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ON THE TRIANGULAR FORM OF 3 x 3-MATRIX OF SIMPLE STRUCTURE
RELATIVE TO SEMISCALAR EQUIVALENCE

A special triangular form of polynomial 3 x 3-matrices of simple structure relative
to semiscalar equivalence is established. The method of construction of matrices of
such form is specified. Invariants and conditions for their semiscalar equivalence
are established for matrices of this form. The method of construction of transfor-
ming matrices at transition from ome matrix of a special triangular form to
another is proposed.

Key words: matrix of simple structure, semiscalar equivalence of matrices, special
triangular form of matrices, oriented by characteristic roots reduced matrix.

Introduction. This work completes the cycle of studies of the semiscalar
equivalence of polynomial 3 x 3-matrices of simple structure, which began in
the works of the author [14] and [13]. The concept of semiscalar equivalence
of matrices was introduced by P. S. Kazimirsky and V. M. Petrychkovych in
[5, 6]. By definition, polynomial matrices F(x), G(x) are called semiscalar
equivalent (ssk.e.), if one of them can be obtained by multiplying the other on
the left by the numerical non-singular matrix and on the right by the
polynomial invertible matrix. In the simplest formulation, the problem consist
in the establishment of the conditions for two matrices to be ssk.e. This task is
multi-component and include, in particular the construction of a simpler form
of the matrix using ssk.e transformations, determination of invariants of a
matrix relative to such transformations, finding of transforming matrices etc.
The importance of this problem also lies in its possible application to the
known problem of classification of sets of numerical matrices accurate up to
similarity, to the solution of matrix equations over a ring of polynomials and
to other applied problems.

In the present paper, this problem is considered under certain (sometimes
quite strong) constraints due to its complexity in the general case. In particu-
lar, it is assumed that the matrices under study have a simple structure. It is
said that a polynomial matrix has a simple structure if all its elementary divi-
sors are linear (see [5]). In other words, for a matrix of simple structure, its
last invariant factor (as a polynomial) has no multiple roots. This notion of a
polynomial matrix of simple structure correlates well with the notion of a
numerical matrix of simple structure introduced in [1]. A matrix of a simple
structure can have multiple characteristic roots. But the algebraic multiplicity
of each characteristic root of a matrix of simple structure coincides with its
geometric multiplicity. The set of matrices of simple structure contains a sub-
set of matrices with all simple eigenvalues (of multiplicity 1).

As already mentioned, the problem investigated in this article is directly
related to the well-known problem of the similarity of matrix pairs. The latter
has attracted the attention of researchers for many decades, especially in the
second half of the 20th century, and a satisfactory solution has obtained only
in partial cases. Here, for example, we should cite the work [3], in which the
above-mentioned problem is solved for a pair of nilpotent matrices that annul
each other out. In [2], it was proved that the classification relative to the
similarity of pairs of commutative matrices is in fact equivalent to the
classification of pairs of arbitrary matrices. As it turned out later [4], the only
exception to this rule is the case of classification of pairs of commutative
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matrices, considered in [3]. The authors of [12] applied a powerful apparatus
of graph theory to the study of the similarity of matrix pairs, one of which
has no multiple eigenvalues. A similar problem for a pair of matrices, one of
which has a simple structure and all eigenvalues of multiplicity not higher
than 2, is the subject of research in [7]. In the context of the study of the
similarity of matrix pairs and related problems, it is also worth mentioning
the works [8, 11]. The results obtained in the proposed work can be applied to
solving matrix equations over a ring of polynomials. Some aspects of this topic
can be found in [9, 10].

1. Preliminary assertions. We assume that matrix F(x) € M(3,C[x]) has

a simple structure and full rank and its first invariant factor is equal to 1.
Under such conditions, according to [5, 6] instead of F(x) we can consider a

matrix A(x) that is ssk.e. to F(x) and has the form
1 0 0
A(x) =|la;(x) @ (x) 0 |, (1)
az(x) ay(x) @y(x)

where 1, ¢,(x) and ¢,(x) are invariant factors of the matrix A(x) and
dega,(x) < dego,(x), dega,(x),dega,(x)<dege,(x) (see Theorem [6]).
Then, obviously, ¢,(x) divides a,(x) and @,(x). We assume that
deg ¢,(x),deg (¢, (x)/¢,(x)) > 1. Otherwise, the problem is greatly simplified.
Denote by ¢,,(x) and aé(x) the fractions ¢,(x)/¢,(x) and a,(x)/¢,(x), and
by M, and M, the sets of roots of polynomials ¢,(x) and ¢;,(x),
respectively. Union of sets M; UM, obviously coincides with the set of roots
of polynomial ¢,(x) and is the set of characteristic roots of matrix A(x) or

the set of class ssk.e of A(x) matrices. It is easy to see that matrix A(x) can
be chosen so that

"‘ll(o‘o) ‘13(0‘0)":"0 of (2)
for some root o, € M;. In [14] it is proved that for a fixed root a, the
greatest common divisor (a,(x),as(x),¢,(x)) does not depend on the choice
A(x) of the class of ssk.e. matrices (see Proposition 1 [14]). In the mentioned
work the case (a,(x),a4(x),9,(x)) = ¢,(x) is considered. In what follows, we
will assume the opposite, ie. (a,(x),as(x),¢,(x)) # @;(x). Then there exists a
root o, € M, such that |a,(a;;) az(a;)|# [0 0 and the matrix A(x) can be
chosen so that

la, (@) az(a)| =1 0] (3)

(see Proposition 2 [13]).
Proposition 1. Let A(x) and B(x) are two given matrices, A(x) is of
form (1) with conditions (2), (3) and

1 0 0
B(x) = [b(x) ¢ (x) 0 (4)
by(x) by(x) ¢,(x)

with invariant factors 1, ¢,(x), ¢,(x) and conditions degb,(x) < deg¢,(x),
degb,(x),deg by(x) < deg @,(x), |[b(0g) by(ag)| =0 0f, [b(a;) bslay)]=
=|1 0|. Let also



al(x) 1 bl(l‘) 1

d,(x) == det by(x) bé(x)

, dg(x) = det , (5)

az(x) ay(x)

where aé(x) =a,(x)/o,(x), b;(x) =b,(x)/¢,(x). Then matrices A(x) and B(x)
are ssk.e. if and only if there are numbers s;; #0, sy #0, 835 0, 55, S5,

s,3 such that the following congruences are fulfilled
89901 (L) + Sp3a5(x) = by (X)(s); + 81,0, () + $;3a5(x)) (mod @, (x)),
a5 (x)(s35 + 51305 () = Sp3by () + S (0)(sy; + 5150, ()) =
= 85,0, (x)by () (mod ¢, (),
a5 (X)(855 + 81305 (T) = Sy3by (X)) + 8,58 5(2) = Syoby () (Mod @, (). (6)
P r oo f. Necessity. Let the given matrices A(x) and B(x) are ssk.e.

Then there are matrices f € GL(3,C) and rij(ac)”f € GL(3,C[x]) such that

Sij
the equality

| Al@) = B@)|r, @) (@)

sij

holds, where according to Proposition 3 [13] the matrix f has an upper

S

i
triangular form. Comparing the elements in positions (2,1), (3,1), (3,2) in
both sides of equality (7), we arrive at the congruences (6).

Sufficiency. From elements ;> 4, J=1,2,3, i < j, which satisfy the con-
gruences (6), and from elements of matrices A(x) and B(x), we construct
matrices

; s S5 ;
Sigly = 0 Se2 Sas Tz-j(x)"l ’
S33
where
11(x) = 85 + 8,50, (x) + 57504 (x), 115(X) = 8150, () + sy5a,(x),

1‘13(.1‘) = 813([)2(.1‘) ,

8990, (X) + Sy5a4 () — by ()17, ()
(O (x)

1y () =

)

Tyo () = Sp9 + 85305 (x) = by (x)(815 + 5,305()),
Ty3 () = (912('73)(323 - 313b1(x)) )

83305 (x) = by ()17, () — by (X0) 7, ()
(Pz(x)

r31() =

’

sggaé(x) - 1)3(.76)(312 + slgaé(x)) - bé(x)rzz(x)

7'32(-1') - (Plz(x)

T35(2) = 835 = 513b5(2) = by () (893 = 530, () -
In view of the congruences (6) it is clear that =, (x),r;;(x), 1y,(x) € Clx].

3
This means that 'r'ij(ac)"1 is a polynomial matrix. By direct verification we




make sure that its determinant is equal to s;;85,8;5 # 0 and, moreover, the
3
Tz‘j(x)”r

A(x) and B(x) are ssk.e. ¢
Suppose that conditions (2) and (3) hold for matrix A(x). According to

matrices f, A(x) and B(x) satisfy equality (7). So, the matrices

Sij

Proposition 3 [13] at fixed a,, o, the greatest common divisor (a;(x),¢,(x))
does not depend on the choice of matrix A(x) from the class of matrices that
are with it ssk.e. The case (ag(x),,(x)) = ¢,(x) was studied in the work [13].
Note that (a;(x),9,(x)) # ¢,(x) means that there exists a root a, € M; such
that as(a,) # 0.

2. Reduction of a matrix to a special triangular form.
Proposition 2. Suppose that for matrix A(x) satisfying conditions (2), (3)

we have (ag(x),,(x)) # @,(x). Then matrix A(x) is ssk.e. to a matrix B(x) of
the form (4) that satisfies the conditions of Proposition 1 and is such that
by (ay) = by(a,) # 0 for some root a, € M,.

P r oo f. As already noted, for A(x) there is a root o, € M; such that
as(ay)#0. If a;(a,)# 0, then the desired matrix B(x) is obtained by
multiplying the last row and column of the matrix A(x) by the corresponding
constants. If a,(a,) =0, then we first pass from A(x) to ssk.e. matrix of the
form (4) with non-zero values in positions (2,1), (3,1) at x = a,, and then to
the desired matrix. To do this, we choose a number s,; # 0 such that

1+ sy5ay(a) # 0 for every a € M; UM,. Next, from the congruences
a,(x) + 8y5a5(a) — by (x) = 0 (mod ¢, (x)),
Ay () = byg (2)(1 + 8y3a4(at)) = 0 (mod @, (x)),

a;(x) + Syzas(a) — by (x)
(Pl(x)

a3(l')—b30(x)—b20(.1‘) =0 (mOd (PQ(-I')),

we successively find polynomials b;,(x), by, (x), byy(x), degb,,(x)<deg¢,(x),
deg b,;(x),deg by (x) < deg ¢,(x) and construct a matrix Bj(x) of the form
(4) with elements b (x), by,(x), byy(x). It is clear that b, () = byy(a,) =0,
boloy) =1, bgy(ay) =0, b(oy) =0, byy(a,) =as(a,)# 0. The above number
Sy; # 0 together with the numbers s;; =S8y, =855 =1, s, =83 =0 and the
elements of the matrices A(x), B,(x), as can be seen from the definition of
bio(x), byy(x), bgy(x), satisfy the congruence (6). Therefore, according to
Proposition 1 the matrices A(x) and Bj(x) are ssk.e. The transition from
B,(x) to the desired matrix is indicated above. ¢

Next, for matrix A(x) with conditions (2), (3) consider the following
partitions of the sets M,;, M,:

M, = My; UM,,, M, = My, UM,,, (8)
where M, ={a, : a;(a;) =0}, M, = {Bj 18,(B;) = 0} and §,(x) is defined
in (5).

Proposition 3. Partitions (8) of the sets M,, M, with fixed a,,o, € M, do

not depend on the choice of A(x) from the class of ssk.e. matrices.
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P r o o f. The invariance of the partition of the set M; from (8)
follows from Proposition 3 [13]. Let the matrices A(x) and B(x) with the
conditions of Proposition 1 are ssk.e. Then by Proposition 1 the congruences
(6) are fulfilled, from which after exclusion s;, we come to

8 4 (x)(835 + 813(2)85(2) = 8y3by()) = 8,85 (x) (mod @y, (x)), 9)
where Jg(x) is defined in (5). From the last congruence it follows the

invariance of the partition M, from (8). ¢

3. Oriented by characteristic roots reduced matrix and its invariants.
Definition 1. Matrix A(x) with conditions (2), (3) and the condition

a,(a,) = as(a,) # 0 for some root a, € M; is called oriented by characteristic
roots o, O, &, Teduced matrix.

Proposition 4. Let A(x) (1), B(x) (4) are oriented by characteristic roots
oy, 0, 0, Teduced matrices. Let also d,(x), 6g(x), a;(x) and bé(x) are

defined in (5). If matrices A(x), B(x) are ssk.e., then the following conditions
are met:

(2) a;(a;) =0 < b(a;)=0, a(a;) =1 < b(a;)=1,

al(ai):al(aj) = bl(ai):bl(aj) for each pair o, O e M,;

(i7) a, (o) = az(a;,) < by(oy,) = bg(ay),
a (o) ay(o,) by(ay) _ by(ay) . .
a,(0,) = a,(o) by(ay) = by(a,) for each pair o, ,0, € M;,;

(27) a,(B;) =0 < by(B,) =0, a,(B;) =1 < byB,)=1,
a;(Bz) = CL;(B]) g b;(Bl) = bé(B]) for each pair Bi’ Bj € M21 )
(iv) aé(Bk) = SA(Bk) g bé(Bk) = SB(B}C)’

aé(Bk) _ aé(ﬁ/) - bé(Bk) _ bé(ﬁ/)
3,(B)  0,(B,) d(By)  d5(By)

Proof. (7). If matrices A(x), B(x) are ssk.e, then congruences (6) are

for each pair BB, € M,,.

satisfied. From the first of them for o, and a;,0; € M,, we have
Sy ~ 811 ~ 813 =0,
85501 (@) = by (0 )(81; + 8150, (a;)) = 0,
322a1(aj)—b1((xj)(sll +sl2a1(aj)) =0. (10)

Since s;,,S,, # 0, the first equivalence of condition (Z) follows from the

second equality of system (10). The second equivalence of (z) follows from the
first and second equalities of the system (10). Finally, the third equivalence

for non-zero and non-unit values a,(a;), al(aj), b (a;), bl(aj) follows from

the second and third equalities (10).
(7). From (7) we have

83504 () = bg(x)(8;; + 8,50, (x) + 5,5a5(x)) (Mod @, (x)) . (11)

If we exclude s,;, s;,, s;3 from the first congruence of (6) and (11), we come
to

8990, (a)bg (X) + Sy5a4(x)by () — Sg5a4(x)b; () = 0 (mod @, (x)). (12)

9



From (12) for a, and a,,a, € M;, we have

Syo + 893 =833 =0,

a; (o) by (o) _
S22 a;(0,) + 893 ~ 833 by (o) 0,
a,(a,) by(ay) _ (13)

S Soga — S
22 03(%) 23 33 53(064)

Since $,,,8;5 # 0, from the first and second equalities (13) it follows the

first equivalence of condition (iz), and from the second and third it follows the
second equivalence of (i7).

(222). From the third congruence of system (6) for an arbitrary pair
B;,B; € My, we obtain

83305 (B;) = by (B )(S99 + S53a5(B;)) = 0,

8330';(3]’) - b;(Bj)(s22 + SZSaé(B]’)) =0. (14)

The first equivalence of condition (#iz) follows from the first equality (14).
From the first equalities (13) and (14) it follows the second equivalence of (7i7).

The third equivalence of (ii7) for non-zero and non-unit values a;(Bi) , a;(B j),
by (B,), b;(Bj) follows from both equalities (14).

(iv). Excluding s;5, S;5, S35 from the second and third congruences of (6),
we can obtain

szzb;(x)SA(x) - slla;(x)SB(x) — 8,50 4 ()85 () = 0 (mod @, (x)). (15)
Taking x =8,, x=8,, By,B, € My,, in (15), we can write the result in
the form

bé(ﬁk) _ aé(ﬁk) _
2 EpB BB

s bé(ﬁ/) _s aé(ﬁ/) _
285, M 8B

From the first equalities (10), (16) it follows the first equivalence of

:0’

s, =0. (16)

condition (iv), and from both equalities (16) the second equivalence of (iv). ¢
In what follows we use the following notations for matrix A(x) (1):

1/a,(y), y e My, a,(y) %0,
=4 17
T4 (1) {az(y)/sm, yeM,, (17)
L [1/al0), Ae M, a,(L) %0,
ma(h) = {al(f)/ag(x), Ae Mf; ’ (18)

Proposition 5. Suppose that for oriented by characteristic roots reduced
matrix A(x) (1) there exists a root y, € M;; UM,, such that m,(y,) #1 (see

(17)) or there exists a root A, € M, UM,, such that T, (A;) #1 (see (18)). Then
the matrix A(x) is ssk.e. to oriented by the same characteristic roots reduced
matrix B(x) (4) with a predetermined value ng(y,) #1 or ng(k,) #1.

99, then in the

first step we construct a matrix B(x) of the form (4) with the given value of

Pr oo f. If we have m,(y,) #1 for some vy, € M;; UM

10



ng(vo)#m4(y,) that is sske. to the matrix A(x). To do this, for each yeM,,
and for each y € M;; such that a,(y) # 0, denote I(y) = (m (y)—1)/(m4(vy) - 1).
Choose some non-zero value of mg(y,) #1, different from (I(y)-1)/I(y) and
(my(vg)aq(a) —1)/(a;(a) —=1) for all a € M,,. For each of these y and o we
find

ng(y) = I(Y)(ng(yy) —D+1#0 (19)
and

as(a)(I—my(yy))
ay(@)(mg(vy) = T4 (yg)) = mMg(yy) +1°

by(a) = (20)

respectively. It is easy to see that mg(y,) is chosen so that the denominator in
(20) is non-zero. Define a polynomial b,(x) of degree degb,(x) < deg¢,(x) by
its values b;(a) on the set M, in the following way:
0, ae M, a(a)=0,
by(a) =1/m5(y), a=7yeM,, a(a)=0, (21)
by(a)a,(a)/as(a), o€ M,,,
where ng(y) and bs;(a) are defined in (19) and (20). Since degb,(x) < card M,

then b, (x) will be defined unambiguously. We find some non-zero solution of
equation

x
1 -1 1 0
= 22
Ta(vg) —mp(vy) 1” ZZ/ HOH (22)

with unknown |x vy z||T Since m,(y,),m5(v,) #1 and m,(y,) # ng(y,), the-

re is a solution | y z|" =|s;; s, s, of equation (22) with non-zero all
its components. Since

(my (V) =1/ (my(vy) — 1) = (mg(y) -1/ (ng(yy) —1) = I(y)
(see (19) and definition I(y)), the equality

85501 (1) = by (1)1, + 8150, (1)) = 0
holds for each root y e M;; (including y, and a root y such that a,(y)=
=b,(y) = 0). Taking into account the definitions b,(a) (21) and by(a) (20), it is
easy to see that the last equality holds for any y = a € M,,. Therefore, the
congruence

S99, (X) = by (x)(s1; + 8150, () (mod ¢, (x)), (23)

2
is true. Here (s11 + smal(x),(pl(x)) = 1. Construct a matrix rij(x)”l, where

171 (%) = 817 + 8190, (), 15(X) = 8150, (),

89901 (X) — by (x)(s1; + 81,a,())
0, ()

Tya(X) = S9y — S15b; (X)) -

1y () = € C[x] (see the congruence (23)),

2
Since matrix rij(ac)”1 is not singular (its determinant is s;;s,, # 0), then

11



from the congruence

899 a5 (x)  ay(@)] = |bs(x) by(a)] rij(x)"f (mod ¢, (x)) (24)

we get polynomials b,(x), bg(x) of degrees degb,(x),degby(x) < deg @,(x).

Elements a,(x), a,(x), az(x) of matrix A(x), polynomials b, (x), by(x),
bs(x) defined above and numbers $;;,S5,,835 = S55, S;9,5;3 = Sy5 = 0 satisfy
congruences (6) (see (23), (24)). Therefore, according to Proposition 1, the mat-
rix B(x) of the form (4) constructed on the elements b;(x), by(x), by(x) and
the matrix A(x) are ssk.e. In addition, B(x) is an oriented by the characte-
ristic roots reduced matrix (it is oriented by the same characteristic roots as
the matrix A(x)). If y, € My;, then from (21) we have mg(y,) =1/b(y,). If
Y, € M,,, then from (15) we have mg(y,) = by(v,)/85(y,). Therefore, in each
case (y, € M;; or y, € M,,), the value ng(y,) for B(x) is predetermined.

If for the matrix B(x), as well as for A(x), for every A € M, UM,, we
have mgz(A) =1 (respectively ©,(A) =1, see Proposition 4), then everything is
already proved. Otherwise, in order not to introduce new notations, we will
assume that the value n,(y,) for matrix A(x) coincides with the pre-selected

one. Suppose that for some A, € M;, UM,; we have 7,(,)# 1. Then in the

second step we pass from matrix A(x) to matrix B(x) of the form (4), which
is ssk.e. to A(x), oriented by the same characteristic roots and reduced and
for which the value 7@g(A,) is pre-selected, and the value mg(y,) coincides

with the corresponding value =n,(y,) for A(x). We introduce the notation
JA) = (n,(A)-1)/(74(Ay) —1) for every A e M,, and for every A e M,, such
that aé(k) #0. We fix some non-zero value mgz(Ah,)#1, different from
(J(y)-1)/J(y) and (7,(Ay)ay(B)—1)/(ay(B)—1) for each B e M,,. For each of
the above A € M,, and B € M,, we find, respectively,

() =J(A)(Rg(hy)—1)+1 %0 (25)
and

SAB)(1—Tts (1))

ay(B)(Tg(hg) — T (hg)) — g(hy) +1°

It should be noted that 7gz(A,) is chosen so that the denominator in rela-

o5 (B) = (26)

tion (26) is non-zero. Define a polynomial bé(x) of degree less than deg ¢,,(x)
by values b,(B) on the set M, such that
0, BeMZl,a;(B)zo,
by(B) = 11/ (L), B =2 e My, ayp)#0, 27)
85(B)ay(B)/8,(B), B e M,,,
where 7g(A) and d5(B) are given by (25) and (26). Polynomial bé(x) is uniq-

uely defined as if deg bé(x) < card M,. Let us find some non-zero solution of
the equation

x

1 -1 1 0
- - = 28
Ta(hg) —Tg(Rg) 1“ Z HOH 28)
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with respect to the unknown |x y z|". Obviously, since 7, (%), Tz(R,) # 1

and 7, (A,) # Tz(h,), we can find solution [x y 2| =[5y S35 Sos
where $,,85:8,5 # 0. By values b, (a) for all a e M, = M;; UM, from con-
gruence

S990y (X) + 89305 () = S50, () (mod @, (x)), (29)
where s,,, s,; are taken from the solution of equation (28), we uniquely
define a polynomial b,(x) such that degb,(x)<dege,(x). Also from the
congruence

83305 (20) = by (2)(895(a; () = by (X)) + $93a5(X)) = Sy5b5(x) (mod @, (x)) (30)
by polynomial bé(x), defined above from (27), we find polynomial by(x) such
that degbs(x) < deg ¢,(x).

Since
1 -1 1 1 -1 1
det|7,(hy) —Tig(hy) 1[ =0, det|@(hy) —Tg(hy) 1 =0,
a0 —mg(h) 1 1/8,(B) -1/35(B) ay(B)/8,4(B)

(see definitions Tg(A) (25) and S5z(B) (26)), we have
3221);(}») — 333a;(k) + sz3aé(k)b;(k) =0, heM,, (31)
and

S99 /SA(B) - 333/65(3) + Szgaé(B)/SA(B) =0

or
32283 B) - 3336A(B) + Szgaé(B)SB(B) =0.

Taking into account a,(B)/8,(B)=by(B)/35(B) (see (27)), from the last
equality we obtain

89905 (B) = 83305 (B) + 55505 (B)D,(B) = 0, B e My,. (32)
From (31) and (32) it follows that
szzbé(x) - 333(1;(.70) + szga;(x)bé(x) =0 (mod @, (x)). (33)

From the elements b(x), by(x)= b;(x)(pm(x) and by(x) defined from
(29), (27) and (30), we construct a matrix B(x) of the form (4) and show that
it is ssk.e to A(x). To do this, based on (29), (30) and (33), it suffices to make
sure that the elements of matrices A(x) and B(x) together with the numbers
S11 = S99, S99, S35, S15 = S;3 =0 and s,, satisfy the congruences (6) and then
apply Proposition 1.
For v, € M,,, it follows from (27) that by(y,)/85(Y,) = a5(vy)/d,4(y,)- For
Yo € M, it follows from (29) that a,(y,) = b,(y,). Therefore, in each case
TEB('Y()) = TEA('Y()) .

If A, € M,,, then from congruences (29) and (30) we have
$39(ay (M) = by (hg)) + sy3a3(hg) = 0

and
85305 (Ag) = S59b5(Ag) = 0,

respectively, whence it follows
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89901 (Mg)/ag(hg) = 8550y (A )/bg(Ag) + 855 = 0.
Since m,(Ay) = a;(Ay)/az(ky), we have b (A,)/bs(hy) =Tg(hy). If Ay € My,
then from (27) we have 7igz(k,) =1/by(A,). This means that the value 7yz(h,)
for B(x) coincides with the selected one, regardless of whether A, € M;, or
Lo, € M,, . This proves the existence of the required matrix B(x). ¢

5. Main results.
Theorem 1. Suppose that for oriented by the same characteristic roots o,

oy, o, reduced matrices A(x) (1) and B(x) (4), we have m,(y,) = ng(y,) #1
and 7, (Ay) = Tg(ky) #1 for some vy, € M;; UM,, and A, € M, UM,, (see (17)

and (18)). Matrices A(x), B(x) are ssk.e. if and only if the following condi-
tions are met:

(7) a, (o) = b, (a;) for each root o, e M
a;(a;) bl(aj)
W ) by(a;)
(i11) a;(Bk) = b;(Bk) for each root B € My, ;
ay(B,)  by(B,)

115

)

for each root a; € Mi,;

() = or each root e M.,,;

) B 5B Pe e Mo

(v) L, t _ 1 ,_ 1 for each root B, € Myy;
8,(B) ay(ay) 3B,  by(ay)

(v1) 1 1 1 1 for each root a; € M,,.

az(o;)  a(ay)  byla;)  by(ay)
P r oo f. Necessity. For ssk.e. matrices A(x) and B(x) equality (7) is

3
true where according to Proposition 3 [13], the matrix |s ) has an upper

tj
triangular form. Its elements together with the elements of matrices A(x)
and B(x) satisfy the congruences (6). From the first of them for x = a, and
for x =y, in case y, € M;; we have

S50 =811 ~ 815 =0 (34)
and

82275 (Yo) = 8117 a (Vo) = S12M4 (V)R (Vo) = 0, (35)
respectively. The last equality is obtained from (15) for vy, € M,,. Since
0#my(yy) =mg(yy) #1, then from (34) and (35) we have s, =0, s;; = Sy,.
From (12) for x = a, and x =, in case A, € M,, it follows that

833 = Syp ~ Sp3 =0 (36)
and

8337 (ho) = SpaTt 4 (hg) = 89374 (h)Tep (Rg) = 0, (87
respectively. The last equality is a result of substitution x =X, in the third
congruence of (6), if A, € M,;. Since 0# 7,(A,) =7gz(A,) #1, from (36) and
(37) it follows that s,; =0, sy = S35. If we remember that s;; = s,y = s;, and

819 = S5 = 0, then the first congruence of (6) together with (12) will take the
form

14



$;1(a,(2) = by (x)) = s13a5(2)b, (x) = 0 (mod ¢, (x)),

811(a; (2)bg () — ag ()b (x)) = 0 (mod ¢, (x)), (38)
and the third congruence of (6) and (15) will take the form

s1;(ay(x) = by (X)) + 8,305 ()3 5(x) = 0 (mod @, (),

$1;(ay ()85 () — by(x)8 4 (x)) = 0 (mod @, (x)). (39)
Also now the congruence (9) can be written as
$1,(8 4 () = 85(x)) + 8,38 4, ()85 () = 0 (mod ¢y, (). (40)

From (38) and (39) we obtain conditions (z), (iZ7) and (ii%), (iv), respectively.
From the first congruence of (38) for a, and from (40) for any B, € M,, we
have

$1,(1/b,(0) —1/a;(a,)) — 83 =0 (41)
and

511(1/85(B) —1/8,(B,) + 5,5 =0, (42)
respectively. Since s;; # 0, condition (v) follows from (41) and (42). From (11)

for any a; € M, we have the equality

311(1/b3(aj) - 1/a3(otj)) -85 =0.

Comparing it with (41), we obtain the condition (v17).
Sufficiency. Suppose that conditions (i)—(vi) of Theorem hold for
matrices A(x), B(x). Consider the equation

1/a,(0y) —1/by(0,) 1 . 0

1/8,(B,)—1/85(B,) 1 yH= 0 (43)
l/ag(aj)—l/Sg(aj) 1 0

with respect to the unknown [x y||", where o; and B, are arbitrary ele-

ments of sets M,, and M,,, respectively. From conditions (v), (v?) it follows

227
that the first row of the matrix of this equation is linearly dependent on each

of its next two rows. Therefore, this equation has a solution |x y| =

=|'s, 5" with its non-zero first component s,,. The fact that |s,, s3]
satisfies equation (43) yields the equality

sn(a3((xj)—b3(aj))—sl3a3(aj)b3((xj):0. (44)
Whence, taking into account the condition (i7), we will have

sn(al(oc].) - bl(ocj)) — 5)385(a;)b (a;) = 0
for all a; € M,. Under condition (Z), the obtained equality holds for any
a; € M. Therefore, the first congruence of the system (38) is true. Since

Is;, sy5]" is the solution of equation (43), we have

$11(84(B) = 85(By)) + 5,38, (B)S5(B,) =0 (45)
for any B, € M,,. Taking into account condition (iv), the last equality we can
write as

s11(agy(B) = by(B,)) + 81305 (B,)85(B,) = 0.

15



Under condition (i7Z), the obtained equality holds for all B, € M,,. Therefore,

the first congruence of the system (39) is true. Equality (45) confirms the
truth of congruence (40). Subtracting the latter from the first congruence of

(39) multiplied by a,(x) we obtain
s11(as(x) = by(x0)) + s;,by (2)(b () — a,(x)) +
+81303(x)35(x) = 0 (mod ¢, (x)) (46)
or

$11(ag(®) = by(x)) = s5a5(x)by () =

= bé (Jc)(su(al (J,‘) - bl(x)) - 31303(x)b1(x)) (mOd (Plz(x))
given that dg(x) = bl(x)bé(x) —bs(x). The left and right sides of the resulting

congruence are divided by ¢,(x). This follows from equality (44) and the first
congruence of (38). This means that the left side of the congruence (46) is
divisible by ¢,(x). Therefore, this congruence is performed according by

module @,(x) = ¢,(x)9;,(x), due to the mutual simplicity of ¢,(x) and @;,(x).
It is clear that the first congruence of (38), the congruence (46) modulo ¢,(x)

and the first congruence of (39) coincide with the first, second and third
congruences of system (6) for the numbers s;; = s,, = 855, 8;9 =855 =0, S5,

respectively. Here s;; and s;; are components of the solution of equation (43).

Therefore, according to Proposition 1, the matrices A(x) and B(x) are ssk.e. ¢
Theorem 2. Suppose that for oriented by the same characteristic roots o,

oy, o, reduced matrices A(x) (1) and B(x) (4), we have m,(y,) = ng(y,) #1

for some root vy, eM;;UM,, and 7,(A)=7z(A)=1 for every root

Le M, UM, (see (17) and (18)). Matrices A(x) and B(x) are ssk.e. if and

only if the following conditions are met:

(7) a,(a;) = b, (a;) for each root a, € My;;
a;(Bz) _ b;(Bz)
3,(B,)  8p(By)

(119) a3(aj) =a4(0;,) < bg(aj) =bs (o)

(47

for each root By € Myy;

for each pair of roots i

(iv)  8,(B,)—az(ay)ay(B,)~1) =0 < S5(B,) —by(ay)(by(B,)—1) =0
for each root B, € My,;

o, € M,

(v) if, for some root o € M;,, we have as(a) # as(o,)

or for some root B € M,,, we have &,(B) — as(a,)(ay(B) —1) # 0 then

(a3(°‘k) - a3(a2))a3(a) _ (b3(°‘k) - b3(0‘2))b3(°‘)

_ 47
(ag (@) — ay(0))ay () (93(@) — by (0ty))bg (0t 40
and
(SA(B[) - ag(az)(a;(ﬁz) - 1))(13((1) _
(a3(°‘) - a3(0‘2))8A(Bz)
_ (SB(B[) - bg(OLQ)(bé(B[) - 1))b3(a) (48)

(b3(°‘) - b3((x2))83(ﬁ[)
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or

(‘13(0%) - a3(a2))8A(B) _
(8,4 (B) — az(ay)(as(B) — 1))ay(ary,)

(bS(ak) - b3((x2))53([3)

= b 49
(85(B) — by (01y) (b3 (B) — 1)y (ty,) 49
and
(84(By) — as(ay)(ay(B,) = 1)3,4(B) _
(8,,(B) — az(ay)(ay(B) —1))8 4 (B,)
_ (85(By) = by ()03 (B,) ~ 1))35(B) (50)

(SB(B) - bg(ag)(b;(ﬁ) - 1))63(65)
for each pair of roots o, € M,, B, € M,,.

P r oo f. Necessity. Assume that matrices A(x) and B(x) are ssk.e.
Then relation (7) holds for them. By the same reasoning as in the proof of

Theorem 1, we come to the conclusion that in this relation the matrix |s

3
1

tj
has an upper triangular form, where s, =s,, and s;, =0. Then the first
congruence of (6) and congruences (15), (11) will take the form

89901 (X) + S93a5(x) = by (X)(s); + $;3a5(x)) (mod @, (x))
and

322bé(.7c)6A(x) — slla;(x)SB(x) =0 (mod @,,(x)),

83305 (x) = by(x)(sy; + $;5a5(x)) (mod @, (x)), (51)
respectively. The latter three congruences yields, respectively, conditions (),
(#%) and (¢47). Substituting x = a, in (14) and (51) and taking arbitrary B,

€ M,, for x in (9) we obtain three equalities, which can be written in matrix

form as
1 -1 0 1 Sl g
1/ag(a,) —1/bg(a,) 1 0 233 =1lo|. (52)
1/8,B,) -1/85(B,) -1 by(B,)/55(B,) ;3 0
23

From the equality (52) we have relation

s SA(B/) - ag(OLQ)(a;(B@) - 1) —s 63(55) - bg(QQ)(b;(Bg) - 1) =0
! S4(Byag(a,) 33 35 (B, )bs(aty)

which yields condition (iv), since s;;,s33 # 0. If for some fixed a € M;, we

have aj(a) # az(a,) (bs(a) # bg(a,) under condition (#4Z)), then substituting
x = o and arbitrary x = a, € M;, into (51) we get two equalities, which in

combination with (52) can be written in the form

1 -1 0 1 0
1/a5(a,) —1/bg(a,) 1 0 z“ 0
1/ag(@) —1/bg(a) 1 0 333 =o]. (53)
1/ag(a,) —1/by(a,) 1 0 813 0
1/8,(B,) -1/85(B,) -1 byB,)/85B)" " o
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Given s;;,855 # 0, we have

1/ag(0y) 1/bg(0y) 1

det| 1/as(a) 1/bg(a) 1 =0
1/ag(0y,) 1/bs(ay,) 1

and
1 1 0 1
1a.(ay) 1/b.(0,) 1 0
det 1/;3(05) 1/53(05) 1 0 =0,

1/8A(B[) 1/83([3@) -1 b;(B[)/SB(B[)

from which (47) and (48) follows, respectively. If for some € M,,, we have

22
5,(B)— a3(a2)(a;(ﬁ) -1)#0 (or d5(B) - b3(a2)(bé([3) —1) # 0, see condition (iv)),
then on the basis of (52) and the two equalities obtained from (9),
respectively, at * = and at any x = o, € M,,, we can write the following

matrix equality

1 -1 0 1 0
1/ag(a,) —1/bg(a,) 1 0 zn 0
1/8,(B) —1/bg(B) -1  by(B)/35(B) 333 = (0], (54)
1/as(oy,) —1/bg(a;,) 1 0 813 0
1/8,(B,) —-1/85B,) -1 by(B,)/85B,)|" 0

from which equality (49) and (50) follow given that s;;, s55 # 0.

Sufficiency. Suppose that conditions (7)—(v) hold for the matrices A(x)
and B(x), that are oriented by the same characteristic roots and reduced. If
there is a root o€ M,, such that as(a)# a;(a,) (under condition (ii7)
bs(a) # by(a,)), then in the 5 x4 -matrix of equation (53) the first three rows
are linearly independent. Under conditions (47), (48), the fourth and fifth rows
of this matrix (for arbitrary o, € M,, and [, € M,,) depend linearly on the
first three rows of it. Also in the case of the existence of B € M,, such that
5,(B)— a3(a2)(a;(ﬁ) —1)# 0 (under condition (iw) 85(B) - b3(a2)(bé([3) -1)=0),
in the matrix of equality (54) the first three rows are linearly independent,

and the fourth and fifth rows can be expressed as linear combinations of
them. This conclusion can be made if we take into account (49) and (50). If we

denote by N, the matrix from equation (53) or if we denote by N, the mat-
rix from equation (54), then the equation

Nz y w o =0 0 0 0 0] (55)
or equation
NyJxz y u »| =0 0 0 0 o] (56)

has a solution with non-zero first two components. An solution with a similar
property has an equation

1 -1 01
1/ag(ay) —1/bg(ay,) 1 0

it for every o, € M;,, and every B, € M,, we have ay(a)=as(a,) and

“”x y u o =]o o, (57)

8,(B) —az(oy)(ay(B)—1) =0, respectively. If [x v u v||T =
= |y S35 S5 Ss3)", where ;.85 %0, is the solution of one of equations
(595), (56) or (57), then
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Syp — S35+ Sy3 =0
and
81105 (0 ) = Sg5a5(0ty,) + Syqas (0t )bg(ay,) =0 (58)

for every a, € M,,. Excluding s;; from the last two equations, we obtain

s11(@5(0,) = 855bs(0y,)) + 8y (0) — 81505 (e )by (o) = 0
or

$11(@; (o) = s33by (0,)) + 89305 (0) = $13a5 (04, )by (0) = 0,
since we have for each root a, € M;, as(a,)=a,(a;) and bs(a,) = bj(a).
Under condition (%), all roots a, € M,; also satisfy the last equality. Therefore,
the following congruence

s1;(a; (@) = by (x0)) + Sy5a5(x) — 8,505 ()b, (2x) = 0 (mod @, (). (59)

holds. If M,, is not an empty set and |s;, ;5 S;5 8,3 is the solution of
equation (55) or (56), then we have the equality

311/8A(Bz) - 333/63(64) — 813 + sngé(Bz )/SB(B[) =0 (60)
for all roots B, € M,,. This equality is also satisfied if §,(B,)— a;(a,)(ay(B,)—1)=

=0 for every B, € M,,, because in this case a row
[1/84(B,) -1/85B,) -1 by(B,)/35(B,)|

depends linearly on the rows of the matrix of equation (57). Under condition
(77) from (60) we can proceed to equality

51105 (By) = 83305 (B) — 5,505 (B )85 (B,) + 59505 (B )by (B,) = 0.

The last equality is obviously performed for any B, € M,,, because in this ca-

21
se a;(B[) iand b;(ﬁf) are simultaneously equal to zero or one and 65(,)=0.
Therefore, we can write the congruence

snbé(x) - 333(1;(.70) - 313(1;(.70)83(.1') + s23a'2(x)b;(x) =0 (mod @,,(x)). (61)
This congruence is also true when the set M,, is empty. Equality (60) is the
basis for such a congruence

81105(x) = 8550 4 () — 8130 4 ()05 () + 323bé(x)8A(x) =0 (mod @,,(x)) .
Subtracting the latter from the congruence (61) multiplied by a,(x) we obtain

83405 (X) = $11b5(x) = $153045(x)bs () = b;(.x')(sn(al(x) —b,(x)) +

+ 89305 (X) — 8,305 ()b (x)) = 0 (mod @, (x)).

The left and right sides of the resulting congruence are divided by ¢,(x) on

the basis of (58) and (59), respectively. Since (¢,(x),¢,5(x)) =1 is true, the
congruence

83304 (x) + 81,05(x) + 8,505 (x)dg(x) =

= by (x)(81,a,(x) + Sy3a5(x)) (mod @, (). (62)

holds. Due to the fact that the congruences (59), (62) and (61) coincide with
the congruences of system (6), according to Proposition 1 the matrices A(x)

and B(x) are ssk.e. ¢
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Theorem 3. Suppose that for oriented by the same characteristic roots o,
o,, o, reduced matrices A(x) (1) and B(x) (4), we have T, (A,) = Tg(h,) #1
for some root A, e M;, UM, and mw,(y)=mng(y)=1 for every root

vy € M;; UM,, (see (17) and (18)). Matrices A(x), B(x) are ssk.e. if and only if
the following conditions are met:
(7) a;(Bi) = b;(Bi) for each root B, € My
(i) a; (o) _ by (o)
az(oy)  byloy)

@) 8,(B,)~ az(0,)(8,(B)~1) =0 & 85(B,)~by(a,)(5(B,) ~1) =0

for each root o, € M,,;

for each root B, € My,
(iv) as(oy,) - ag(az)(ag((xk) —a,(ay)+ 1) =0
< by(oy,) = by(ay)(by(oy,) = by (o) +1) =0
for each root o, € M,,;
(v) if for some root a € M, , we have a;(a) — az(a,)(az(a) —a (o) +1) =0

or for some root B e M,,, we have §,(B)— a;(a,)(8,(B)—1) # 0, then

(az(oy) —az(oy)(as (o) —a; (o) +1))as (o) _
(ag((x) —ag(oy)(as(a) —aq(a) + 1))a3((xk)

(by(0y,) = by(oy)(bs(ary, ) — by (0, ) +1))bs(at)

- (63)
(bg((x) - bg(az)(b3(a) — bl(a) + 1))b3(ak)
and
(84(By) = a5(a)B,4(B) ~D)ag(@)
((13((1) - a3(oc2)(a3(oc) - al(oc) + 1))6,4([3[)
_ (85(By) — bs(05)(85(B,) — 1))y (a1) (64)
(by () = by (0t )(by () — by (ar) + 1))85(B,)
or
((13((lk) - (13((12 )(a3(ak) - al(ock) + 1))6A(B) —
(8,4(B) — a3(0ty) (3, (B) —1))ay(ary,)
_ (B (e) = by () (5 (et ) = by (et ) +1))8 5(B) (65)
(85(B) = by(0y)(85(B) —1))bs(ary,)
and
S (By) — a5(05)(B3,(B) ~1)3,(B) _
8,4(B) — a(0y)(8,(B) —1)3,(B,)
~ 85(B,) — by (0,)(85(B,) —1)35(B) (66)

 85(B) — by(a)(35(B) ~1)8,5(B,)
for each pair of roots o, € M,, B, € My,.

P r oo f. Necessity. Let the matrices A(x) and B(x) are ssk.e. Conside-
rations similar to the proof of Theorem 1 lead to the conclusion that in rela-

3
) has an upper triangular form and,

tion (7) the left transforming matrix |s

tj
IMOreover, S,, = S35, Sy3 = 0. Then the third congruence of (6) yields condition
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(7) and (12) yields condition (ZZ). If there is a root a € M;, such that a;(a) -
—ag(a)(ag(a) —ay(a) +1) # 0, then by substituting a = o, into the first con-
gruence of (6), x=a,, x=0a, x=a, € M;, into (11) and x =B, € M,, into

(9), we obtain five equalities, which can be written in the form

1 -1 0 1 0
1/ag(ay) —1/by(at,) 1 I o
1/ag(a) —1/by(a)  a,(a)/az(a) 1 233 = o (67)
1/a5(0,) —1/by(a,) a (o) /ag(a,) 1 312 0
1/8,(B,) -1/85(B,) 0 ||t 0

Recall that o, and B, are arbitrary elements of M,, and M,,, respect-

tively, and o is a fixed root of M,,. By scalarly equivalent transformations of
rows of the matrix from (67) we pass to the equality from which we obtain

as(a) — a3((x2)(a3(0t) —a;(a) + 1)

_ by(a) = by(ar,)(by (@) = by (a) + 1)

as ((x)ag, ((xz )

as(oy,) = a3((x2)(a3((xk) —a, (o) + 1)

by (a)bs (aty)

by (o, ) = by (ot )(by (o) = by (o) +1)

as (o )as(ay) by (0, )by (ary)
8,(B,) —a(ay)(3,(B,) 1) ~ 85(By) = by(a)(35(B,) — 1)
3, (Byaz(ay) d5(By)bs(ay)
0
w5 = ol
S33 0

From this, since s;;,s;; # 0, we obtain condition (iw), as well as relations

63), (64).

) I(f t)here is a root B e M,, such that §,(B)—a5(a,)(d,(B)—1) =0, then
substituting ax = a; into the first congruence of (6), x = a,, * = a;, € M;, into
(11) and x =B x =B, € M,, into (9) we come to five equalities, which can be
written in matrix form as

1 -1 1 0 0
1/ay(cy) —1/by(cty) 1 17 o
1/3,(B)  ~1/by(B) 0 1 ?3 ~{o]. (68)
1/ag(0,) —1/bg(a,) a,(ay)/ag(a,) 1 312 0
1/8,(B,) -1/85(B,) 0 - 0

Here, as above a, and f,, are arbitrary elements of M,, and M,,, respecti-

vely, and B is a fixed root of M,,. From equality (68) with the help of left
equivalent transformations we come to the equality

8,4 (B) — a;(0,)(8,(B) — 1)

_ 85(B) — by(01,)(35(B) 1)

3, (B)as(ay) d5(B)bs(ay)
ag (o) — ag(oy)(ag (o) — a; (o) +1) byloy) - by (0, )(by (0, ) = by (o) +1) 5
ag(oy)ag (o) by (o, )bs ()
d,(B,) - a3(0‘2)(6A B,) - 1) _ d5(By) — bs(ay )(BB(BZ) - 1)
3, (By)as(ay) 35(By)bs(ay)
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S33

Whence it is easy to obtain condition (#iZ) and relations (65), (66).
Sufficiency. Suppose that the conditions of Theorem hold for matrices

A(x) and B(x). Suppose that there exists the root o e M;, specified in

condition (v). Then, under condition (ii), the first three rows of the matrix
from equation (67) are linearly independent, and as can be seen from (63),
(64), its other two rows can be expressed as linear combinations of them.

Similarly, in the case of the existence of the root P e M,, specified in

condition (v), it is easy to find out that the matrix from equation (68) has rank
three with its linearly independent first three rows. The linear dependence of
each of the last two rows of this matrix on its first three rows follows from

(65) and (66). Denote 5 x4 -matrices from equations (67) and (68) by K, and
K, , respectively. Then the equation

Kl y u o =0 0 0 0 off
or equation

Kle y w o =Jo 0 0 0 of
has solution | y u v =|s; s s 313||T, where s;,,8;; # 0. If the
roots o and [ specified in condition (v) do not exist, then a solution of the

equation
1 -1 10

1/a(0ty) —1/bg(a,) 1 1

has the same property (i.e. its first two components are non-zero). Therefore,

lx y w o =fo of,

in each case for the components of solution || S;1 S33 Sy9 Sy ||-r we have
81 = S33 T8 =0,
8110 (0,) = 8335 (o) + by (0 )(5150, (0.) + 515a5(0)) = 0, (69)

$1185(By) — 83304 (By) — 5138, (B)85(B,) =0, (70)

where o, and B, are arbitrary elements of M,, and M,,, respectively. From

22
(69), given condition (iz), we can proceed to equality

$11b1(0) = 8350 (o) + by (o )(s190, (o) + 8305 (0t,)) = 0,
and then to congruence

81,61 () = 8350, () + by (x)(8,,a, () + $;5a5(x)) = 0 (mod ¢, (x)). (71)
Here we use the fact that for every o, € M;; polynomials a,(x), b,(x) simul-
taneously acquire the value 0 or 1 and, in addition, as(a;) = 0. Recall that for
every B, € M,; and for every B, € M,, we have aé(Bi) = bé(ﬁi) (see condition
(D), 84(B,)=85(B,) =0 and 8,(B,)=ay(B,), 85(B,)=by(B,), respectively.
Moreover, if we take into account that s;; = s33 —s;,, then from (70) we get
the following congruences:

$;105(x) = 8530 4 (%) — 5730 4 ()85 () = 0 (mod @, ,(x)),
333bé(.x') —8,,05(x) - 323(1'2(.1') — 313(1'2(.70)83(.76) =0 (mod @, (x)). (72)
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If we add the first congruence of (72) multiplied by —a,(x) to the second one,
then we get

83305 (X) + 81105(x) + 8,50, (x)d5(x) + 5;5a5(x)d5(x) =

= 5530, (2)by(x) (mod ¢y, (x))

or otherwise

83305 (20) — 81,05 (X) = by ()85, () + 8,305 (X)) = by (x)(853a, (X) —

— 81,0, (@) = by (x)(815a, () + 5,305 (x))) (mod @ ,(x)) .
Equality (69) and congruence (71) show that the left and right sides of the last
congruence are divisible by ¢,(x). Therefore, due to the mutual simplicity of

polynomials ¢,(x) and ¢,,(x), the congruence

83305 (X) + 81105(x) + 8,50, (x)d5(x) + 5;5a5(x)dg(x) =

= 8330, (2)by (x) (mod ¢, (x)) (73)

is true. Congruences (71)—(73) are evidence of the fulfillment of congruences
(6) for the numbers s;;, Sg5 = S35, S19, S13, S93 = 0. According to Proposition 1

this means that the matrices A(x) and B(x) are ssk.e. ¢

Theorem 4. Suppose that for oriented by the same characteristic roots o,
o,, o, reduced matrices A(x) (1) and B(x) (4), we have m,(y) =ng(y) =1 for
every root y € M;; UM,, and 7,(A) =wgz(h) =1 for every root A € M;, UM,,

(see (17) and (18)). Matrices A(x), B(x) are ssk.e. if and only if the following
conditions are met:

(2) as(a;) = ag(a,) < by(a,) =bs(a,) foreach pair o, o, € My,;
(@7 8, (Be)—az(ay)(8,4(B)-1)=0 < 35(B;)—bs(ay)(35(B,)-1) =0
for each root B, € Myy;

(i11) if for some root a € M, we have as(a) # az(a,)
or for some root B e M,, we have &, (B) —a;(0,)(5,(B)—1) # 0, then

(a3(ak) - a3(a2))a3(oc) _ (bs(ak) - b3(a2))b3(a)

- 74
(0300 — G (03))ay () (by (@) — by (c13) by (0 "
and
(3.4(B,) — a5(a5)(B,(By) — D)ay(ar) _
(ag((x) - a3(a2))6A(Be)
_ (35(By) — by ()35 (B,) — D)y (o) 75)
(bg(a) = bs(ay))85(B,)
or
(a5(0y,) — ag(0))8, (B) _
(8,4(B) — az(0y) (3, (B) — 1)ay(ay,)
_ (by (o) = by (1)) 5 (B) (76)

(85(B) — by(aty)(B5(B) —1))bs(ary,)

and
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(84(B¢) — a5(ay)(84(B) ~1))8,(B) _
(84(B) = az(0y)(8,4(B) —1)5 4 (B,)

_ (85(B,) — bs(0))(B5(B,) = )35 (B) an

(85(B) — by(0y)(85(B) —1))55(B,)

for each pair o, € My,, B, € M,,.

Proof. Necessity. For the elements of matrices A(x) and B(x),
which are ssk.e, the congruence (11) holds. Substituting x =a; and x =a,,

where «; and o, are an arbitrary pair of elements from the set M,,, into

(11) and excluding s;,, S5, Sy3 We obtain

s11(1/ag(a;) = 1/ag(0y,)) = s35(1/by(ar;) = 1/b5(ar,)) = 0.
From the last relation, since s,;,s;; # 0, it follows condition (). Recall that for
any o, € M, and B, € M,, we have a,(a,)=as(a,), b(a,)=">bs(a,) and
ay,(B,) =38,(B,), by(B,) =385(B,), respectively. Therefore, substituting x = a,,
x =B, into (12), (15), respectively, we get

Sgg ~ 833 T893 =0, (78)

811 = Syp + 815 = 0. (79)
Also, after substitutions a = a, into (11) and arbitrary x =f, € M,, into (9)
we get, respectively,

811/5(0ly) = S35 /bg(0ty) + 85 + 85 =0 (80)
and

811/84(By) = 833/05(By) =815 + 855 = 0. (81)

Excluding from (78)—(81) terms containing s;,, s;5, S,3 We arrive at equality

s 8,(By) —az(0y)(8,(B,) - 1) s 85 (B,) = by(ay)(85(B,) — 1) —0, (82)
H 3,4 (Bylag(ay) 33 d5(B,)bs(ay) ,
which implies condition (7).

Let a, be an arbitrary root of the set M;, and a € M;, be a fixed root

for which we have ag(a) # az(a,). Substitutions x = o, x = a,;, into (11) give
$y1/a4(0) = Sg5/bg(0) + 815 + 85 =0,

811/ a3(0) = S33/bs () + 815 + 53 =0,

whence together with (80) we get

a3((xk)—a3((x2) bg(ak)_bg(az)

_g (o) = O5(0y) 83

U g (o )ag(cy) P by (o )by (o) ’ (83)
as(a) — ag(a,) B bs(a) — by(ay)

U (0 (0y) B by ()b (ay) (84)

Since ag(a) # ag(a,) (and according to the proved bg(a) # bg(a,)) and
811,833 # 0, equalities (82)—(84) yield (74), (75).

Now let B be the fixed root of M,,,
x(8,(B)—1) =0 (and 8z(B)—bs(a,)(85(B)—1) #0 by the proved). We write

for which we have 3,(B)—az(a,) x
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(82) for B, =B:
8,(B) — az(ay)(3,(B) - 1) 85(B) = by(a,)(85(B) - 1)
_ =0. 85
TS, (B (o) %5 S (Bby(aty) (89)
From (83) and (85) it follows (76), and from (82) and (85) it follows (77).
Sufficiency. Suppose that for matrix A(x) and for some o e M,

inequality as(a) # a;(a,) holds. Then under condition (z), for matrix B(x) we

have by(a) # bg(a,). In this case we consider the equation

1 -1 0 1 0 Ol 0
0 1 -1 0 0 1|y 0
1/az(ay) 0 —1/bs(ay) 1 1 Offfzf |0 (36)
1/az(a) 0 —=1/bg(a) 1 1 Offfu| |0
1/ag(oy,) 0 —1/bg(a;,) 1 1 Offw 0
1/6,(B,) 0 -1/85z(B,) 0 -1 1||w 0

Also, in the case of the existence of B e M,, such that &,(B)-as(a,)x
x(6,(B)=1)#0 (or d5(B)—by(a,)(65(B) —1) # 0 by condition (7)), consider the
equation

1 -1 0 1 0 offx] Jo
0 1 -1 0o o 1f|y| [o
1/ay(a) 0 ~1/byjay) 1 1 0ffz] o @
1/6,(8) 0 —1/by(B) 0 -1 1|[«| " [o|
1/az(a,) 0 —1/bg(a,) 1 1 Offwf [0
1/5,(8,) 0 -1/84B,) 0 -1 1|]w| [0

Recall that in these equations o, and B, are arbitrary roots of M;, and

M,, , respectively. It is easy to see that the first four rows of the 6 x 6 -matrix

of equation (86) are linearly independent. As follows from (74), (75), the last
two rows of the specified matrix are expressed as linear combinations of the
first four rows. On the basis of (76), (77) we get a similar conclusion about the
linear independence of the first four rows of the matrix of equation (87). Each
of the last two rows of the specified matrix are linearly dependent on these
rows. All this gives grounds to assert the existence of a non-zero solution of
each of equations (86), (87). Moreover, it is easy to see that these equations

have solution |x y z u v w| =|s;1 Ss S35 Si2 S 323||T with non-

zero first three components. Equation

X
1 -1 0 100 ?ZJ 0
0 1 -1 0 01 2= 0 (88)
/ag(ay) 0 ~1/b(ay) 1 1 0 I o
w

has the same solution in the absence of the roots o € M;, and B € M,, speci-

fied in condition (ii7). If we take into account the fifth row of the matrix from
(86) (or from (87)), then for the components of the solution

-
"311 Sog S33 S12 Si3 323"

we have
83305 (0, ) = by (0, )(s1; + 8150, (0) + 815a5(at)) = 0, (89)

because there are ag(a,)=a,(a,). Since sg5 = 8,5 + 8,3 and bg(ay) = b, (ay),
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equality (89) can be written as
S99 (0 ) + 8535 (0, ) = by (04, (81 + 8150, (o) + 8p3a5(ary,)) = 0.

This equality is obviously fulfilled for each root o, € M,,, because s,, — s, —
—-s,=0 and for such a, both values a,(a;), b (0a,) are simultaneously
equal to 0 or 1 and ag(ay,) = by(a,) =0. All this gives grounds to assert that
for the component s;;,855,855, 19,513,593, 11595533 # 0, of equation (86) ((87) or
(88)) and the elements of matrices A(x) and B(x), the first congruence of (6)
holds. Also, if we take into account the sixth row of the matrix of equation

(86) (or (87)), then for the components of the above solution of this equation
we can write

8B )(s35 +51385(By) — s93b5(B,)) = 5,,85(B,) = 0, (90)
since 85(B,) = by(B,). Moreover, taking into account that &,(B,) = ay(B,) and

811 = S99 — S;4, We get

a5 (B )(sz5 + 81385 (By) = 85305 (B,)) + 81585(By) = $55b5(By) = 0 (91)
for each root B, € M,,. Since s55 = s,, +S,; and polynomials 8§ ,(x), S5(x) on
the set M,, take only zero values, and polynomials aé(x), bé(x) at each point
of this set simultaneously acquire zero or unit values, equality (91), as well as
(90), also holds for every B, € M,,. Thus, on the basis of these equalities we
can write the following congruences

8 4 (x)(s35 + 8,305 (X) = $y3b5(x)) — 5,,85(x) = 0 (mod ¢, ,(x)),
Ay (20)(S35 + 130 5(2) — Sy3b5 (20)) + 8,50 5 () — Sy5b5 () = 0 (mod @y, (). (92)
Subtracting the previous one from the congruence (92) multiplied by a,(x),

we get

83405 (X) + 81105(x) + 8,50, ()35 () + 5755 (x)05(x) —

— 322a1(x)b;(x) — 323a3(x)b;(.x') =0 (mod @,,(x)) (93)
or

83305 (2) — by (X)(8; + 8150, () + $;3a5(2)) = by (2)(895a, () + Syza5(x) —

— b (2)(sy; + 8190, () + 5,305(2))) (mod @ ,(x))

in another form. The left and right sides of the last congruence are divided
into @,(x) (see (89) and the first congruence of (6)). Since (¢,(x), ¢;5(x)) =1,
the congruence (93) is performed modulo ¢,(x) = ¢,(x)p,,(x), ie. the second
congruence of (6) is true. The third congruence of (6) coincides with (92).
Therefore, according to Proposition 1 matrices A(x) and B(x) are ssk.e. ¢

Corollary 1. If for matrices A(x) and B(x) the conditions of one of
mn

Theorems 1 — 4 are satisfied, then the left transforming matrix |s

AN
relation (7) has an upper triangular form. In addition, by conditions of
Theorem 1, all diagonal elements are equal and there are zero elements in
positions (1, 2), (2, 3). By conditions of Theorem 2, first two diagonal elements
3

of the matrix "sij "1 are equal and there is a zero element at position (1,2). By
conditions of Theorem 3, the last two diagonal elements of the matrix are equal
and there is a zero element at position (2,3).
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Conclusions. This work completes the study of the problem of classifica-
tion of polynomial 3x3-matrices of simple structure up to semiscalar
equivalence. Proposition 1 is technical in nature. The use of Proposition 1
made it possible to significantly shorten the proof of other statements and
theorems. Propositions 2, 5 are statements of existence. They establish the
reducibility of the matrix from the selected class by transforming the
semiscalar equivalence to the oriented by characteristic roots reduced matrix.
The method of constructing the latter is provided on the basis of Propositions
2, 5. Propositions 3 and 4 specify the invariants of the oriented by
characteristic roots reduced matrix. Theorems 1 —4 give the necessary and
sufficient conditions for the semiscalar equivalence of oriented by the same
characteristic roots reduced matrices. Corollary 1 indicates the form of the left
transforming matrix during the transition from one reduced matrix to another
semiscalarly equivalent reduced matrix. The method of constructing this
matrix can be taken from the proofs of Theorems 1 — 4. In particular, by
conditions of Theorem 1, the nonzero elements of the left transforming matrix
can be found by the solution of equation (43). The obtained results are
applicable to the classification problem accurate up to the similarity of pairs of
numerical matrices and to determination of the invertible solutions of matrix
equations of type XA(x)—B(x)Y(x)=0 over a ring of polynomials with respect

to unknown X, Y(x).
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NPO TPUKYTHY ®OPMY 3 x 3-MATPUL|I MPOCTOI CTPYKTYPU CTOCOBHO
HAMIBCKANAPHOI EKBIBANIEHTHOCTI

Jas noatnomiaavHux 3 X 3 -mMampuydb nNPocmol cCmpykmypu 6i0HOCHO HANIBCKAAAPHOL
eKBIBANeHMHOCTT 8CTMAHOBACHO CNEYLaALbHY MPurymuy gopmy. Brasaro memod noby-
dosu mampuuyb maxoi opmu. Jas mampuysb maxoi opmu 3HatideHo itHeapiaHmu ma
8CMAH08ACHO HEOOXIOHT ma OCMAMHE YMOB8U TLHHOT HANIBCKANIPHOT eK8I8ALeHMHOCTNI.
3anpononosaro Mmemod nod6YOosU NepPemeopProsaLbHUL MAMPUYUL NPU nepexodi 810
00HIEL mampuyl cneyiarvbhoi mpukymuol gopmu 0o tHWOT.
Katouoei caosa: mampuys npocmoil cmpykmypu, HANIBCKALAPHA eK8I8ALeHMHICMb
MAMPUYDL, CNEYLGAbHA MPUKYMHA HopmMa MAMPUYDL, 38e0eHa OPIEHMOBAHA 3d
rapaxmepucmutHUMU KOPEeHAMU MAMPUY.
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