M. M. Sheremeta [™]

GEOMETRIC PROPERTIES OF LAPLACE - STIELTJES INTEGRALS

The concepts of pseudostarlikeness and pseudoconvexity are introduced for Laplace – Stieltjes integrals. The criteria for pseudostarlikeness and pseudoconvexity are proved and applied to the study of a neighborhood of a function and convolutions of functions.

Key words: Laplace - Stieltjes integral, pseudostarlikeness, pseudoconvexity, neighborhood of a function, convolution of functions.

Introduction. Let V be a class of non-negative non-decreasing unbounded right-continuous functions F on $[0,+\infty)$. We assume that a non-negative bounded function f on $[0,+\infty)$ is such that Lebesque – Stieltjes integral

$$\int\limits_0^A f(x)e^{sx}\,dF(x)$$
 exits for every $s\in\mathbb{C}$ and $A\in[0,+\infty)$. The integral

$$I(s) = \int_{0}^{\infty} f(x)e^{sx} dF(x), \qquad s = \sigma + it,$$

is called [4, 5] a Laplace – Stieltjes integral. Since Laplace – Stieltjes integrals are direct generalization of the Laplace integral $\int\limits_0^\infty f(x)e^{sx}\,dx$ and the Dirichlet

series $\sum_{n=0}^{\infty} f_n e^{\sigma \lambda_n}$ with non-negative coefficients and exponents (choosing $F(x) = n(x) = \sum_{\lambda_n \le x} 1$), the investigation of the properties of Laplace – Stieltjes

integrals is necessary and actual.

Let σ_c be the abscissa of the absolute convergence of I(s) such, that $I(\sigma)$ exits for every $\sigma < \sigma_c$. In [22, p. 13] it is proved that if either $\ln F(x) = 0$ or $\ln F(x) = 0$ or $\ln F(x) = 0$ as $x \to +\infty$, then $\sigma_c \ge \alpha := \lim_{x \to +\infty} \frac{1}{x} \ln \frac{1}{f(x)}$. On the other hand, if there exists $\lim_{x \to +\infty} \frac{1}{x} \ln \frac{1}{f(x)} = \alpha$, then $\sigma_c = \alpha$ [22, p. 19]. Hence it follows that if

$$\ln F(x) = o(x), \qquad \ln \frac{1}{f(x)} = o(x) \tag{1}$$

as $x \to +\infty$, then $\sigma_c = 0$.

Let $\lambda > 0$. By V_{λ} we denote a class of the functions $F \in V$ such that F(x) = 0 on $[0, \lambda)$, $F(\lambda) > 0$ and (1) holds. Then

$$I(s) = f(\lambda)F(\lambda)e^{s\lambda} + \int_{\lambda}^{\infty} f(x)e^{sx} dF(x).$$
 (2)

For $f(\lambda) > 0$, we denote the class of functions of the form (2) by LS^+ . By LS^- , we denote the class of functions of the form

 $^{^{}oxtimes}$ m.m.sheremeta@gmail.com

$$J(s) = f(\lambda)F(\lambda)e^{s\lambda} - \int_{0}^{\infty} f(x)e^{sx}dF(x).$$
 (3)

We will call function (3) the spoilt Laplace - Stieltjes integral.

The purpose of proposed article is to study the geometric properties of the functions from the classes LS^+ and LS^- .

1. Conformity and non-univalence. The following theorem is true.

Theorem 1. The functions $I \in LS^+$ and $J \in LS^-$ are non-univalent in $\Pi_0 = \{s : \operatorname{Re} s < 0\}$. If

$$\int_{\lambda}^{\infty} x f(x) dF(x) \le \lambda f(\lambda) F(\lambda) , \qquad (4)$$

then the functions I, J are conformal in Π_0 .

Proof. We put $g(s) = \int\limits_{\lambda}^{\infty} f(x)e^{sx} \, dF(x)$. Then for every $\epsilon > 0$

$$\left|\frac{g(s)}{\exp\left\{s\lambda\right\}}\right| \leq \int\limits_{\lambda}^{\lambda+\varepsilon} f(x)e^{\sigma(x-\lambda)} dF(x) + \int\limits_{\lambda+\varepsilon}^{\infty} f(x)e^{\sigma(x-\lambda)} dF(x).$$

In view of the right continuity of $\emph{F}\xspace$, for $\sigma<0$ we have that

$$\int\limits_{\lambda}^{\lambda+arepsilon}f(x)e^{\sigma(x-\lambda)}\,dF(x)\leq\int\limits_{\lambda}^{\lambda+arepsilon}f(x)\,dF(x)\leq$$

$$\leq \sup \{f(x) : \lambda \leq x \leq \lambda + \varepsilon\} (F(\lambda + \varepsilon) - F(\lambda)) \to 0$$

as $\epsilon \to 0$ and

$$\int_{\lambda+\varepsilon}^{\infty} f(x)e^{\sigma(x-\lambda)} dF(x) \to 0$$

 $\text{as }\sigma\to -\infty\text{ . Thus, there exists }\sigma_0\in (-\infty,0)\text{ such that }\left|\frac{g(s)}{f(\lambda)F(\lambda)\exp\left\{s\lambda\right\}}\right|<\frac{1}{4}$

for all s, $\operatorname{Re} s < \sigma_0$. Let

$$\sigma_1 = \sigma_0 - \frac{\ln 2}{\lambda}, \qquad \sigma_2 = \sigma_1 - \frac{\ln 2}{\lambda}, \qquad w = f(\lambda) F(\lambda) \exp\left\{\sigma_1 \lambda\right\}.$$

If $\operatorname{Re} s = \sigma_0$, then

$$\begin{split} \left| f(\lambda) F(\lambda) \exp\left\{s\lambda\right\} - w \right| &\geq f(\lambda) F(\lambda) \exp\left\{\sigma_0 \lambda\right\} - f(\lambda) F(\lambda) \exp\left\{\sigma_1 \lambda\right\} = \\ &= \frac{f(\lambda) F(\lambda) \exp\left\{\sigma_0 \lambda\right\}}{2} > 2 \left|g(s)\right|, \end{split}$$

and if $\operatorname{Re} s = \sigma_2$, then

$$\begin{split} \left| f(\lambda) F(\lambda) \exp\left\{s\lambda\right\} - w \right| &\geq f(\lambda) F(\lambda) \exp\left\{\sigma_1\lambda\right\} - f(\lambda) F(\lambda) \exp\left\{\sigma_2\lambda\right\} = \\ &= \frac{f(\lambda) F(\lambda) \exp\left\{\sigma_1\lambda\right\}}{2} > 2 \left|g(s)\right|. \end{split}$$

If $\sigma_2 \leq \sigma \leq \sigma_0$ and either $s = \sigma + i\pi/\lambda$ or $s = \sigma + 3i\pi/\lambda$, then

$$|f(\lambda)F(\lambda)\exp\{s\lambda\} - w| = f(\lambda)F(\lambda)\exp\{\sigma\lambda\} + f(\lambda)F(\lambda)\exp\{\sigma_1\lambda\} \ge$$
$$\ge f(\lambda)F(\lambda)\exp\{\sigma\lambda\} > 4|g(s)|.$$

Hence it follows that on the sides of the rectangle R with the vertices

$$\sigma_2 + \frac{i\pi}{\lambda}, \qquad \sigma_0 + \frac{i\pi}{\lambda}, \qquad \sigma_0 + \frac{3i\pi}{\lambda}, \qquad \sigma_2 + \frac{3i\pi}{\lambda}$$

the inequality $|g(s)| < |f(\lambda)F(\lambda)\exp\{s\lambda\} - w|/2$ holds. Since $I(s) - w = f(\lambda)F(\lambda)\exp\{s\lambda\} - w + g(s)$ and $J(s) - w = f(\lambda)F(\lambda)\exp\{s\lambda\} - w - g(s)$, by Rouche's theorem the functions I(s), J(s) and $\exp\{s\lambda\}$ have the same number of w-points in the interior of R. But in the interior of R the function $\exp\{s\lambda\}$ has only one w-point $s = \sigma_1 + 2i\pi/\lambda$. Therefore, I and J have one w-point in the interior of R.

By analogy one can show that in the domain bounded by the rectangle with the vertices

$$\sigma_2 + \frac{3i\pi}{\lambda}, \qquad \sigma_0 + \frac{3i\pi}{\lambda}, \qquad \sigma_0 + \frac{5i\pi}{\lambda}, \qquad \sigma_2 + \frac{5i\pi}{\lambda}$$

the functions I and J have one w -point, and thus, I and J are non-univalent in Π_0 .

Further, for I, we have

$$I'(s) = \lambda f(\lambda) F(\lambda) e^{s\lambda} \left(1 + \int_{\lambda}^{\infty} \frac{x f(x)}{\lambda f(\lambda) F(\lambda)} \exp\left\{ s(x - \lambda) \right\} dF(x) \right).$$

Therefore, for all $s \in \Pi_0$, $I'(s) \neq 0$ if and only if

$$1 + \int_{\lambda}^{\infty} \frac{x f(x)}{\lambda f(\lambda) F(\lambda)} \exp \left\{ s(x - \lambda) \right\} dF(x) \neq 0, \qquad s \in \Pi_0.$$

From condition (4) it follows that for all $s \in \Pi_0$

$$\left| \int\limits_{\lambda}^{\infty} \frac{x a(x)}{\lambda f(\lambda) F(\lambda)} \exp\left\{s(x-\lambda)\right\} dF(x) \right| \leq \int\limits_{\lambda}^{\infty} \frac{x f(x)}{\lambda f(\lambda) F(\lambda)} \exp\left\{\sigma(x-\lambda)\right\} dF(x) < \infty$$

$$\leq \int_{\lambda}^{\infty} \frac{xf(x)}{\lambda f(\lambda)F(\lambda)} dF(x) \leq 1$$
,

i.e. the function I is conformal in Π_0 . The conformity of J can be proved similarly. Theorem 1 is proved.

2. Pseudostarlikeness and pceudoconvexity. An analytic function $f(z)=\sum_{n=0}^{\infty}f_nz^n$ univalent in $\mathbb{D}=\{z:|z|<1\}$ is said to be convex if $f(\mathbb{D})$ is a convex domain. It is well known [2, p. 203] that the condition $\operatorname{Re}\{1+zf''(z)/f'(z)\}>>0$, $z\in\mathbb{D}$, is necessary and sufficient for the convexity of f. It is clear that f is convex in \mathbb{D} if and only if $g(z)=(f(z)-f_0)/f_1=z+\sum_{n=2}^{\infty}g_nz^n$ is convex in \mathbb{D} . The function g is said to be starlike in \mathbb{D} if $\operatorname{Re}\{zg'(z)/g(z)\}>0$, $z\in\mathbb{D}$ [2, p. 202]. A. W. Goodman [12] (see also [23, p. 9]) proved that if $\sum_{n=2}^{\infty}n|g_n|\leq 1$, then function g is starlike. The concept of the starlikeness got the series of generalizations. I. S. Jack [16] studied starlike functions of order $\alpha\in[0,1)$, i.e. such functions g, for which $\operatorname{Re}\{zg'(z)/g(z)\}>\alpha$, $z\in\mathbb{D}$. It is proved [16], [23, 25]

p. 13] that if $\sum_{n=2}^{\infty} (n-\alpha)|g_n| \le 1-\alpha$, then function (1) is a starlike function of

order α . V. P. Gupta [13] introduced the concept of a starlike function of order $\alpha \in [0,1)$ and type $\beta \in (0,1]$. This is a function g satisfying the inequality

$$\left|\frac{zf'(z)}{f(z)}-1\right|\cdot \left|\frac{zf'(z)}{f(z)}+1-2\alpha\right|^{-1}<\beta.$$

If we put $z=e^s$, $G(s)=g(e^s)$ and $\Psi(s)=f(e^s)$ then the functions G and Ψ are analytic in Π_0 ,

$$\operatorname{Re}\left\{zg'(z)/g(z)\right\}>0, \quad z\in\mathbb{D}, \quad \Leftrightarrow \quad \operatorname{Re}\left\{G'(s)/G(s)\right\}>0, \quad s\in\Pi_0\,,$$

and

$$\operatorname{Re}\left\{1+zf''(z)/f'(z)\right\}>0, \quad z\in\mathbb{D}, \quad \Leftrightarrow \quad \operatorname{Re}\left\{\Psi''(s)/\Psi'(s)\right\}>0, \quad s\in\Pi_0.$$

Therefore, as in [23, p. 137] and [1], we will call the function G conformal in Π_0 pseudostarlike if

$$\operatorname{Re}\left\{G'(s)/G(s)\right\} > 0, \qquad s \in \Pi_0, \tag{5}$$

and pseudoconvex if

$$\operatorname{Re}\left\{G''(s)/G'(s)\right\} > 0, \quad s \in \Pi_0.$$
 (6)

It is clear that G is pseudoconvex if and only if G' is pseudostarlike.

We say that a curve $C = \{w = w(t) : -\infty < t < +\infty\}$ has the convexity property if the tangent to C revolves in the positive direction and has the star-likeness property if $\arg w(t)$ increases on $(-\infty, +\infty)$. From the proofs of Propositions 8.1 and 8.2 in [23, p. 138], it can be seen that a function G conformal in Π_0 is pseudoconvex if and only if each curve

$$C(\sigma_0) = \{ w = G(\sigma_0 + it) : -\infty < t < +\infty \}, \quad -\infty < \sigma_0 < 0,$$

has the convexity property, and G is pseudostarlike if and only if each curve $C(\sigma_0)$, $-\infty < \sigma_0 < 0$, has the starlikeness property.

A function G conformal in Π_0 is said [24] to be pseudostarlike of the order $\alpha \in [0,1)$ if

$$\operatorname{Re}\left\{G'(s)/G(s)\right\} > \alpha, \qquad s \in \Pi_0. \tag{7}$$

Since for every $\lambda > 0$ the inequality $|w - \lambda| < |w - (2\alpha - \lambda)|$ holds if and only if $\text{Re } w > \alpha$, a function G is pseudostarlike of the order α if and only if

$$\left| \frac{G'(s)}{G(s)} - \lambda \right| < \left| \frac{G'(s)}{G(s)} - (2\alpha - \lambda) \right|, \qquad s \in \Pi_0.$$
 (8)

In view of (8) a function G conformal in Π_0 we call pseudostarlike of the order $\alpha \in [0,1)$ and the type $\beta \in (0,1]$ if [24]

$$\left| \frac{G'(s)}{G(s)} - \lambda \right| < \beta \left| \frac{G'(s)}{G(s)} - (2\alpha - \lambda) \right|, \qquad s \in \Pi_0.$$
 (9)

Similarly [24], a function G conformal in Π_0 is said to be pseudoconvex of the order $\alpha \in [0,1)$, if

$$\operatorname{Re}\left\{G''(s)/G'(s)\right\} > \alpha, \qquad s \in \Pi_0.$$

and is said to be pseudoconvex of the order $\alpha \in [0,1)$ and the type $\beta \in (0,1]$ if

$$\left|\frac{G''(s)}{G'(s)} - \lambda\right| < \beta \left|\frac{G''(s)}{G'(s)} - (2\alpha - \lambda)\right|, \qquad s \in \Pi_0.$$

Theorem 2. Let $\lambda \geq 1$, $F \in V_{\lambda}$, $f(\lambda) > 0$, $\alpha \in [0,1)$ and $\beta \in (0,1]$. If

$$\int_{\lambda}^{\infty} \left\{ (1+\beta)x - 2\beta\alpha - \lambda(1-\beta) \right\} f(x) \, dF(x) \le 2\beta(\lambda - \alpha)f(\lambda)F(\lambda) \,, \tag{10}$$

then the function $\ I \in LS^+$ is pseudostarlike of the order α and the type β .

P r o o f. It is clear that for the function G(s) = I(s) condition (9) holds if and only if

$$|I'(s) - \lambda I(s)| - \beta |I'(s) - (2\alpha - \lambda)I(s)| < 0, \quad s \in \Pi_0.$$
 (11)

On the other hand, in view of (2),

$$\begin{aligned} \left|I'(s) - \lambda I(s)\right| - \beta \left|I'(s) - (2\alpha - \lambda)I(s)\right| &= \left|\lambda f(\lambda)F(\lambda)e^{s\lambda} + \right. \\ &+ \int_{\lambda}^{\infty} x f(x)e^{sx} dF(x) - \lambda f(\lambda)F(\lambda)e^{s\lambda} - \lambda \int_{\lambda}^{\infty} f(x)e^{sx} dF(x)\right| - \\ &- \beta \left|\lambda f(\lambda)F(\lambda)e^{s\lambda} + \int_{\lambda}^{\infty} x f(x)e^{sx} dF(x) - (2\alpha - \lambda)f(\lambda)F(\lambda)e^{s\lambda} - \right. \\ &- \left. \left. \left. \left(2\alpha - \lambda\right)\int_{\lambda}^{\infty} f(x)e^{sx} dF(x)\right| = \left|\int_{\lambda}^{\infty} (x - \lambda)f(x)e^{sx} dF(x)\right| - \\ &- \beta \left|2(\lambda - \alpha)f(\lambda)F(\lambda)e^{s\lambda} + \int_{\lambda}^{\infty} (x - 2\alpha + \lambda)f(x)e^{sx} dF(x)\right| \end{aligned}$$

Since $-|a+b| \le -|a|+|b|$ and $\sigma < 0$, hence, in view of (10), we get

$$\begin{split} \left|I'(s) - \lambda I(s)\right| - \beta \left|I'(s) - (2\alpha - \lambda)I(s)\right| &\leq \int\limits_{\lambda}^{\infty} (x - \lambda)f(x)e^{\sigma x} \ dF(x) + \\ &+ \beta \int\limits_{\lambda}^{\infty} (x - 2\alpha + \lambda)f(x)e^{\sigma x} \ dF(x) - 2\beta(\lambda - \alpha)f(\lambda)F(\lambda)e^{\sigma \lambda} = \\ &= e^{\sigma \lambda} \left(\int\limits_{\lambda}^{\infty} \left[(1 + \beta)x - 2\beta\alpha - \lambda(1 - \beta)\right]f(x)e^{\sigma(x - \lambda)} \ dF(x) - \\ &- 2\beta(\lambda - \alpha)f(\lambda)F(\lambda)\right) &< \int\limits_{\lambda}^{\infty} \left[(1 + \beta)x - 2\beta\alpha - \lambda(1 - \beta)\right] \times \\ &\times a(x) \ dF(x) - 2\beta(\lambda - \alpha)f(\lambda)F(\lambda) \leq 0 \,, \end{split}$$

i. e. (11) holds. Theorem 2 is proved.

Since I is pseudoconvex of the order α and the type β if and only if I' is pseudostarlike of the order α and the type β , Theorem 2 implies the following statement.

Corollary 1. Let
$$\lambda \geq 1$$
, $F \in V_{\lambda}$, $f(\lambda) > 0$, $\alpha \in [0,1]$ and $\beta \in (0,1]$. If
$$\int_{0}^{\infty} \{(1+\beta)x - 2\beta\alpha - \lambda(1-\beta)\}xf(x) dF(x) \leq 2\beta\lambda f(\lambda)F(\lambda)(\lambda - \alpha),$$
 (12)

then the function $I \in LS^+$ is pseudoconvex of the order α and the type β .

Theorem 2 and Corollary 1 imply the following statements. Corollary 2. Let $\lambda \geq 1$, $F \in V_{\lambda}$, $f(\lambda) > 0$ and $\alpha \in [0,1)$. If

$$\int_{\lambda}^{\infty} (x - \alpha) f(x) \, dF(x) \le f(\lambda) F(\lambda) (\lambda - \alpha), \tag{13}$$

then the function $I \in LS^+$ is pseudostarlike of the order α , and if

$$\int_{\lambda}^{\infty} (x - \alpha)x f(x) dF(x) \le \lambda f(\lambda) F(\lambda) (\lambda - \alpha), \qquad (14)$$

then the function $I \in LS^+$ is pseudoconvex of the order α .

Corollary 3. Let $\lambda \geq 1$, $F \in V_{\lambda}$ and $f(\lambda) > 0$. If condition (4) holds, then the function $I \in LS^+$ is pseudostarlike, and if

$$\int_{\lambda}^{\infty} x^2 f(x) \, dF(x) \le \lambda^2 f(\lambda) F(\lambda) \,, \tag{15}$$

then the function $I \in LS^+$ is pseudoconvex.

Remark 1. In theorem 2 and Corollaries 1 and 2, the condition $\lambda \geq 1$ can be replaced by a condition of $\lambda > 0$, but it should be considered that $0 \leq \alpha < \lambda$.

Let us turn to the spoilt Laplace - Stieltjes integral. As above we have

and since $-|a-b| \le a-b$, we get

$$\begin{split} \left|J'(s) - \lambda J(s)\right| - \beta \left|J'(s) - (2\alpha - \lambda)J(s)\right| &\leq \left|\int_{\lambda}^{\infty} (x - \lambda)f(x)e^{sx} \ dF(x)\right| - \\ &- \left|2\beta(\lambda - \alpha)f(\lambda)F(\lambda)e^{s\lambda}\right| + \left|\beta\int_{\lambda}^{\infty} (x - 2\alpha + \lambda)f(x)e^{sx} \ dF(x)\right| \leq \\ &\leq \int_{\lambda}^{\infty} (x - \lambda)f(x)e^{\sigma x} \ dF(x) - 2\beta(\lambda - \alpha)f(\lambda)F(\lambda)e^{\sigma\lambda} + \\ &+ \beta\int_{\lambda}^{\infty} (x - 2\alpha + \lambda)f(x)e^{\sigma x} \ dF(x) = e^{\sigma\lambda} \left(\int_{\lambda}^{\infty} \left[(1 + \beta)x - 2\beta\alpha - \lambda(1 - \beta)\right]f(x)e^{\sigma(x - \lambda)} \ dF(x) - 2\beta(\lambda - \alpha)f(\lambda)F(\lambda)\right) < \\ &< \int_{\lambda}^{\infty} \left[(1 + \beta)x - 2\beta\alpha - \lambda(1 - \beta)\right]a(x) \ dF(x) - 2\beta(\lambda - \alpha)f(\lambda)F(\lambda) \,. \end{split}$$

Therefore, if condition (10) holds, then $|J'(s) - \lambda J(s)| - \beta |J'(s) - (2\alpha - \lambda)J(s)| < 0$ and the function $J \in LS^-$ is pseudostarlike of the order α and the type β .

On the contrary, suppose that $J \in LS^-$ is pseudostarlike of the order α and the type β . Then

$$\begin{vmatrix} -\int_{\lambda}^{\infty} (x-\lambda)f(x)e^{sx} dF(x) \\ \frac{2(\lambda-\alpha)f(\lambda)F(\lambda)e^{s\lambda} - \int_{\lambda}^{\infty} (x-2\alpha+\lambda)f(x)e^{sx} dF(x)}{|J'(s)-\lambda J(s)|} = \\ \frac{|J'(s)-\lambda J(s)|}{|J'(s)-(2\alpha-\lambda)J(s)|} < \beta. \end{vmatrix}$$

Therefore, for all $s \in \Pi_0$

$$\operatorname{Re}\left\{\frac{\displaystyle\int\limits_{\lambda}^{\infty}(x-\lambda)f(x)e^{sx}\;dF(x)}{2(\lambda-\alpha)f(\lambda)F(\lambda)e^{s\lambda}-\displaystyle\int\limits_{\lambda}^{\infty}(x-2\alpha+\lambda)f(x)e^{sx}\;dF(x)}\right\}<\beta\,,$$

whence for all $\sigma < 0$ we get

$$\frac{\int\limits_{\lambda}^{\infty}(x-\lambda)f(x)e^{\sigma x}\ dF(x)}{2(\lambda-\alpha)f(\lambda)F(\lambda)e^{\sigma\lambda}-\int\limits_{\lambda}^{\infty}(x-2\alpha+\lambda)f(x)e^{\sigma x}\ dF(x)}<\beta.$$

Passing to the limit as $\sigma \to 0$ in this unequality we obtain

$$\frac{\int\limits_{\lambda}^{\infty}(x-\lambda)f(x)\,dF(x)}{2(\lambda-\alpha)f(\lambda)F(\lambda)-\int\limits_{\lambda}^{\infty}(x-2\alpha+\lambda)f(x)\,dF(x)}\leq\beta\,,$$

whence (10) follows.

Thus, the following theorem is correct.

Theorem 3. Let $\lambda \geq 1$, $F \in V_{\lambda}$, $f(\lambda) > 0$, $\alpha \in [0,1)$ and $\beta \in (0,1]$. The function $J \in LS^-$ is pseudostarlike of the order α and the type β if and only if condition (10) holds.

Theorem 3 implies the following statements.

Corollary 4. Let $\lambda \geq 1$, $F \in V_{\lambda}$, $f(\lambda) > 0$, $\alpha \in [0,1)$ and $\beta \in (0,1]$. The function $J \in LS^-$ is pseudoconvex of the order α and the type β if and only if condition (12) holds.

Corollary 5. Let $\lambda \geq 1$, $F \in V_{\lambda}$, $f(\lambda) > 0$ and $\alpha \in [0,1)$. The function $J \in LS^-$ is pseudostarlike of the order α if and only if condition (13) holds, and the function $J \in LS^-$ is pseudoconvex of the order α if and only if condition (14) holds.

Corollary 6. Let $\lambda \geq 1$, $F \in V_{\lambda}$ and $f(\lambda) > 0$. The function $J \in LS^-$ is pseudostarlike if and only if condition (4) holds, and the function $J \in LS^-$ is pseudoconvex if and only if condition (15) holds.

3. Neighborhoods of the spoilt Laplace – Stieltjes integrals. Following A. W. Goodman [12] and S. Ruscheweyh [21], for a function $f(z) = z + \sum_{k=2}^{\infty} f_k z^k$, analytic in the unit disk $\mathbb{D} = \{z : |z| < 1\}$, a set

$$N_{\delta}(f) = \left\{g(z) = z + \sum_{k=2}^{\infty} g_k z^k : \sum_{k=2}^{\infty} k \left| g_k - f_k \right| \le \delta \right\}$$

is called its neighborhood. The neighborhoods of functions analytical in \mathbb{D} for various classes of functions were studied by many authors (we mention here only the articles [6, 10, 11, 19, 20, 25]).

Let $J \in LS^-$. We put $\hat{J}(s) = \frac{J(s)}{f(\lambda)F(\lambda)}$ and $a(x) = \frac{f(x)}{f(\lambda)F(\lambda)}$. Then

$$\hat{J}(s) = e^{s\lambda} - \int_{\lambda}^{\infty} a(x)e^{sx} dF(x). \tag{16}$$

We denote the class of such functions by $\hat{L}S^-$ and similarly to $N_{\delta}(f)$, for m>0, $\delta>0$ we define the neighborhood of the function \hat{J} as follows

$$O_{m,\delta}(\hat{J}) = \left\{ \hat{Q}(s) = e^{s\lambda} - \int_{\lambda}^{\infty} b(x)e^{sx} dF(x) \in \hat{L}S^{-}: \int_{\lambda}^{\infty} x^{m} |a(x) - b(x)| dF(x) \le \delta \right\}.$$

$$(17)$$

Lemma 1. Let $\hat{J} \in \hat{L}S^-$. Then $\hat{Q} \in O_{2,\delta\lambda}(\hat{J})$ if and only if $\hat{Q}'/\lambda \in O_{1,\delta}(\hat{J}'/\lambda)$. P r o o f. Clearly

$$\frac{\hat{J}'(s)}{\lambda} = e^{s\lambda} - \int_{1}^{\infty} \frac{xa(x)}{\lambda} e^{sx} dF(x), \qquad \frac{\hat{Q}'(s)}{\lambda} = e^{s\lambda} - \int_{1}^{\infty} \frac{xb(x)}{\lambda} e^{sx} dF(x).$$

Therefore, $\hat{Q}'/\lambda \in O_{1,\delta}(\hat{J}'/\lambda)$ if and only if $\int\limits_{\lambda}^{\infty} x \left| \frac{xa(x)}{\lambda} - \frac{xb(x)}{\lambda} \right| dF(x) \le \delta$, i. e. if

and only if $\int\limits_{\lambda}^{\infty}x^{2}\,|a(x)-b(x)|\,dF(x)\leq\delta\lambda$. The last condition holds if and only if $\hat{Q}\in O_{2\,\delta\lambda}\,(\hat{J})$.

Now we prove the following theorem.

Theorem 4. Let $1 \le \lambda \le 2$, $F \in V_{\lambda}$, $E(s) = e^{s\lambda}$.

In order that the function \hat{Q} is pseudostarlike in Π_0 , it is sufficient that $\hat{Q} \in O_{1,2-\lambda}(E)$ and necessary that $\hat{Q} \in O_{1,\lambda b(\lambda)F(\lambda)}(E)$.

In order that the function \hat{Q} is pseudoconvex, it is sufficient that $\hat{Q} \in O_{2,\lambda(2-\lambda)}(E)$ and necessary that $\hat{Q} \in O_{2,\lambda^2 b(\lambda)F(\lambda)}(E)$.

P r o o f. If $\hat{Q} \in O_{1,\delta}(E)$, then $\int\limits_{\lambda}^{\infty} xb(x)\,dF(x) \leq \delta$. Therefore, if $\delta=2-\lambda$, then

$$\begin{aligned} \left| \hat{Q}(s) - \hat{Q}(s) \right| &= \left| \lambda e^{s\lambda} - \int_{\lambda}^{\infty} x b(x) e^{sx} dF(x) - e^{s\lambda} + \int_{\lambda}^{\infty} b(x) e^{sx} dF(x) \right| = \\ &= \left| (\lambda - 1) e^{s\lambda} - \int_{\lambda}^{\infty} (x - 1) b(x) e^{sx} dF(x) \right| \leq \\ &\leq (\lambda - 1) e^{\sigma\lambda} + \int_{\lambda}^{\infty} (x - 1) b(x) e^{\sigma x} dF(x) = \\ &= (\lambda - 1) e^{\sigma\lambda} + \int_{\lambda}^{\infty} x b(x) e^{\sigma x} dF(x) - \int_{\lambda}^{\infty} b(x) e^{\sigma x} dF(x) \leq \\ &\leq (\lambda - 1) e^{\sigma\lambda} + e^{\sigma\lambda} \int_{\lambda}^{\infty} x b(x) dF(x) - \int_{\lambda}^{\infty} b(x) e^{\sigma x} dF(x) \leq \\ &\leq (\lambda - 1 + \delta) e^{\sigma\lambda} - \int_{\lambda}^{\infty} b(x) e^{\sigma x} dF(x) \leq e^{\sigma\lambda} - \int_{\lambda}^{\infty} b(x) e^{\sigma x} dF(x). \end{aligned}$$

On the other hand,

$$\left| \hat{Q}(s) \right| = \left| e^{s\lambda} + \int_{\lambda}^{\infty} b(x)e^{sx} dF(x) \right| \ge e^{\sigma\lambda} - \int_{\lambda}^{\infty} b(x)e^{\sigma x} dF(x).$$

Thus, $|\hat{Q}'(s) - \hat{Q}(s)| \leq \hat{Q}(s)$, i.e. $\left|\frac{\hat{Q}'(s)}{\hat{Q}(s)} - 1\right| \leq 1$ for all $s \in \Pi_0$. From this it follows that $\operatorname{Re}\{\hat{Q}'(s)/\hat{Q}(s)\} > 0$, i.e. the function \hat{Q} is pseudostarlike in Π_0 . The sufficiency of the condition $\hat{Q} \in O_{1,2-\lambda}(E)$ is proved.

We prove the necessity of the condition $\hat{Q} \in O_{1,\lambda}(E)$. From Corollary 6 it follows that the function \hat{Q} is pseudostarlike in Π_0 if and only if $\int\limits_{\lambda}^{\infty} x b(x) \, dF(x) \leq \lambda b(\lambda) F(\lambda) \,, \text{ i. e. } \hat{Q} \in O_{1,\delta}(E) \text{ with } \delta = \lambda b(\lambda) F(\lambda) \,. \text{ The first part of Theorem 4 is proved.}$

Now, if $\hat{Q} \in O_{2,\lambda(2-\lambda)}(E)$, then by Lemma 1 $\hat{Q}'/\lambda \in O_{1,2-\lambda}(E'/\lambda) = O_{1,2-\lambda}(E)$. Therefore, the functions \hat{Q}'/λ and \hat{Q}' are pseudostarlike. Thus, the function \hat{Q} is pseudoconvex. On the other hand, if \hat{Q} is pseudoconvex then \hat{Q}/λ is pseudoconvex and \hat{Q}'/λ is pseudostarlike, i. e. $\hat{Q}' \in O_{1,\lambda b(\lambda)F(\lambda)}(E)$ and by Lemma 1, $\hat{Q} \in O_{2,\lambda^2b(\lambda)F(\lambda)}(E)$. The proof of Theorem 4 is complete.

In the case where \hat{J} is pseudostarlike of the order lpha the following statement is true.

Proposition 1. Let $\lambda \geq 1$, $F \in V_{\lambda}$ and $0 \leq \alpha_1 \leq \alpha < 1$.

If \hat{J} is pseudostarlike of the order α and \hat{Q} is pseudostarlike of the order α_1 then $\hat{Q} \in O_{1,\delta}(\hat{J})$ with $\delta = \lambda (a(\lambda) + b(\lambda))F(\lambda)$.

If \hat{J} is pseudoconvex of the order α and \hat{Q} is pseudoconvex of the order α_1 then $\hat{Q} \in O_{2,\delta}(\hat{J})$ with $\delta = \lambda^2 (a(\lambda) + b(\lambda))F(\lambda)$.

P r o o f. If \hat{J} is pseudostarlike of the order α and \hat{Q} is pseudostarlike of the order α_1 then by Corollary 5 we have

$$\int_{\lambda}^{\infty} (x - \alpha)a(x) dF(x) \le a(\lambda)F(\lambda)(\lambda - \alpha),$$

$$\int_{\lambda}^{\infty} (x - \alpha_1)b(x) dF(x) \le b(\lambda)F(\lambda)(\lambda - \alpha_1).$$

Therefore

$$\int_{\lambda}^{\infty} x |a(x) - b(x)| dF(x) = \int_{\lambda}^{\infty} \frac{x}{x - \alpha_{1}} (x - \alpha_{1}) |a(x) - b(x)| dF(x) \le$$

$$\le \frac{\lambda}{\lambda - \alpha_{1}} \int_{\lambda}^{\infty} (x - \alpha_{1}) |a(x) - b(x)| dF(x) \le$$

$$\le \frac{\lambda}{\lambda - \alpha_{1}} \left(\int_{\lambda}^{\infty} (x - \alpha_{1}) a(x) dF(x) + \int_{\lambda}^{\infty} (x - \alpha_{1}) b(x) dF(x) \right) \le$$

$$\le \frac{\lambda}{\lambda - \alpha_{1}} \left(\int_{\lambda}^{\infty} \frac{x - \alpha_{1}}{x - \alpha} (x - \alpha) a(x) dF(x) + b(\lambda) F(\lambda) (\lambda - \alpha_{1}) \right) \le$$

$$\le \frac{\lambda}{\lambda - \alpha} \int_{\lambda}^{\infty} (x - \alpha) a(x) dF(x) + \lambda b(\lambda) F(\lambda) \le$$

$$\le \lambda a(\lambda) F(\lambda) + \lambda b(\lambda) F(\lambda),$$

i.e. $\hat{Q} \in O_{1,\delta}(\hat{J})$ with $\delta = \lambda (a(\lambda) + b(\lambda))F(\lambda)$. The first part of Proposition 1 is proved.

The second part of Proposition 1 can be easily proved using Lemma 1 and its first part.

Remark 2. For the function \hat{J} pseudostarlike of the order α , we could not find $\delta > 0$ such that from the condition $\hat{Q} \in O_{1,\delta}(\hat{J})$ it follows that \hat{Q} is pseudostarlike of the order $\alpha_1 \in [0,\alpha)$.

For the neighborhoods of pseudostarlike and pseudoconvex functions of the order $\alpha \in [0,1)$ and the type $\beta \in (0,1)$ the following theorem is true.

Theorem 5. Let $\lambda > 1$, $F \in V_{\lambda}$, $0 \le \alpha < 1$, $0 < \beta < \beta_1 \le 1$ and \hat{J} is pseudostarlike of the order $\alpha \in [0,1)$ and the type $\beta \in (0,1)$. Suppose that $b(\lambda) \ge a(\lambda)$ and put

$$\begin{split} \omega &= \frac{(1+\beta_1)\lambda - 2\alpha\beta_1 - \lambda(1-\beta_1)}{(1+\beta)\lambda - 2\alpha\beta - \lambda(1-\beta)}\,,\\ \delta_1 &= \frac{2(\lambda-\alpha)F(\lambda)\big(\beta_1b(\lambda) - \omega\beta a(\lambda)\big)}{1+\beta_1}\,,\\ \delta_2 &= \frac{2\lambda(\lambda-\alpha)F(\lambda)\big(\beta_1b(\lambda) + \omega\beta a(\lambda)\big)}{(1+\beta_1)\lambda - 2\alpha\beta_1 - \lambda(1-\beta_1)}\,. \end{split}$$

In order that \hat{Q} is pseudostarlike of the order $\alpha \in [0,1)$ and the type $\beta_1 \in (0,1)$, it is sufficient that $\hat{Q} \in O_{1,\delta_1}(\hat{J})$, and it is necessary that $\hat{Q} \in O_{1,\delta_2}(\hat{J})$.

In order that \hat{Q} is pseudoconvex of the order $\alpha \in [0,1)$ and the type $\beta_1 \in (0,1)$, it is sufficient that $\hat{Q} \in O_{2,\lambda\delta_1}(\hat{J})$, and it is necessary that $\hat{Q} \in O_{2,\lambda\delta_2}(\hat{J})$.

 $P\ r\ o\ o\ f$. At first we note that

$$\max_{x \ge \lambda} \frac{(1+\beta_1)x - 2\alpha\beta_1 - \lambda(1-\beta_1)}{(1+\beta)x - 2\alpha\beta - (1-\beta)} = \omega, \qquad \beta_1 - \omega\beta > 0,$$

and in view of the condition $b(\lambda) \ge a(\lambda)$ we have $\delta_1 > 0$.

Since \hat{J} is pseudostarlike of the order $\alpha \in [0,1)$ and the type $\beta \in (0,1)$, by Theorem 3 we have

$$\int_{\lambda}^{\infty} \left\{ (1+\beta)x - 2\beta\alpha - \lambda(1-\beta) \right\} a(x) \, dF(x) \le 2\beta(\lambda - \alpha)a(\lambda)F(\lambda). \tag{18}$$

Therefore, if $\hat{Q} \in O_{1,\delta_1}(\hat{J})$, then for $0 < \beta < \beta_1 \le 1$ we get

$$\begin{split} &\int\limits_{\lambda}^{\infty} \left\{ (1+\beta_1)x - 2\beta\alpha - \lambda(1-\beta_1) \right\} b(x) \, dF(x) \leq \\ &\leq \int\limits_{\lambda}^{\infty} \left\{ (1+\beta_1)x - 2\beta\alpha - \lambda(1-\beta_1) \right\} |b(x) - a(x)| \, dF(x) + \\ &+ \int\limits_{\lambda}^{\infty} \left\{ (1+\beta_1)x - 2\beta_1\alpha - \lambda(1-\beta_1) \right\} a(x) \, dF(x) \leq \\ &\leq (1+\beta_1) \int\limits_{\lambda}^{\infty} x \left| b(x) - a(x) \right| \, dF(x) + \\ &+ \int\limits_{\lambda}^{\infty} \frac{(1+\beta_1)x - 2\beta_1\alpha - \lambda(1-\beta_1)}{(1+\beta)x - 2\beta\alpha - \lambda(1-\beta)} \times \\ &\times \left\{ (1+\beta)x - 2\beta\alpha - \lambda(1-\beta) \right\} a(x) \, dF(x) \leq \\ &\leq (1+\beta_1)\delta_1 + 2\beta\omega(\lambda - \alpha)a(\lambda)F(\lambda) = \\ &= 2\beta_1(\lambda - \alpha)b(\lambda)F(\lambda) \,, \end{split}$$

i. e. by Theorem 3 the function \hat{Q} is pseudostarlike of the order $\alpha \in [0,1)$ and the type $\beta_1 \in (0,1)$.

Now suppose that the function \hat{Q} is pseudostarlike of the order $\alpha \in [0,1)$ and the type $\beta_1 \in (0,1)$. Then in view of (18) we have

$$\int_{\lambda}^{\infty} x \left| b(x) - a(x) \right| dF(x) = \int_{\lambda}^{\infty} \frac{x}{(1+\beta_1)x - 2\beta_1 \alpha - \lambda(1-\beta_1)} \times \left\{ (1+\beta_1)x - 2\beta_1 \alpha - \lambda(1-\beta_1) \right\} \left| b(x) - a(x) \right| dF(x) \le$$

$$\leq \frac{\lambda}{(1+\beta_{1})\lambda - 2\alpha\beta_{1} - \lambda(1-\beta_{1})} \int_{\lambda}^{\infty} \left\{ (1+\beta_{1})x - 2\beta_{1}\alpha - \lambda(1-\beta_{1}) \right\} \times \\ \times |b(x) - a(x)| dF(x) \leq \frac{\lambda}{(1+\beta_{1})\lambda - 2\alpha\beta_{1} - \lambda(1-\beta_{1})} \times \\ \times \left(\int_{\lambda}^{\infty} \left\{ (1+\beta_{1})x - 2\beta_{1}\alpha - \lambda(1-\beta_{1}) \right\} b(x) dF(x) + \\ + \int_{\lambda}^{\infty} \left\{ (1+\beta_{1})x - 2\beta_{1}\alpha - \lambda(1-\beta_{1}) \right\} a(x) dF(x) \right) \leq \\ \leq \frac{\lambda}{(1+\beta_{1})\lambda - 2\alpha\beta_{1} - \lambda(1-\beta_{1})} \left\{ 2\beta_{1}(\lambda - \alpha)b(\lambda)F(\lambda) + \\ + \int_{\lambda}^{\infty} \frac{(1+\beta_{1})x - 2\beta_{1}\alpha - \lambda(1-\beta_{1})}{(1+\beta)x - 2\beta\alpha - \lambda(1-\beta)} \left\{ (1+\beta)x - 2\beta\alpha - \lambda(1-\beta) \right\} \times \\ \times a(x) dF(x) \leq \frac{\lambda}{(1+\beta_{1})\lambda - 2\alpha\beta_{1} - \lambda(1-\beta_{1})} \times \\ \times (2\beta_{1}(\lambda - \alpha)b(\lambda)F(\lambda) + 2\alpha\beta(\lambda - \alpha)a(\lambda)F(\lambda)) = \delta_{2},$$

i.e. $\hat{Q} \in O_{1,\delta_2}(\hat{J})$. The first part of Theorem 5 is proved.

The second part of Theorem 5 can be easily proved using Lemma 1 and its first part.

4. Convolutions of the spoilt Laplace – Stieltjes integrals. For power series $f_j(z) = \sum_{k=0}^{\infty} f_{k,j} z^k$, j=1,2, the series $(f_1*f_2)(z) = \sum_{k=0}^{\infty} f_{k,1} f_{k,2} z^k$ is called the Hadamard composition (convolution) [14, 15]. The properties of this composition obtained by J. Hadamard found their applications in the theory of the analytic continuation of the functions represented by power series [8, 14]. Note also that singular points of the Hadamard composition are investigated in the article [3].

L. Zalzman [26] studied convolutions of univalent functions in \mathbb{D} . For the functions $f_j(z)=\frac{1}{z}+\sum_{k=1}^{\infty}f_{k,j}z^k\in\Sigma$, j=1,2, M. L. Mogra [18] defined the convolution as $(f_1*f_2)(z)=\frac{1}{z}+\sum_{k=1}^{\infty}f_{k,1}f_{k,2}z^k$ and proved, for example, that if

the functions f_j are meromorphically starlike of the order $\alpha_j \in [0,1)$ and $f_{k,j} \geq 0$ for all $k \geq 1$ then $f_1 * f_2$ is meromorphically starlike of the order $\alpha = \max{\{\alpha_1, \alpha_2\}}$. Convolutions of analytic functions in $\mathbb D$ were studied also by J. H. Choi, Y. C. Kim, and S. Owa [9], M. K. Aouf and H. Silverman [7], J. Liu and R. Srivastava [17] and many other mathematicians.

For Dirichlet series with positive exponents increasing to $+\infty$ and absolutely convergent in half-plane $\Pi_0 = \{s : \operatorname{Re} s < 0\}$, a convolution was studied in [24].

Here for the functions $\hat{J}_k(s)=e^{s\lambda}-\int\limits_{\lambda}^{\infty}a_k(x)e^{sx}\,dF(x)$, k=1,2, we define the convolution as

$$(\hat{J}_1 * \hat{J}_2)(s) = e^{s\lambda} - \int_{\lambda}^{\infty} a_1(x)a_2(x)e^{sx} dF(x).$$

Corollary 5 implies the following statement.

Corollary 8. Let $\lambda \geq 1$, $F \in V_{\lambda}$, $a_k(x) \leq a_k(\lambda)$ for all $x \geq \lambda$ and $\alpha_k \in [0,1)$ for k = 1, 2.

If the functions \hat{J}_k are pseudostarlike of the order α_k , respectively, then the convolution $\hat{J}_1 * \hat{J}_2$ is pseudostarlike of the order $\alpha = \max{\{\alpha_1, \alpha_2\}}$.

If the functions \hat{J}_k are pseudoconvex of the order α_k , respectively, then the convolution $\hat{J}_1 * \hat{J}_2$ is pseudoconvex of the order $\alpha = \max{\{\alpha_1, \alpha_2\}}$.

P r o o f. Indeed, if \hat{J}_k are pseudostarlike of the order α_k then, in view of (13),

$$\int_{\lambda}^{\infty} (x - \alpha_1) a_1(x) a_2(x) dF(x) \le a_2(\lambda) \int_{\lambda}^{\infty} (x - \alpha_1) a_1(x) dF(x) \le a_2(\lambda) (\lambda - \alpha_1) a_1(\lambda) F(\lambda),$$

i.e. (7) holds with $G = \hat{J}_1 * \hat{J}_2$ and $\alpha = \alpha_1$. Similarly, (7) holds with $G = \hat{J}_1 * \hat{J}_2$ and $\alpha = \alpha_2$. Therefore, (7) holds with $G = \hat{J}_1 * \hat{J}_2$ and $\alpha = \max\{\alpha_1, \alpha_2\}$ and thus, the convolution $\hat{J}_1 * \hat{J}_2$ is pseudostarlike of the order $\alpha = \max\{\alpha_1, \alpha_2\}$.

The proof of the pseudoconvexity of the convolution $\hat{J}_1 * \hat{J}_2$ is similar. \blacklozenge Corollary 4 implies the following statement.

Corollary 9. Let $\lambda \geq 1$, $F \in V_{\lambda}$, $a_k(x) \leq a_k(\lambda)$ for all $x \geq \lambda$, $\alpha \in [0,1)$ and $\beta_k \in (0,1]$ for k=1,2.

If the functions \hat{J}_k are pseudostarlike of the order α and the type β_k , respectively, then the convolution $\hat{J}_1*\hat{J}_2$ is pseudostarlike of the order α and the type $\beta=\min\left\{\beta_1,\beta_2\right\}$.

If the functions \hat{J}_k are pseudoconvex of the order α and the type β_k , respectively, then the convolution $\hat{J}_1 * \hat{J}_2$ is pseudoconvex of the order α and the type $\beta = \min\left\{\beta_1, \beta_2\right\}$.

P r o o f. Indeed, if \hat{J}_k are pseudostarlike of the order α_k then, in view of (12),

$$\begin{split} &\int\limits_{\lambda}^{\infty} \big\{ (1+\beta)x - 2\beta\alpha - \lambda(1-\beta) \big\} a_1(x) a_2(x) \, dF(x) \leq \\ &\leq a_2(\lambda) \int\limits_{\lambda}^{\infty} \big\{ (1+\beta)x - 2\beta\alpha - \lambda(1-\beta) \big\} a_1(x) \, dF(x) \leq \\ &\leq a_2(\lambda) 2\beta_1 a_1(\lambda) (\lambda - \alpha) F(\lambda) \,, \end{split}$$

i. e. (9) holds with $G = \hat{J}_1 * \hat{J}_2$ and $\beta = \beta_1$. Similarly, (9) holds with $G = \hat{J}_1 * \hat{J}_2$ and $\beta = \beta_2$. Therefore, (9) holds with $G = \hat{J}_1 * \hat{J}_2$ and $\beta = \min\{\beta_1, \beta_2\}$ and thus, the convolution $\hat{J}_1 * \hat{J}_2$ is pseudostarlike of the order α and the type $\beta = \min\{\beta_1, \beta_2\}$.

The proof of the pseudoconvexity of the convolution $\hat{J}_1 * \hat{J}_2$ is similar. \blacklozenge

Remark 3. Since $\hat{J}(s) = \frac{J(s)}{f(\lambda)F(\lambda)}$ and $a(x) = \frac{f(x)}{f(\lambda)F(\lambda)}$, from Corollaries 8 and 9 it is easy to obtain their analogues for the integrals J(s).

- 1. Головата О. М., Мулява О. М., Шеремета М. М. Псевдозіркові, псевдоопуклі та близькі до псевдоопуклих ряди Діріхле, які задовольняють диференціальні рівняння з експоненціальними коефіцієнтами // Мат. методи та фіз.-мех. поля. 2018. 61, № 1. С. 57—70.
 - $\label{eq:holovata} \begin{tabular}{ll} Holovata~O.~M.,~Mulyava~O.~M.,~Sheremeta~M.~M.~Pseudostarlike,~pseudoconvex,~and~close-to-pseudoconvex~Dirichlet~series~satisfying~differential~equations~with~exponential~coefficients~//~J.~Math.~Sci.~-~2020.~-~249,~No.~3.~-~P.~369-388.~-~https://doi.org/10.1007/s10958-020-04948-1. \end{tabular}$
- 2. Голузин Г. М. Геометрическая теория функций комплексного переменного. Москва: Наука, 1966. 628 с.
 - Goluzin G. M. Geometric theory of functions of a complex variable. Amer. Math. Soc., 1969. Translations of Mathematical Monographs, Vol. 26. 676 p. https://doi.org/10.1090/mmono/026.
- 3. Коробейник Ю. Ф., Мавроди Н. Н. Об особых точках композиции Адамара // Укр. мат. журн. 1990. 42, No. 12. С. 1711–1713.
 - Korobeinik Yu. F., Mavrodi N. N. Singular points of the Hadamard composition // Ukr. Math. J. 1990. 42, No. 12. P. 1545–1547. https://doi.org/10.1007/BF01060828.
- Посіко О. С. Про абсцису збіжності інтегралу Лапласа Стільтьєса // Вісн. Львів. ун-ту. Сер. мех.-мат. – 2004. – Вип. 53. – С. 123–139.
- 5. *Посіко О. С., Скасків О. Б., Шеремета М. М.* Оцінки інтегралу Лапласа Стільтьєса // Мат. студії. 2004. **21**, No. 2. С. 179—186.
- 6. Altintaş O., Özkan Ö., Srivastava H. M. Neighborhoods of a class of analytic functions with negative coefficients // Appl. Math. Lett. 2000. 13, No. 3. P. 63-67. https://doi.org/10.1016/S0893-9659(99)00187-1.
- 7. Aouf M. K., Silverman H. Generalizations of Hadamard products of meromorphic univalent functions with positive coefficients // Demonstratio Mathematica. 2008. 41, No. 2. P. 381–388. https://doi.org/10.1515/dema-2008-0214.
- 8. Bieberbach L. Analytische Fortzetzung. Berlin: Springer, 1955. iv+168 p.
- 9. Choi J. H., Kim Y. C., Owa S. Generalizations of Hadamard products of functions with negative coefficients // J. Math. Anal. Appl. 1996. 199, No. 2. P. 495-501. https://doi.org/10.1006/jmaa.1996.0157.
- 10. Fournier R. A note on neighborhoods of univalent functions // Proc. Amer. Math. Soc. 1983. 87, No. 1. P. 117-121. https://doi.org/10.2307/2044365.
- Frasin B. A., Darus M. Integral means and neighborhoods for analytic univalent functions with negative coefficients // Soochow J. Math. - 2004. - 30, No. 2. -P. 217-223.
- 12. Goodman A. W. Univalent functions and nonanalytic curves // Proc. Amer. Math. Soc. 1957. 8, No. 3. P. 598-601.
 https://doi.org/10.1090/S0002-9939-1957-0086879-9.
- Gupta V. P. Convex class of starlike functions // Yokohama Math. J. 1984. 32.
 P. 55-59.
- 14. $Hadamard\ J.$ La série de Taylor et son prolongement analytique. Scientia: Phys.-Math. 1901. No. 12. 110 p.
- Hadamard J. Théorème sur les séries entières. Acta Math. 1899. Bd. 22. –
 S. 55–63. https://doi.org/10.1007/BF02417870.
- 16. Jack I. S. Functions starlike and convex of order α // J. London Math. Soc. 1971. s2-3, No. 3. P. 469–474. https://doi.org/10.1112/jlms/s2-3.3.469.
- 17. $Liu\ J.-L.$, $Srivastava\ P$. Hadamard products of certain classes of p-valent starlike

- functions // RACSAM Rev. R. Acad. A. 2019. 113, No. 3. P. 2001-2015. - https://doi.org/10.1007/s13398-018-0584-y.
- 18. Mogra M. L. Hadamard product of certain meromorphic univalent functions // J. Math. Anal. Appl. - 1991. - 157, No. 1. - P. 10-16. -https://doi.org/10.1016/0022-247X(91)90133-K.
- 19. Murugusundaramoorthy G., Srivastava H.M. Neighborhoods of certain classes of analytic functions of complex order // J. Inequal. Pure Appl. Math. - 2004. - 5, No. 2. - Art. 24.
- 20. Pascu M. N., Pascu N. R. Neighborhoods of univalent functions // Bull. Aust. Math. Soc. - 2011. - 83, No. 2. - P. 210-219. - https://doi.org/10.1017/S0004972710000468.
- 21. Ruscheweyh S. Neighborhoods of univalent functions // Proc. Amer. Math. Soc. -1981. - **81**, No. 4. - P. 521-527. - https://doi.org/10.2307/2044151.
- 22. Sheremeta M. M. Asymptotical behavior of Laplace Stieltjes integral. Mathe-
- matical Studies Monograph Series. Vol. 15. Lviv: VNTL Publishers, 2010. 211 p. 23. *Sheremeta M. M.* Geometric properties of analytic solutions of differential equations. - Lviv: Publisher I. E. Chyzhykov, 2019. - 164 p.
- 24. Sheremeta M. M. Pseudostarlike and pseudoconvex Dirichlet series of order α and type β // Мат. Студії. – 2020. – **54**, No. 1. – P. 23–31.
- 25. Silverman H. Neighborhoods of classes of analytic functions // Far East J. Math. Sci. - 1995. - 3, No. 2. - P. 165-169.
- 26. Zalzman L. Hadamard product of shlicht functions // Proc. Amer. Math. Soc. -1968. - **19**, No. 3. - P. 544-548.
 - $-\ https://doi.org/10.1090/S0002-9939-1968-0224800-8.$

ГЕОМЕТРИЧНІ ВЛАСТИВОСТІ ІНТЕГРАЛІВ ЛАПЛАСА – СТІЛТЬЄСА

Для інтегралів Лапласа - Стілтьєса введено поняття псевдозірковості та псевдоопуклості. Доведено критерії для псевдозірковості та псевдоопуклості і застосовано їх до вивчення околу функції та згортки функцій.

Ключові слова: інтеграл Лапласа - Стілтьєса, псевдозірковість, псевдоопуклість, окіл функції, згортка функцій.

Ivan Franko National University of Lviv, Lviv

Received 13.06.22