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M. M. Sheremeta ™
GEOMETRIC PROPERTIES OF LAPLACE - STIELTJES INTEGRALS

The concepts of pseudostarlikeness and pseudoconvexity are introduced for
Laplace — Stieltjes integrals. The criteria for pseudostarlikeness and pseudocon-
vexity are proved and applied to the study of a meighborhood of a function and
convolutions of functions.
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Introduction. Let V be a class of non-negative non-decreasing unboun-
ded right-continuous functions F on [0,+0). We assume that a non-negative
bounded function f on [0,+w) is such that Lebesque — Stieltjes integral

A
If(x)esx dF(x) exits for every s € C and A €[0,+x). The integral
0

1(s) = j f(x)e*™ dF(x), s=o+it,
0

is called [4, 5] a Laplace — Stieltjes integral. Since Laplace — Stieltjes integrals

are direct generalization of the Laplace integral jf(x)esx dx and the Dirichlet
0

o0
. 78 . . . . .
series Z f,e ™ with non-negative coefficients and exponents (choosing
n=0

F(x) =n(x) = Z 1), the investigation of the properties of Laplace — Stieltjes
Ap<x
integrals is necessary and actual.
Let o, be the abscissa of the absolute convergence of I(s) such, that

I(c) exits for every o < o,. In [22, p. 13] it is proved that if either InF(x) =

=o(x) or InF(x)=o(n f(x)) as x — +o, then o, >a:= lim llnL. On
a0 X f(X)

1 1

the other hand, if there exists lim —In——=a, then o, =a [22, p. 19]
x—+0 L f(x) ¢
Hence it follows that if
1
In F(x) = o(x), In —— = o(x) (1)
f(x)

as x — +o, then o, =0.
Let A >0. By V, we denote a class of the functions F €V such that
F(x)=0 on [0,A), F(A) > 0 and (1) holds. Then

I(s) = f(WF(M)e™ + j f(x)e’® dF(x). (2)
A

For f(A)> 0, we denote the class of functions of the form (2) by LS*. By

LS~ , we denote the class of functions of the form
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J(s) = FOOF(Q)e™ — [ flx)e™ dF(x). (3)
A

We will call function (3) the spoilt Laplace — Stieltjes integral
The purpose of proposed article is to study the geometric properties of

the functions from the classes LS and LS.
1. Conformity and non-univalence. The following theorem is true.

Theorem 1. The functions I e LS* and J e LS~ are non-univalent in
I, ={s:Res < 0}. If
[ =f(@)dF (@) < MFOIF(), )
A

then the functions I, J are conformal in II,.

Proof. Weput g(s) = jf(x)esx dF(x). Then for every ¢ > 0
Py

—g(s) e o(x—-A i o(x-\
exp {sr} = { F(x)e” ™ dF(x) + j f(x)e® ™ dF (x).

In view of the right continuity of F, for c <0 we have that

A+e

Ate A+e

j f(x)e® = dF(x) < j f(x)dF(x) <

A A
<sup{f(@):A<x<A+e}(FL+e)—-F(L) >0

as € > 0 and

[ f@e= ™ dF(a) >0

A+e

g9(s) <1
FF(hexp{sh}| 4

as ¢ — —oo. Thus, there exists o, € (-©,0) such that

for all s, Res <o,. Let

_In2 In2

G, =0, S Gy =01~ ==, w = f(M)F(A)exp{c;r}.

If Res =0, then
|f(MF(M) exp {sh} —w| = f(M)F(L)exp{c A} — f(M)F(L)exp{c,A} =

_ ﬂMF(MZXP {og*} > 2]g(s)|,

and if Res = o,, then
|[fOF(\) exp {sh} —w| > fMF(A)exp{o A} — fF(L)F(A)exp{o,A} =

_ FfMF(L)exp {o,r}
2

If 6, <o <0, and either s=c +in/A or s =oc+3in/A, then

[fF) exp {sh} — w| = f(MF(A)exp {or} + f(M)F(A)exp{o,A} =

> 2|g(s)|.

> f(MF(L)exp {or} > 4|g(s)|.
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Hence it follows that on the sides of the rectangle R with the vertices

T 1T 3T 31T
%250 St oo T

the inequality |g(s)| <|f(MF(A)exp{sr}—w|/2 holds. Since I(s)—
= f(MF(M)exp{sh} —w+g(s) and J(s)—w = fA)F(A)exp{sh} —w —g(s), by

Rouche’s theorem the functions I(s), J(s) and exp{sA} have the same num-

GO+

ber of w -points in the interior of R. But in the interior of R the function
exp {sA} has only one w-point s = o; + 2in/A. Therefore, I and J have one
w -point in the interior of R.

By analogy one can show that in the domain bounded by the rectangle
with the vertices
3in 3in ol 51
R S A AR
the functions I and J have one w -point, and thus, I and J are non-univa-
lent in IT;.

Further, for I, we have

Gy +

xf(x)

I'(s) = Af(WF(h)e™ (1 + f Af(WF(L)

exp {s(x — 1)} dF(.x')j .
Therefore, for all s eIl;, I '(s) # 0 if and only if

xf(x)
I FOOF() exp {s(x — A)}dF(x) # 0, sell,.

From condition (4) it follows that for all s € Il

zf(x) exp{o(x - A1)} dF(x) <

kaa(x exp {s(x ~ M)} dF (x) ka(K)F(K

FMF(R)

xf(x)
‘jxf(x FmdF(x)gL

Le. the function I is conformal in II;. The conformity of J can be proved

similarly. Theorem 1 is proved. ¢

2. Pseudostarlikeness and pceudoconvexity. An analytic function f(z) =
= Y f,2" univalent in D ={z:|z| <1} is said to be convex if f(D) is a con-

vex domain. It is well known [2, p. 203] that the condition Re{l +zf"(2)/f'(2)} >
>0, zeD, is necessary and sufficient for the convexity of f. It is clear that

f is convex in D if and only if g(z) = (f(z) — ]‘0)/]‘1 =z+ Z g,2" is convex in

D. The function g is said to be starlike in D if Re{z9'(2)/g(z)} >0, ze D [2,

p.- 202]. A. W. Goodman [12] (see also [23, p. 9]) proved that if Zn|gn| <1,
n=2

then function g is starlike. The concept of the starlikeness got the series of

generalizations. I. S. Jack [16] studied starlike functions of order a €[0,1), ie.

such functions g, for which Re{zg'(z)/g(z)} > a., z € D. It is proved [16], [23,
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p. 13] that if Z (n—a)|g,| <1-a, then function (1) is a starlike function of
n=2

order a. V. P. Gupta [13] introduced the concept of a starlike function of or-

der o €[0,1) and type B € (0,1]. This is a function g satisfying the inequality

' ' -1
2f (2) 2f (2)
-1 <B.
@ e P
If we put z=¢*, G(s) = g(e®) and ¥(s) = f(e’) then the functions G and
Y are analytic in I,

+1-2a

Re {zg'(z)/g(z)} >0, zeD < Re {G'(s)/G(s)} >0, sell,
and
Re{l+zf"(2)/f'(2)} >0, zeD, < Re{¥'(s)/¥'(s)}>0, sell,.

Therefore, as in [23, p. 137] and [1], we will call the function G conformal in
I1, pseudostarlike if

Re{G'(s)/G(s)} > 0, sell,, (5)
and pseudoconvex if
Re {G"(s)/G'(s)} > 0, sell. (6)

It is clear that G is pseudoconvex if and only if G’ is pseudostarlike.
We say that a curve C ={w = w(t): - <t < 40} has the convexity pro-

perty if the tangent to C revolves in the positive direction and has the star-
likeness property if argw(t) increases on (-, +). From the proofs of Propo-

sitions 8.1 and 8.2 in [23, p. 138], it can be seen that a function G conformal in
I1, is pseudoconvex if and only if each curve

C(o,) ={w =G(o, +1it): —0 < t < 40}, -0 <o, <0,
has the convexity property, and G is pseudostarlike if and only if each curve
C(c,), —© < o, <0, has the starlikeness property.

A function G conformal in II; is said [24] to be pseudostarlike of the

order a €[0,1) if

Re{G'(s)/G(s)} > a, sell,. (7
Since for every A >0 the inequality |w—A|<|w —(2a —1)| holds if and only
if Rew > a, a function G is pseudostarlike of the order a if and only if

Gs) 5| |G®) _ (g -
‘W Al < G(s) (2(X }\.)

)
In view of (8) a function G conformal in II; we call pseudostarlike of the
) and the type B € (0,1] if [24]

s sell. (8)

order a € [0,1

G'(s)
G(s)

G'(s)
G(s)

—X‘<B —(Z(X—}\.)‘, sell,. 9)

Similarly [24], a function G conformal in II; is said to be pseudoconvex of
the order a €[0,1), if

Re{G"(s)/G'(s)} > a, sell,.
and is said to be pseudoconvex of the order a € [0,1) and the type B € (0,1] if
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‘G”(S) ~ }\“ . B G”(S)
G'(s) G'(s)
Theorem 2. Let L 21, FeV,, f(A) >0, a€[0,1) and B € (0,1]. If

- (2a - M), sell,.

o0

f{(l +B)x — 2Ba — M1 - B)}f(x) dF () < 2B(A — a) F(MF(R) (10)

I

then the function I € LS™ is pseudostarlike of the order o and the type B.
P r oo f. It is clear that for the function G(s) = I(s) condition (9) holds
if and only if

[I'(s) = M(s)| = B|I'(s) = (2o = M)I(s)| < 0,  sell,. (11)
On the other hand, in view of (2),

|T'(s) = MI(s)| = B|T'(s) — (200 — M)I(s)| = ‘ AFV)F(L)e™ +

+ fo(x)esx dF(x) - Lf(MF()e™ — j f(x)e®™ dF(x)
A r

-B

AFVF(L)e + fo(x)e”dF(x) — (20— MF(MFL)e™ -
A

[ @ =0 f(@)edF(x)
A

— (20— ) j f(x)e**dF (x)
A

-B

2(h — ) f(M)F(L)e™ + j (x — 200 + M) f(x2)e* dF(x)
A

Since —|a +b| < —|a|+|b| and o <0, hence, in view of (10), we get

|I'(s) = MI(s)| = B|I'(s) — (20 — M)I(s)] < j(x — M) f(x)e®™ dF(x) +
A
+ Bj (x — 200 + M) f(x)e®® dF(x) — 2B(A — o) fF(M)F(L)e* =
A

— % U [@+B)x —2Ba = A1 = B)]F(x)e” ™ dF(x) -
A

o0

= 2B(h - Ot)f(X)F(k)j < j[(l +PB)x - 2Ba — A1 - B)] x

A
x a(x)dF(x) - 2B(A —a)f(M)F(A) <0,
i. e. (11) holds. Theorem 2 is proved. ¢

Since I is pseudoconvex of the order a and the type B if and only if I'
is pseudostarlike of the order o and the type B, Theorem 2 implies the fol-
lowing statement.

Corollary 1. Let A 21, FeV,, f(A) >0, a €[0,1) and B <(0,1]. If
f{(l +B)x —2Ba — M1 - B)lxf(x) dF(x) < 2BALF(MF(M)(A — o), (12)
A
then the function I € LS* is pseudoconvex of the order o and the type B.
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Theorem 2 and Corollary 1 imply the following statements.
Corollary 2. Let A 21, FeV,, f(A) >0 and a €[0,1). If

f(x —a)f(x)dF(x) < f(MFA)(A - o), (13)
A

then the function I € LS is pseudostarlike of the order o, and if

f(x — a)xf(x)dF(x) < Af(MF(RM) (A - a), (14)
A

then the function I € LS is pseudoconvex of the order o.
Corollary 3. Let L 21, FeV, and f(A)> 0. If condition (4) holds, then

the function I € LS™ is pseudostarlike, and if

[ f(@)dF () < MPFOIF(), (15)
A

then the function I € LS is pseudoconvex.

Remark 1. In theorem 2 and Corollaries 1 and 2, the condition A >1 can
be replaced by a condition of A >0, but it should be considered that
0<a<A.

Let us turn to the spoilt Laplace — Stieltjes integral. As above we have

|J'(s) = AJ(s)| = B|T'(s) = (20 = R)J(s)| =

[@=2)f(x)e™ dF (x)
A

’

-B j(x — 20 + M) f(x)e’® dF(x) - 2(h — o) f(V)F(L)e™
A

and since —|a—b|<a-b, we get

[J'(s) = AJ(s)| = B|J'(s) = (2o = L) J(s)| <

[ @ =0 f(@)e™™ dF (x)
A

—[2B(1 — @) F(W)F (L) | + <

Bf (x — 20, + 1) f(x)e*® dF(x)
A

< | (x = N)f(x)e® dF(x) — 2B(A — a)f(MF(L)e®r +

> e—3

+ BT (x — 200 + M) f(x)e®* dF(x) = e [T[u +PB)x — 2Ba —
r r
- M1 - PB)] f(x)e®* M dF(x) - 2B(h — oc)f(k)F(k)j <

< I[(l +B)x - 2Bar = A1 - B)] a(x) dF(x) — 2B(1 — o) F(L)F(R).
A

Therefore, if condition (10) holds, then |J'(s)— AJ(s)| = B|J'(s) = (2a.— 1)J(s)| < 0
and the function J € LS~ is pseudostarlike of the order o and the type B.
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On the contrary, suppose that J € LS~ is pseudostarlike of the order a
and the type B. Then

~[ (@ = M f(x)e’™ dF ()
A

2k — ) fF(L)F(A)e™ — j (x =20 + A)f(x)e** dF(x)
A

_ ) -0
[J'(s) = (20 — 1) J(s)|

<PB.

Therefore, for all s €Il

[ @ = f(@)e™ dF (x)
Re 2 ~ <B,

2k — o) fF(M)F(h)e — J(ac - 20 + A) f(x)e* dF(x)
n

whence for all 6 <0 we get

00

[@=2)f(x)e™ dF(x)
2 <B.

2L — o) fF(M)F(L)e® — J(x —2a + A)f(x)e® dF(x)
A

Passing to the limit as ¢ — 0 in this unequality we obtain

[@=1)f(x)dF ()
A

P <B,
20 —a)f(MF(X) - J(x — 20+ A)f(x)dF(x)
A

whence (10) follows.
Thus, the following theorem is correct.

Theorem 3. Let A >1, FeV,, f(A)>0, aec[0,1) and P <(0,1]. The
function J € LS~ is pseudostarlike of the order o and the type B if and only
if condition (10) holds.

Theorem 3 implies the following statements.

Corollary 4. Let .21, FeV,, f(A)>0, aae[0,1) and B e(0,1]. The

function J € LS~ is pseudoconvex of the order o and the type B if and only
if condition (12) holds.

Corollary 5. Let A>1, FeV,, f(A)>0 and a€[0,1). The function
J € LS~ is pseudostarlike of the order o if and only if condition (13) holds,

and the function J € LS~ is pseudoconvex of the order o if and only if
condition (14) holds.

Corollary 6. Let L>1, FeV, and f(A)>0. The function J € LS~ is
pseudostarlike if and only if condition (4) holds, and the function J € LS~ 1is

pseudoconvex if and only if condition (15) holds.
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3. Neighborhoods of the spoilt Laplace — Stieltjes integrals. Following
A. W. Goodman [12] and S. Ruscheweyh [21], for a function f(z)=

=z+ ) f.2" , analytic in the unit disk D = {z:|2| < 1}, a set
le=2

Ny (f) = {Q(Z) =z+ Y 0.2 D k|g, — fo| < 5}
k=2 k=2

is called its neighborhood. The neighborhoods of functions analytical in D for
various classes of functions were studied by many authors (we mention here
only the articles [6, 10, 11, 19, 20, 25]).
J(s)
FIF()

_fx)

Let J e LS™. We put J(s)= FOFN

and a(x) = . Then

J(s)=e" - Ja(x)esx dF(x). (16)
A

We denote the class of such functions by LS~ and similarly to Ng(f), for

m >0, 8 >0 we define the neighborhood of the function J as follows

Om’s(j)={Q(s =% jb(x)e“ dF(x) e

eIZS:jxm|a(x)—b(x)|dF(x)sa}. (17)
A

Lemma 1. Let Je LS. Then é eOQ)SA(j) if and only if Q'/k eOl’S(j'/k).
Proof. Clearly

J-.x'a(.x') = AR (), J‘xb(.x') = dF(x).
Py A

Therefore, @ /keOlS(J /7) if and only if J xa(x) xb(x

‘dF(x)<6 i e. if

and only if sz |a(x) - b(x)|dF(x) < 81 . The last condition holds if and only if
A

Qe0,4 (). *
Now we prove the following theorem.
Theorem 4. Let 1<A <2, FeV,, E(s) = ™.

In order that the function Q s pseudostarlike in Il , it is sufficient that
é €0, ,, (E) and necessary that é €O, kb(k)F(k)(E)'

In order that the function Q is pseudoconvex, it is sufficient that

Q€0,,54)(E) and necessary that Q€0 ,, . (E).

Proof. If QeOm(E), then be(ac)dF(x) < 8. Therefore, if 6=2-24,

A
then
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1Q(s)- Q(s)| =

retr — j xb(x)e™™ dF (x)—e™ + j b(x)e®™ dF(x)
A A

<

(A —1)e** — j(x — 1)b(x)e®™ dF(x)
A

<(h—1)e + j(x —1)b(x)e®® dF(x) =
A
= —1)e + ij(x)e"x dF(x) - j b(x)e®* dF(x) <
A A
< (A =1)e + e j xb(x) dF () — j b(x)e®™ dF(x) <
A A

<(h—1+8)e™ - j b(x)e®® dF(x) < e — j b(x)e®™ dF(x).
A A
On the other hand,

1Q(s)| =

e+ Ib(x)esx dF(x)
A

> et — Ib(x)ecx dF(x).
A

Thus, |Q'(s)-Q(s)| <Q(s), ie.

<1 for all seIl,. From this it follows

Q) _,
QAs)

that Re{Q'(s)/Q(s)}>0, ie. the function @ is pseudostarlike in I1,. The
sufficiency of the condition Q €0, ,,(E) is proved.
We prove the necessity of the condition QGOM(E). From Corollary 6 it

follows that the function Q is pseudostarlike in II;, if and only if
ij(ac)dF(x) < A(MF(L), ie @ €0, 5(E) with 8 =Ab(A)F()). The first part of
)

Theorem 4 is proved.
Now, if QeO,,,4 (E), then by Lemma 1 Q/heOp, , (E/1)=

= 0172% (E). Therefore, the functions Q'/k and Q' are pseudostarlike. Thus,

the function Q is pseudoconvex. On the other hand, if Q is pseudoconvex

then Q/k is pseudoconvex and Q'/X is pseudostarlike, i. e. éreol,kb(k)F(k)(E)

and by Lemma 1, Q eO x)F(x)(E)' The proof of Theorem 4 is complete. ¢

2,1.2b(

In the case where J is pseudostarlike of the order o the following
statement is true.

Proposition 1. Let L >1, FeV, and 0<a, <a<l1.

If J is pseudostarlike of the order o and Q is pseudostarlike of the order
a, then Qe O, 5(J) with &=A(a(r)+b()F().

If J s pseudoconvex of the order a and Q is pseudoconvex of the order

a, then Qe0,;(J) with &=2*(a()+b(M)FQ).
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Prootf.IfJis pseudostarlike of the order o and Q is pseudostar-
like of the order o, then by Corollary 5 we have

I(x —a)a(x)dF(x) < alM)F(M)(X — a),
A

[ (@ = a))bla) dF () < BAFR)OL — ay).
A

Therefore,
jx|a(x) — b(x)|dF(x) = j . fa (x - a,)|a(x) - b(x)|dF(x) <
A A 1
<= _kal {(x — a,)]a(x) - bx)| dF(x) <
< _kal U(x — oy )a(x) dF(x) + { (-, )b(x)dF(x)J <
<X (j 7N (& - wale) dF(x) + BO)FO)(. — al)j <
A—oy S r-a
<X [ (x - c)a(@) dF(x) + AbAIF () <
A—o 2

< Aa(M)F(A) + Ab(MF(A),

ie. QeOm(j) with & = A(a(r) + b(A))F(X). The first part of Proposition 1 is

proved.
The second part of Proposition 1 can be easily proved using Lemma 1

and its first part. ¢

Remark 2. For the function J pseudostarlike of the order a, we could
not find & > 0 such that from the condition QEOLS(j) it follows that Q is
pseudostarlike of the order a, €[0,a).

For the neighborhoods of pseudostarlike and pseudoconvex functions of
the order a €[0,1) and the type B € (0,1) the following theorem is true.

Theorem 5. Let A>1, FeV,, 0<a<l, 0<B<B; <1 and J s
pseudostarlike of the order a €[0,1) and the type B <(0,1). Suppose that
b(A) =2 a(A) and put

@+ BOA - 20B; —A(1-B))
T A+BA-2aB-A(1-B) ’

_ 200 = )F)(B,b(A) — oBa(}))
- 1+B, ’
_ 21t = )F)(B,b(R) + oBa(h))
2 1 +Br—2aB; —A(1-By)

5,
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In order that Q is pseudostarlike of the order o €[0,1) and the type
By, €(0,1), it is sufficient that Q € 01,51 (j) , and it is necessary that Q € 01,52 (j) .

In order that @ is pseudoconvex of the order o €[0,1) and the type
B, €(0,1), it is sufficient that QeOZMI(j), and it 1is mecessary that

Qe 02,7»52 J).
Pr oo f. At first we note that

(1+[31)x—2a[31—7u(1—31)_0) B _(DB>0
=, 1 ,

X 1+ —20p-(1-p)

and in view of the condition b(A) = a(A) we have 3, > 0.
Since J is pseudostarlike of the order o €[0,1) and the type B € (0,1),

by Theorem 3 we have

j {1+ B)x — 2Ba — A(1 - B)}a(x) dF(x) < 2B\ — a)a(L)F(X). (18)
A
Therefore, if Q € 01,51 (j), then for 0 <P <P, <1 we get

[{a+Bya —2Bo - 11 - B,)}b(x) dF () <
A

< 1 {@+B))x —2Ba - A1 - By)}|bx) - a(x)|dF (x) +

> e—38

+ [{a+By)x - 2B,0 - 1(1 - B)}a(x) dF (x) <
A

< (1+ B[ 2 [b(@) - a(x)| dF (x) +
A

+T(1+Bl)x—261a—k(1—ﬁl)
} W+ Bz - 2Bo 11— B)

x {(1 +B)x - 2Ba — A(1 — B)}a(x)dF(x) <
<1 +By)8; +2Bo(A — a)a(r)F(L) =
=2B; (A — a)b(MF(R),
i. e. by Theorem 3 the function Q is pseudostarlike of the order a €[0,1) and
the type B; €(0,1).

Now suppose that the function @ is pseudostarlike of the order a € [0,1)
and the type B, € (0,1). Then in view of (18) we have

o0

_w x
{x|b(x)—a(x)|dF(x) - .J: (1+By))x—-2B,0—-A(1-B,) g

x{(1+B,)x —2B,00 — (1 —B)}|b(x) — a(x)|dF(x) <
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< A
T (I +BA-20B;, M1 -By)

[+ Bz - 28,0~ M1 - B} x
A

A
L+ B )% —2ap, —A1—P,)

x [b(x) — a(x)|dF(x) <
x U{a + By — 2B 00— AL - B)b(a)dF () +
A
+ [{a+By)x - 2B, — 11 - Bl)}a(x)dF(x)j <
A

< A
T 1+ PB)R - 2aB, — M1

B ){ZBl(k —o)b(M)F (L) +
1

{@+B)x - 2Ba — A(1 - B)} x

+T(1+Bl)x—2ﬁla—k(1—ﬁl)
1 1+pB)x—-2pa—A(1l-P)

A
L+ P —20B, — (1 —P,) .

x a(x)dF(x) <

X (281 (1 = )bAIF(2) + 20B(2 — 0)a(WF(L)) = 8,

ie. @ € 01,62 (j). The first part of Theorem 5 is proved.
The second part of Theorem 5 can be easily proved using Lemma 1 and
its first part. ¢

4. Convolutions of the spoilt Laplace — Stieltjes integrals. For power
series fj (2) = Z f,m.zk, j=1,2, the series (f; *f,)(2) = Z f,ﬁlfkyzzk is called
k=0 k=0

the Hadamard composition (convolution) [14, 15]. The properties of this com-
position obtained by J. Hadamard found their applications in the theory of the
analytic continuation of the functions represented by power series [8, 14].
Note also that singular points of the Hadamard composition are investigated
in the article [3].

L. Zalzman [26] studied convolutions of univalent functions in . For the

functions fj(z)=é+ > f.7exX, j=12, M L Mogra [18] defined the
k=1

convolution as (f; * f,)(2) :%+ ka’lfk,zzk and proved, for example, that if
k=1

the functions fj are meromorphically starlike of the order o; €[0,1) and
fk’j >0 for all k>1 then f *f, is meromorphically starlike of the order

a = max{a,,a,}. Convolutions of analytic functions in I were studied also

by J. H. Choi, Y. C. Kim, and S. Owa [9], M. K. Aouf and H. Silverman [7],
J. Liu and R. Srivastava [17] and many other mathematicians.

For Dirichlet series with positive exponents increasing to +co and abso-
lutely convergent in half-plane IT, = {s: Res < 0}, a convolution was studied

in [24].
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Here for the functions jk(s) =e® —J-ak(x)esx dF(x), k=12, we define
S
the convolution as

(J, *J,)(s)=e™ - Jal(x)aQ(x)esx dF(x).
A

Corollary 5 implies the following statement.
Corollary 8. Let A 21, FeV,, a, (x)<a,(A) forall x>k and o, €[0,1)

for k=1,2.

If the functions J . are pseudostarlike of the order a, , respectively, then
the convolution jl *jz is pseudostarlike of the order o = max {a,0,}.

If the functions J . are pseudoconvex of the order a, , respectively, then
the convolution jl *jz is pseudoconvex of the order o = max{a,0,}.

Pr oo f. Indeed, if jk are pseudostarlike of the order a, then, in
view of (13),

j(x — ay)a, (x)a,(x) dF(x) < az(x)j (x - a,)a, (x)dF(x) <
A A

< ay (M)A —oy)a; (MFQR),
ie. (7) holds with G=J,*J, and a = a,. Similarly, (7) holds with G=J, *J,
and o = a,. Therefore, (7) holds with G=J,*J, and a=max{o,a,} and
thus, the convolution J 1 ] , is pseudostarlike of the order o = max{a,o,}.

The proof of the pseudoconvexity of the convolution J 1 *J , is similar. 4

Corollary 4 implies the following statement.

Corollary 9. Let L 21, FeV,, a, (x)<a,(X) forall x>, ae[0,1) and
B €(0,1] for k=1,2.

If the functions jk are pseudostarlike of the order o and the type B,

respectively, then the convolution j1 *j2 is pseudostarlike of the order o and
the type B =min{B,,B,}.

If the functions jk are pseudoconvex of the order o and the type B,

respectively, then the convolution j1 *J , s pseudoconvex of the order o and

the type B = min{B,,B,}.
Pr oo f. Indeed, if jk are pseudostarlike of the order a, then, in
view of (12),

j{(1 +B)x — 2B — A(1 - B)}a, (x)ay (x) dF (x) <
A

< a2(k)j {(1 +B)x — 2B — (1 - B)}a, (x) dF(x) <
A

< ay(M)2Bya; M)A — )F(R),
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i e. (9) holds with G=J,*J, and B =p,. Similarly, (9) holds with G =J, *J,
and B =pB,. Therefore, (9) holds with G=j1*j2 and B =min{p;,p,} and

thus, the convolution j1 *32 is pseudostarlike of the order o and the type

B = min{Bl’BQ}'

The proof of the pseudoconvexity of the convolution J; *j2 is similar. ¢

Remark 3. Since j(@:& and a(x) = & from Corollaries 8

FEQ) FOF()”

and 9 it is easy to obtain their analogues for the integrals J(s).
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FEOMETPUYHI BNACTUBOCTI IHTEITPATIB JIAMJIACA — CTINTbECA

s thmezpanig Jlanaaca — Cminmuveca 8gedeHo norammas ncesdo3ipKosocmi ma ncee-
doonykaocmi. Josedeno wpumepii Oasi mncesdosdipkogocmi ma mncegdoonyxaocmi i
3acmocosato ix 00 susuenHns oxoay PYHKYLT ma 3zopmru HYHKYLU.

Karouoei caoea: inmezpan Jlanaaca — Cminmoweca, ncesdosipkosicms, ncesdoonyraicms,

oKin PyHrYil, 3copmra PYHKYIU.
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