) d;B + (B -2)(Bvg +rwy, )}
x=0

dv dw
YB _ B
|: dx - Buyﬁ:| - YYﬁ’ |: dx - quﬁ:|

The boundary value problem (8) can be rewritten in vector form [34]

=Zyg, pvﬁ‘po: Pg. (8)

x=0

x=0

LzyyB(JL‘)=0, 0<x <o,

ApYyp0) + By (0 =g, ©)
Here L, is a differential operator of the second order, Yy (x) is the vector
containing displacements and pore pressure transforms, Ayﬁ, Byﬁ are known
matrices and g, is a known vector. All these expressions are given in

Appendix A.

The method of matrix differential calculation [17] is applied to solve the
vector boundary value problem (9). According to it, the solution of the corres-
ponding matrix equation should be found
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L2YYB(.1‘) =0, 0<x<oo. (10)
Here YYB (x) is a 4 x4-matrix. Let us choose the matrix YYB (x) in the form
YYB (x) = ef;xl, and substitute it into the equation (10). The equality L2e‘;’xl =

= MyB(é)eéx we derive, where

M, (8) =
2 9 ay®-1 2B 2y x -1
E"_(B +y)ae+1 ae+1E“’ ae+1a _aax+1
2B xz+1 2By
- _ae—lé 52—(5235_1“/2) IRt “
- 2y 2By x+1
_ae—lé S z-1 éz_(BZH/ZEJ “
ap oy S
®° "X S IR LRS-

According to [40], the solution of the matrix homogenous equation is
constructed by the formula

1 Ty
V() = 5 405 e ML} (8) dE,

where M;é(c“;) is the inverse matrix to Myﬁ (). The closed contour C covers

all singular points of the matrix M;é(c";).

The determinant of the matrix Myﬁ (&) has two multiple poles of the third

S 2(p —
order &=+{B?+y’ and two simple poles é=iJ B+ )

With the use of the residual theorem the system of four fundamental matrix

solutions YyBi(x), t=1,...,4, is derived. The elements of two of these matri-

ces Yyﬁl(x), YVB ;(x) are increasing as x — o, whereas elements of the other
two matrices YvB 5 (), YvB 4(x) are decreasing as x — .

The solution of the boundary value problem (9) for the case when f # 0,
vy # 0 has the following form

Y@ = (Y5, @) + Y, @)| 2 |, (11)

where constants c¢;, ¢ =1,...,4, are found from the boundary conditions in (9).

Here it is necessary to consider three subcases of the values of f and v.
These partial cases when =0, y#0 (Appendix B), B0, y=0 (Appen-
dix C) and =0, y=0 (Appendix D) are considered separately, since for

these cases the dimensions of fundamental matrices wa(x), YYM(x) are

varied.

The exact solution of the boundary value problem in transform domain is
found in explicit form (11). The explicit solutions of subcases are given in
Appendices (B.2), (C.2), (D.2). The analytical solution of the original problem
can be derived by the application of the corresponding inverse formulae to
these expressions
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Uy o ()

u(x,y,2) Uy () cosy,z

v(x,y,2) | | Vgo(%) L2 i v, o(X) | | cosy,z N

w(x,y,2) Wy, (X) h —~ wywo(x) siny,z

p(l‘,y,Z) p()()(x) py O(x) COSs 'YnZ
to.p,. (x) cos B,y

@ | Vop, (X) | | sinBy
o1 waBk(x) cos By
po,Bk('x) cos B,y

u, g (%)

TnoPre cosPB,y | | cosy,z

v, (X | | sinBy | |cosy,z
notimt | Wy g (%) | | COSPry | | siny,z

P, (%) cosPB,y | |cosy,z

mn
B, = nk, Yo = n

Here vy, (), wy, (), v, o(x), wyg =0.

3. The subcases of the problem statement. The proposed solving method
enables to solve two other problems which are subcases of the original prob-
lem: 1) as x and y tend to infinity, a cuboid is converted to a quarter of a
layer (Fig. 2); 2) as x, y and 2z tend to infinity, a cuboid is converted to a
quarter-space.

Fig. 2. Geometry and coordinate system of the poroelastic quarter-layer.

The poroelastic quarter-layer is described by the relations 0 <x < o,
0<y<w, 0<z<h, h=c/b (Fig. 2). The boundary conditions (3), (5), (6) are
remained the same, but conditions (4) are omitted because of decreasing of all
functions on infinity. The loadings in formulas (1) and (2) are supposed to be
different from zero only when 0 <y <1, 0<z<h.

The stress, pore pressure and displacements inside the area that satisfy
relations (2), (3), (5)—(7) can be found by the previous scheme. The difference
here is that instead of the finite Fourier sine and cosine transform with
respect to the variable y the semi-infinite Fourier sine and cosine transform

is used. The following solving scheme is saved according to the general case
mentioned above. The analytical solution for this problem can be derived by
the application of the following inverse formulae
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uyn,o(x)

u(x,y,2) cos Y,z
v(x,y,2) | 9 i v, o(X) | lcosy,z .
w(x,y,2)| hio w, o(x) ] |siny,z
p(x,y,2) p, o(x) | | COSVnZ
Ui ()] [ cos By cos Y, 2
o ©| D (.I') :
4 YsB sin By cosy, z n
=N gy T v =T
n=1 wwa(x) cos By siny,z
P, p (x) | | cos By coSY,2

For the poroelastic quarter-space the boundary conditions (3), (5) are the
same. The semi-infinite Fourier sine and cosine transforms with respect to
variables y and z are used to reduce the stated problem to one-dimensional
one. Otherwise, the solving method is the same as described above.

4. Numerical results, discussion and conclusions. The investigation of ef-
fective stress and pore pressure was carried out for the semi-infinite paralle-
lepiped and its two partial cases. Two different types of load were considered:

— concentrated normal mechanical load L(y,z)= 8(y—1/2,z- h/2), Y(y,2) =
=0, Z(y,z)=0, P(y,z) =0, where d(y, z) is two-dimensional Dirac delta-
function;

1V (z-h/2)
— distributed normal mechanical load L(y,z)=—-exp| — (y—ij —( A j ,

Y(y,2)=0, Z(y,2) =0, P(y,2) = 0.

As poroelastic material, there were chosen three different poroelastic
materials [15]. Their characteristics are presented in the Table 1, and were
used in the dimensionless form for numerical calculations.

Table 1. The characteristics of poroelastic materials [15].

Properties G-10710 L-10% S .10

2 o p
Material [N/m’] [m*/(N-s)] | [m®/N]
1 | Charcoal granite 1.87 0.27 | 0.242 0.001 1.377
2 | Westerly granite 15 0.25 | 0.449 0.004 1412
3 | Ruhr sandstone 1.33 0.12 | 0.637 2.0 2.604

All figures below show the values of normal stresses ¢, o,, o, and

pore pressure p. The stresses and pore pressure are investigated in the seg-
ment x=a/2, z=h/2, 0 <y <1 and influence of different poroelastic mate-
rials has been taken into account.

Fig. 3 and Fig. 4 present the case of concentrated normal mechanical load.
It can be noted that the maximum absolute values of normal stress and pore
pressure are observed at the point y =1/2, z=h/2, where the load is ap-

plied. The values of normal stress and pore pressure at the boundaries y =0,
y =1 are equal. For this case, the stretching stresses o,, o, at the bounda-
ries y =0, y =1 are observed only close to the boundaries z=0, z="h. The

stress o, is stretching close to the point y =1/2. The largest absolute values

at the boundaries y =0, y=1 are seen for 6, and Cy- Tangential stresses
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are less than normal stresses. Pore pressure at the boundaries y =0, y=1 is

negative, which is explained by the impermeable conditions at these bounda-
ries. The similar situation is observed at the lines z=0, z=h/2, z=h.

c) d)

Fig. 3. The distributions of dimensionless effective stress and pore pressure inside the
semi-infinite cuboid (Ruhr sandstone) for a concentrated normal mechanical load.

The change of normal stress and pore pressure regarding the change of
poroelastic material is shown in Fig. 4. The maximum absolute values of nor-

mal stress 6, , o, are observed for the material with the smallest Biot coef-

ficient, while the maximum values of normal stress ¢ and pore pressure are

y
observed for the material with the largest Biot’s coefficient. The numbers of
curves in all the figures correspond to the numbering of materials in Table 1.

a) b)
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c) d)

Fig. 4. The distributions of dimensionless effective stress and pore pressure inside the
semi-infinite cuboid regarding the change of the poroelastic material for a concen-
trated normal mechanical load.

The case of distributed normal mechanical load is shown in Fig. 5 and
Fig. 6. No stretching stress is observed in this case. The largest absolute values
at the boundaries y =0, y =1 are seen for o_.

a) b)

c) d)

Fig. 5. The distributions of dimensionless effective stress and pore pressure inside the

semi-infinite cuboid (Ruhr sandstone) for a distributed normal mechanical load.

The investigation of normal stress and pore pressure regarding the
poroelastic material is shown in Fig. 6. The largest absolute values of normal
stress are observed for the material with the smallest Biot’s coefficient, while
the largest values of pore pressure are observed for the material with the
largest Biot’s coefficient.
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a) b)

c) d)

Fig. 6. The distributions of dimensionless effective stress and pore pressure inside the
semi-infinite cuboid regarding the change of the poroelastic material for a distribu-
ted normal mechanical load.

The obtained results for the subcases were verified when o =0, when
they completely coincide with the ones of the elasticity problems for a
quarter-space [2] under the same mechanical conditions.

Numerical analysis shows that the largest values of pore pressure are
characteristic of the material with the largest Biot’s coefficient for all types of
applied loading. Tangential stresses are less than normal stress on the faces.
The stretching stress is observed only in the case of concentrated normal
mechanical load, which means that the statement of the problem should be
reformulated for this case, and conditions of perfect contact should be
changed. The largest absolute values of normal stress and pore pressure are
observed in the case of concentrated normal mechanical load, and the smallest
absolute values are observed in the case of distributed fluid pressure load.

The analytical solution for the semi-infinite poroelastic cuboid is derived
in the explicit form with the help of integral transform method and apparatus
of matrix differential calculation [8]. The modification of the problem
statement leads to the solutions of two other problems for the poroelastic
quarter-layer and the poroelastic quarter-space. The proposed solving method
allows to solve more complex problems in case of changing boundary
conditions on the cuboid faces. This complication will make it impossible to
obtain the exact solution and will lead to the need to solve singular integral
equations. The mentioned problems can be also considered in the case when a
defect in the form of a crack or a rigid inclusion is present in the cuboid
domain.

198



Acknowledgments. The research is supported by European project
EffectFact No. 101008140 “Effective Factorisation techniques for matrix-
functions: Developing theory, numerical methods and impactful applications”
funded by the Horizon 2020 Framework Programme for Research and
Innovation (2014-2020) (H2020-MSCA-RISE-2020). Scholarship of the
Cabinet of Ministers of Ukraine.

Appendix A. The form of matrices and vectors in boundary value
vector problem (9) in the general case.
The matrices and vectors shown in (6) have the following forms:

L2yy[>, (x) = Iyql/,ﬁ () + Qyﬁy;ﬁ () + Oygyyg (x),

uyﬁ(x)
v,5(x)
) =| P ,
yyg() wyﬁ(‘r)
pyg(x)
2B 2y _ax—l
x+1 x+1 x+1
_ﬁ 0 0 0
QYB: xz_l ’
2 ) 0 0
x -1
o
7 0 0 0
2 oye —1
(B +y)x+1 0 0 0
(p2e+1l, 2 _ 2By
o 0 (B x—1+y) x -1 op
B _ 2By (a2, 221 ’
0 x-1 (B - x—l) o
_OLB ay (p2 .2, 2P
0 K X (B i +K)
x+1 0 0 0
0 1 00
AVB_ 0 01 0}
0 0 0 O
0 B-=2)p B-—=2)y 0
| -B 0 0 0
BVB_ -y 0 0 0}’
0 0 0 1
-
gvﬁz((x_l)(anB_LvB) Y Zyg PVB) J

I is a unit matrix.

Appendix B. The subcase of the boundary wvalue vector problem (9)

when =0, y=0.

In the case when =0, y=0
transforms to the following form
Lzyyo(x)=0, 0<x <o,

Ayoy:/()(o) + By()yy() 0)= gy0-

the boundary wvalue problem

(6)

(B.1)
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Here L,y (x) = Iy;0 () + Qyoy;(0 () +0,y,(x), I is a unit matrix,

uyo(x)
yy[)(x): wy(](x) ’
Py ()
0 2y _x-1
e +1 x+1
2y
Qy[)_ 21 0 0 ’
_«
B 0 0
2xe-1
¥ x+1 0 0
_ 22 +1
0, = 0 i — oy ,
o (2, Se
0 R (y + )
x+1 0 0
Ay0: 0 1 0/,
0 00
0 B-=)y 0
B, =|-v 0 01,
0 0 1

.
g, = ((ae ~1)(aPy—Lg) Z,, Pyoj :

Analogically to the previous

2 2x—1 2y ez
5 x+1 ae+1§ aaeJrl
2y 2 2@+l
M = - -
40(8) P S ay
_a _ o 2 (g2, 5P
K K 5 (B +K)

The determinant of the matrix MVO(F;) has two multiple poles of the
second order & =ty and two simple poles
Sp oz -1)
7 R G et el e
E \/ "TK TRzt

The solution of the boundary value problem (B.1) corresponding to the case
when f =0, y #0 has the following form

€11
Yy (x) = (Yy(),z (x) + Yy0’4 (.’X,‘)) Ci2 |» (B.2)
C13
where constants 1y 1=12,3, are found from the boundary conditions in
(B.1).
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Appendix C. The subcase of the boundary value vector problem (9)
when B0, y=0.

In the case when B#0, y=0 the boundary value problem (6) trans-
forms to the following form

L2yoﬁ(x):0, 0<x <o,

AggYéﬁ 0) + Boﬁyoﬁ 0)= gop - (C.1)

Here L2y0B (x) = Iygﬁ(x) + Qoﬁy(')B () + OOByOB(x), I is a unit matrix,

uop,(x)
yOB(x)= Uoﬁ(x) s
poﬁ(x)
0 2 el
x+1 x+1
2B
_o
B 0 0
22 —1
p x+1 0
+1
00[’): 0 _Bzi_l QB ’
_op _{ p2 Sp
0 ® ( +?j
2+1 0 0
Ap=| 0 1 0]
0 0 0
0 B-=2)p 0
Byy=|-B 0 0]
0 0 1

.
gop = ((ae —1)(ocP0B —LOB) Yop POBJ )

Analogically to the previous

2 nza-—1 2 x -1
&P x+1 ae+1a —Otéerl
_ 2 2 a2+l
MOB(@— a1 & -p =1 ap <
ap
K % e-(FF)

The determinant of the matrix MOB(Fv) has two multiple poles of the
second order £ =+ and two simple poles
Sp  oix-1)
=+ 2 _P 4+ - .
E _\/B - K K(=+1)

The solution of the boundary value problem (C.1) which corresponds to
the case when B # 0, y =0 has the following form:
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Co1
Yop (x) = (Yoﬁ’z (x) + Y()ﬁA (x)) Coo |5 (C.2)
Ca3
where constants Cois 1 =123, are found from the boundary conditions in
(C.1).
Appendix D. The subcase of the boundary value vector problem (9)
when =0, y=0.
In the case when B=0, y=0 the boundary value problem (6) trans-
forms to the following form:

L,y (x) =0, 0<x <o,

By (0) = 8- (D.1)
Here
u(l)o (x)j

LzyM)(x) = JYSO (x)+ Qooyé)o(x) + OooYoo(x)’ yoo(x) = (
Poo (x)

-1 0 0
00 1 -oZ
JZ(O lj’ QOO:[O 98+1]7 Op =| o Sp |

K K
-
10 x -1
Booz(o lj’ goo:(x+1(aP00_L00) Pooj :
Analogically to the previous
z -1
—a
M, (&) = 5 <t°ae +1
a 2 _Se
K K

The determinant of the matrix M,,(§) has one multiple pole of the

second order & =0 and two simple poles
a’(z—1)
K +1) '

The solution of the boundary value problem (D.1) which corresponds to
the case when B =0, y =0 has the following form:

S
=+|F
S=Hx+

Yoo () = (Yoo,l(x) + Y05 (x))[z(;;j (D.2)

where constants c;,, ¢ =1,2, are found from the boundary conditions in (D.1).
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MEXAHIYHUM NOPONPYXXHWUW BIArYK HANIBHECKIHYEHHOIO KYBOIOA
HA 30BHILLHE HABAHTAXEHHSA

HosusHna 3anpononosanoi pobomu moaszae 8 OMPUMAHHT MOUHOZO0 AHAAIMUUHO20 PO3-
8’A3KY MPUBUMIPHOT 3a0aUl NOPONPYICHOCMT 04 HANIBHECKIHUEeHHO20 KYyboida. Po3e’s-
3YBAHHA MPUBUMIPHUX 3a0AY NOPONPYHIHOCTNE 3YMOBAIOE 3HAUHT MAMEMAMUYHT MPYO-
HOWL uepe3 PO3MIPHICTL cucmemu OuPePeHyiaibHUX PIBHAHD, AKY NOMPIOHO D038’ s-
3amu. Tpaduyilino maxi po3e’a3Ku OMpPUMYOmMb NepesaxrcHo 3a 00nomo20t0 PIBHUXL HUC-
no06ux ni0xodis. 3anpPonorHosarHy 3a0auy cHOPMYALOBAHO AK MPUBUMIPHY KPaALiosy 3ada-
uy 8 mepminax modeai Bio, wo poszanadae nogricmio 36’ a3aHYy N0BEOTHKY 20MO2eHI308a-
Hol hasu meep0oz0 miaa, Wo 6A3YEMBCA HA CMPYKMYPHOMY KAPKACT, MA 20M02eHI308Q-
HOT pasu piOUHU, WO ONUCYE 83AEMONDPOHUKHY PIOUNHY. [ai ompPumMarHs po3e’sa3Ky 3a-
CMOCOBAHO AHAAIMUYUHUL MeMO0 THMEe2ZPALbHUX nepemeopens. Lle do3goauno ompuma-
mu S6HI BUPA3U, ULO0 ONUCYIOMDb HANPYHCEHH Y Mmeepdomy KapKaci ma muck plouru y
nopax. IIposedeno 00CAiOHCEHHA 3ANEACHOCTT YUX XapaKmepucmux 6i0 PIi3HUX mopo-
NPYHCHUX 8racmusocmell mamepiany ma muny npukaaderozo Haganmadxcenrns. Ompu-
MAHT YUCA08T PEIYALMAMU MOKYMb OYMU SUKOPUCAHT 8 THIHCEHEPHOMY MO0eAt08AHHT
NOPONPYHCHUL CMPYKMYP, A MAKOH K eMALOHHT NPU PO3POOYL HOBUX UUCL08UX Me-
moodi8 Po3e’A3anHA 3a0a% MPUBUMIPHOL NOPONPYHCHOCMNI.

Katouoei caoea: noponpyxicHull HanieHeckinuennut xy60i0d, thmezpaivbHe nepemeopet-
M, mampuure OugeperyiarvHe YUCLEHHI, MOUHUL PO36’A30K.
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