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ON THE SEMIGROUP OF INJECTIVE ENDOMORPHISMS  
OF THE SEMIGROUP n

ω
FB  WHICH IS GENERATED BY THE FAMILY nF   

OF INITIAL FINITE INTERVALS OF ω  
 

An injective endomorphisms of the inverse semigroup ω
FB , introduced in the 

paper [3], in the case where the family Fn  is generated by the set 0,1, ,n…{ }  are 

described. In particular, it is shown that the semigroup of injective endomor-

phisms of the semigroup ω
FB  is isomorphic to ( , )ω + . Also, the structure of the 

semigroup ( )λBEnd  of all endomorphisms of the semigroup of λ × λ -matrix units 

λB  are described. 

Key words: bicyclic extension, inverse semigroup, endomorphism, automorphism, 
semigroup of λ × λ -matrix units. 

 
1. Introduction, motivation and main definitions. We shall follow the 

terminology of [9, 10, 20, 24]. By ω  we denote the set of all non-negative 
integers. 

Let ( )ωP  be the family of all subsets of ω . For any ( )F ∈ ωP  and 

,n m ∈ ω , we put :n m F n m k k F− + = − + ∈{ }  if F ≠ ∅  and n m− + ∅ =  

= ∅ . A subfamily ( )⊆ ωF P  is called ω -closed if 1 2( )F n F− + ∈∩ F  for all 

n ∈ ω  and 1 2,F F ∈ F . 

We denote 0;0 0= { }[ ]  and [0; ] 0, ,k k= …{ }  for any positive integer k . 

The set 0;k[ ] , k ∈ ω , is called an initial interval of ω . 

A partially ordered set (or shortly a poset) ( , )X ≤  is the set X  with the 
reflexive, antisymmetric and transitive relation ≤ . In this case the relation ≤  
is called a partial order on X . A partially ordered set ( , )X ≤  is a linearly 

ordered set or is a chain if x y≤  or y x≤  for any  ,x y X∈ . A map f  from a 

poset ( , )X ≤  onto a poset ( , )Y ≤  is said to be an order isomorphism if f  is 

bijective and x y≤  if and only if ( ) ( )f x f y≤ . A partial order isomorphism f  

from a poset ( , )X ≤  into a poset ( , )Y ≤  is an order isomorphism from a subset 
A  of a poset ( , )X ≤  onto a subset B  of a poset ( , )Y ≤ . For any element x  of a 

poset ( , )X ≤ , we denote :x y X x y≤↑ = ∈ ≤{ } . 

A nonempty set S  with a binary associative operation is called a semi-
group. By ( , )ω +  we denote the set ω  with the usual addition ( , )x y x y+a . 

A semigroup S  is called inverse if for any element x S∈  there exists a 

unique 1x S− ∈  such that 1xx x x− =  and 1 1 1x xx x− − −= . The element 1x−  is 
called the inverse of x S∈ . If S  is an inverse semigroup, then the mapping 

:inv S S→  which assigns to every element x  of S  its inverse element 1x−  
is called the inversion. 

If S  is a semigroup, then we shall denote the subset of all idempotents 
in S  by ( )E S . If S  is an inverse semigroup, then ( )E S  is closed under multi-
plication and we shall refer to ( )E S  as a band (or the band of S ). Then the 
semigroup operation on S  determines the following partial order °  on ( )E S : 
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e f°  if and only if ef fe e= = . This order is called the natural partial order 

on ( )E S . A semilattice is a commutative semigroup of idempotents. By 

( ,min)ω  we denote the set ω  with the semilattice operation min ,x y x y⋅ = { } . 

For semigroups S  and T , a map : S T→h  is called: 

 ● a homomorphism if 1 2 1 2( ) ( ) ( )s s s s⋅ = ⋅h h h  for all 1 2,s s S∈ ; 

 ● an annihilating homomorphism if h  is a homomorphism and 

1 2( ) ( )s s=h h  for all 1 2,s s S∈ ; 

 ● an isomorphism if : S T→h  is a bijective homomorphism. 
For a semigroup S , a homomorphism (an isomorphism) : S S→h  is 

called an endomorphism (automorphism) of S . For simplicity of calculation, 
the image of  s S∈  under an endomorphism e  of a semigroup S  we shall 
denote by (s)e . 

A congruence on a semigroup S  is an equivalence relation C  on S  such 
that ( , )s t ∈ C  implies that ( , ), ( , )as at sb tb ∈ C  for all ,a b S∈ . Every congru-
ence C  on a semigroup S  generates the associated natural homomorphism 

: /S S→èC C  which assigns to each element s  of S  its congruence class s C[ ]  

in the quotient semigroup  /S C . Also, every homomorphism : S T→h  of 

semigroups S  and T  generates the congruence hC  on S : 1 2(s , s ) ∈ hC  if and 

only if 1 2( ) ( )s s=h h . 

A nonempty subset I  of a semigroup S  is called an ideal of S  if 
{ : , , }SIS asb s I a b S I= ∈ ∈ ⊆ . Every ideal I  of a semigroup S  generates the 

congruence ( ) SI I= × ∆∪IC  on S , which is called the Rees congruence on S . 

Let λI  denote the set of all partial one-to-one transformations of λ  

together with the following semigroup operation: 

 ( ) ( )x xαβ = α β  if { }dom ( ) dom : dom x y y∈ αβ = ∈ α α ∈ β  for , λα β ∈ I . 

The semigroup λI  is called the symmetric inverse semigroup over the 

cardinal λ  (see [9]). For any λα ∈ I , the cardinality of dom α  is called the 

rank of α  and it is denoted by rank α . The symmetric inverse semigroup 
was introduced by V. V. Wagner [2] and it plays a major role in the theory of 
semigroups. 

Put : rankn nλ λ= α ∈ α ≤I I{ }  for 1,2,3,  n = … . Obviously, n
λI , 

1,2,3,n = … , are inverse semigroups, moreover, n
λI  is an ideal of λI  for each 

1,2,3,n = … . The semigroup n
λI  is called the symmetric inverse semigroup of 

finite transformations of the rank n≤  [11]. By 

 1 2

1 2

n

n

x x x
y y y

… 
 … 

 

we denote a partial one-to-one transformation which maps 1x  onto 1y , 2x  

onto 2y , …, and nx  onto ny . Obviously, in such case we have i jx x≠  and 

i jy y≠  for i j≠ , , 1, 2,3, ,i j n= … . The empty partial map :∅ λ λ⇀  is 

denoted by 0 . It is obvious that 0  is zero of the semigroup λI n . 

For a partially ordered set ( , )P ≤ , a subset X  of P  is called order-con-
vex, if x z y≤ ≤  and ,  x y X∈  implies that z X∈  for all , ,  x y z P∈  [15]. It is 
obvious that the set of all partial order isomorphisms between convex subsets 
of ( , )ω ≤  under the composition of partial self-maps forms an inverse subsemi-
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group of the symmetric inverse semigroup ωI  over the set ω . We denote this 

semigroup by n convω

uuuuur
I ( ) . We put n nconv convω ω ω=

uuuuur uuuuu
∩

r
I I I( ) ( )  and it is obvious 

that n convω

uuuuur
I ( )  is closed under the semigroup operation of n

ωI  and the semi-

group n convω

uuuuur
I ( )  is called the inverse semigroup of convex order isomorphisms 

of ( , )ω ≤  of the rank n≤ . Obviously that every non-zero element of the semi-

group n convω

uuuuur
I ( )  of the rank k n≤  has a form 

 
1 1
1 1

i i i k
j j j k

+ … + −  + … + − 
 

for some ,i j ∈ ω . 

The bicyclic monoid ( , )p qC  is the semigroup with the identity 1  gene-

rated by two elements p  and q  subjected only to the condition 1pq = . The 

semigroup operation on ( , )p qC  is determined as follows: k m nq p q p⋅ =l  
min , min ,k m m n mq p+ − + −= { } { }l l l . 

It is well known that the bicyclic monoid ( , )p qC  is a bisimple (and hence 

simple) combinatorial E -unitary inverse semigroup and every non-trivial 
congruence on ( , )p qC  is a group congruence [9]. 

On the set ω = ω × ωB  we define the semigroup operation “ ⋅ ” in the 

following way 

 1 1 2 2 1 2
1 1 2 2

1 1 2 2 1 2

( , ),
( , ) ( , )

( ,

,

), .

i j i j j i
i j i j

i j i j j i

− + ≤⋅ =  − + ≥
 

It is well known that the semigroup ωB  is isomorphic to the bicyclic 

monoid by the mapping : ( , )p q ω→Ch B , ( , )kq p kal l  (see, [9, Secti. 1.12] or 

[24, Exercise IV.1.11(ii)]). 
Next, we shall describe the construction which is introduced in [3]. 
Let ωB  be the bicyclic monoid and F  be an ω -closed subfamily of  ( )ωP . 

On the set ω × FB  we define the semigroup operation “ ⋅ ” in the following 

way 

 1 1 2 2 1 2 1 2 1 2
1 1 1 2 2 2

1 1 2 2 1 2 1 2 1 2

, , ( ) ,
( , ,

,
( )

) ( , , )
, , , .

i j i j j i F F j i
i j F i j F

i j i j F i j F j i
− + − + ≤⋅ =  − + − + ≥ ∩

∩( )
( )

 

In [3] it is proved that if the family ( )⊆ ωF P  is ω -closed, then 

( , )ω × ⋅FB  is a semigroup. Moreover, if an ω -closed family ( )⊆ ωF P  contains 

the empty set ∅ , then the set ( , , ) : ,I i j i j= ∅ ∈ ω{ }  is an ideal of the semi-

group ( , )ω × ⋅FB . Also, in [3], for any ω -closed family ( )⊆ ωF P , it is defined 

the semigroup 

 
( , ) / , ,
( , ), ,

I F
F

ω
ω

ω

× ⋅ ∅ ∈=  × ⋅ ∅ ∉
F F

F
B

B
B

 

that generalizes the bicyclic monoid and the countable semigroup of matrix 

units. It is proved in [3] that ω
FB  is a combinatorial inverse semigroup and 

Green’s relations, the natural partial order on ω
FB  and its set of idempotents 

are described. The criteria of simplicity, 0 -simplicity, bisimplicity, 0 -bisim-

plicity of the semigroup  ω
FB  and the criterion for  ω

FB  to have the identity, 

to be isomorphic to the bicyclic semigroup or the countable semigroup of 
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matrix units are given. In particular, in [3] it is proved that the semigroup 

 ω
FB  is isomorphic to the semigroup of ω × ω -matrix units if and only if F  

consists of a singleton set and the empty set. 
In the case where the family F  consists of the empty set and some 

singleton subsets of ω , the semigroup  ω
FB  is studied in [12]. It is proved that 

the semigroup  ω
FB  is isomorphic to the subsemigroup min( )Fω

↗B  of the Brandt 

ω -extension of the subsemilattice ( ,min)F  of ( ,min)ω , where F = ∪F . Also, 

topologizations of the semigroup  ω
FB  and its closure in semitopological semi-

groups are studied. 
For any n ∈ ω , we put 0; : 0, ,n k k n= = …F { }[ ] . It is obvious that nF  is 

an ω -closed family of ω . 

In the paper [13], we study the semigroup n
ω
FB . It is shown that the 

Green relations D  and J  coincide in n
ω
FB , the semigroup n

ω
FB  is isomorphic 

to the semigroup 1n conv+
ω

uuuuur
I ( ) , and n

ω
FB  admits only Rees congruencies. Also, 

in [13], we study shift-continuous topologies of the semigroup n
ω
FB . In parti-

cular, we prove that for any shift-continuous 1T -topology τ  on the semigroup 

n
ω
FB , every non-zero element of n

ω
FB  is an isolated point of ,n

ω τF( )B , n
ω
FB  ad-

mits the unique compact shift-continuous 1T -topology, and every ωd -compact 

shift-continuous 1T -topology is compact. We describe the closure of the semi-

group n
ω
FB  in a Hausdorff semitopological semigroup and prove the criterion 

when a topological inverse semigroup n
ω
FB  is H -closed in the class of Haus-

dorff topological semigroups. 
Surprisingly, not so many articles are devoted to endomorphisms and au-

tomorphisms of semigroups. In particular, in [7] the authors propose a general 
recipe for calculating the automorphism groups of semigroups consisting of 
partial endomorphisms of relational structures over a finite set with a single 
m -ary relation for any positive integer m , which determine the automor-
phism groups of the following semigroups: the full transformation semigroup, 
the partial transformation semigroup, and the symmetric inverse semigroup, 
the wreath product of two full transformation semigroups, the partial endo-
morphisms of any partially ordered set, the full spectrum of semigroups of 
partial mappings preserving or reversing a linear or circular order. In the pa-
per [16] the authors characterize the endomorphisms of the semigroup of all 
order-preserving mappings on a finite chain. In [17] Fernandes and Santos 
characterize the monoids of endomorphisms of the semigroup of all order-pre-
serving partial transformations and of the semigroup of all order-preserving 
partial permutations of a finite chain. Also, the semigroups of a finite chain 
are described in [6, 19]. Endomorphisms and automorphisms of other types of 
semigroups are studied in [1, 4, 5, 8, 14, 18, 21–27] and other papers. 

This paper is a continuation of the investigation which is presented in 

[13]. Here we describe injective endomorphisms of the semigroup n convω

uuuuur
I ( )  

for a positive integer 2n ≥ . In particular, we show that for 2n ≥  the semi-

group of injective endomorphisms of the semigroup n
ω
FB  is isomorphic to 

( , )ω + . Also, we describe the structure of the semigroup ( )λBEnd  of all endo-

morphisms of the semigroup of λ × λ -matrix units λB . 
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2. On injective endomorphisms of the semigroup n
ω
FB . 

Proposition 1. For any non-negative integer n  and arbitrary p ∈ ω , the 

map : n n
ω ω→F F

pe B B  defined by the formulae ( ) =0 0pe  and , , 0;i j k =pe( )[ ]  

, , 0;p i p j k= + +( )[ ]  is an endomorphism of the semigroup n
ω
FB . 

P r o o f .  It is obvious that ( ) ( ) ( ) ( )⋅ = ⋅ = = = ⋅0 0 0 0 0 0 0 0p p p pe e e e  and 

 ( ) , , 0; , , 0; ( ) , , 0;i j k p i p j k i j k⋅ = ⋅ + + = = = ⋅0 0 0 0 0p p p pe e e e( ) ( ) ( ( ))[ ] [ ] [ ] , 

 , , 0; ( ) , , 0; ( ) , , 0;i j k p i p j k i j k⋅ = + + ⋅ = = = ⋅0 0 0 0 0p p p pe e e e( ) ( ) (( ) )[ ] [ ] [ ]  

for any non-zero element , , 0;i j k( )[ ]  of the semigroup n
ω
FB . Also, for any non-

zero elements 1 1 1, , 0;i j k( )[ ]  and 2 2 2, , 0;i j k( )[ ]  of the semigroup n
ω
FB , we have 

that 

 1 1 1 2 2 2 1 1 1 2 2 2, , 0; , , 0; , , 0; , , 0;i j k i j k p i p j k p i p j k⋅ = + + ⋅ + + =p pe e( ) ( ) ( ) ( )[ ] [ ] [ ] [ ]  

 
1 1 2 2 1 2 1 2 1 2

1 2 1 2 1 2

1 1 2 2 1 2 1 2 1 2

( ) ( ) 0; 0; , ,

, , 0; 0; , ,

, ( ) 0; ( ) 0; ) , ,

p i p j p i p j p j p i k k p j p i

p i p j k k p j p i

p i p j p i p j k p i p j k p j p i

 + − + + + + + − + + + < +
= + + + = + =
 + + − + + + + − + + + > +

∩
∩

∩, ,

,

( ( ) )
( )
( ( )

[ ] [ ]
[ ] [ ]

[ ] [ ]
 

 
1 1 2 2 1 2 1 2 1 2

1 2 1 2 1 2

1 1 2 2 1 2 1 2 1 2

0; 0; , ,
, , 0; 0; , ,
, 0; 0; ) , ,

p i j i p j j i k k j i
p i p j k k j i
p i p j i j k i j k j i

+ − + + − + <
= + + =
 + + − + − + >

∩
∩

∩, ,

,

( ( ) )
( )
( ( )

[ ] [ ]
[ ] [ ]

[ ] [ ]
 

and 
 1 1 1 2 2 2, , 0; , , 0;i j k i j k⋅ =pe(( ) ( ))[ ] [ ]  

 
1 1 2 2 1 2 1 2 1 2

1 2 1 2 1 2

1 1 2 2 1 2 1 2 1 2

0; 0; , ,

, , 0; 0; , ,

, 0; 0; ) , ,

i j i j j i k k j i

i j k k j i

i j i j k i j k j i

 − + − + <
= = =
 − + − + >

∩
∩

∩ p

p

p

e

e

e

, ,

,

( ( ) )
( )
( ( )

[ ] [ ]
[ ] [ ]

[ ] [ ]
 

 
1 1 2 2 1 2 1 2 1 2

1 2 1 2 1 2

1 1 2 2 1 2 1 2 1 2

0; 0; , ,
, , 0; 0; , ,
, 0; 0; ) , ,

p i j i p j j i k k j i
p i p j k k j i
p i p j i j k i j k j i

+ − + + − + <
= + + =
 + + − + − + >

∩
∩

∩, ,

,

( ( ) )
( )
( ( )

[ ] [ ]
[ ] [ ]

[ ] [ ]
 

and hence the so defined map : n n
ω ω→F F

pe B B  is an endomorphism of the 

semigroup n
ω
FB .  

By Theorem 1 of [13], for any n ∈ ω , the semigroup n
ω
FB  is isomorphic to 

the semigroup 1n conv+
ω

uuuuur
I ( )  by the mapping 1: n n

ω ω
+→F II B , defined by the 

formulae ( ) =0 0I  and 

 
1

, , 0;
1

i i i k
i j k

j j j k
+ … + ℑ =  + … + 

( )[ ] . 

This and Proposition 1 imply the following corollary. 
Corollary 1. For any positive integer n  and arbitrary p ∈ ω , the map 

: n n
ω ω→I Ipe  defined by the formulae ( ) =0 0pe  and 

 
1 1
1 1

i i i k p i p i p i k
j j j k p j p j p j k

+ … + + + + … + +   =   + … + + + + … + +   pe  

is an endomorphism of the semigroup n
ωI . 
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Later we study endomorphisms of the semigroup n convω

uuuuur
I ( ) . 

Lemma 1. Let n  be any positive integer and a  be an arbitrary non-anni-

hilating endomorphism of the semigroup n
ωI . Then ( ) =0 0a . 

P r o o f .  Since 0  is an idempotent of n convω

uuuuur
I ( ) , so is the image ( )0 a . 

Suppose to the contrary that ( ) e= ≠0 0a . By Theorem 3 from [13] the image 

of n convω

uuuuur
I ( )  under endomorphism a  is isomorphic to the semigroup 

m convω

uuuuur
I ( )  for some positive integer  m n≤ . Hence the subsemigroup 

n convω

uuuuur
I a(( ))  of n convω

uuuuur
I ( )  has infinitely many idempotents. But by Theorem 1 

and Lemma 1 from [13] the set e↑°  is finite, a contradiction. The obtained 

contradiction implies the equality ( ) =0 0a .  
Lemma 1 implies the following corollary. 
Corollary 2. Let n  be any positive integer and a  be an arbitrary endo-

morphism of the semigroup n
ωI . If ( ) ≠0 0a  then a  is annihilating. 

Lemma 2. Let n  be any positive integer 2≥  and a  be an arbitrary non-

annihilating endomorphism of the semigroup n convω

uuuuur
I ( ) . If 

0 0
0 0

   =   
   

a  then a  

is the identity automorphism of n convω

uuuuur
I ( ) . 

P r o o f .  First, we shall show that the restriction of the endomorphism 

a  onto the band nE convω

uuuuur
I (( ))  is the identity map of nE convω

uuuuur
I (( )) . 

The definition of the natural partial order °  on nE convω

uuuuur
I (( ))  implies 

that 

 
0 0 0 1 0 1 1

, , , 
0 0 0 1 0 1 1

n
n

−        ↑ =        −        
LL L° . 

By Proposition 1.14.21(6) of [20] every homomorphism of inverse semigroups 

preserves the natural partial order, and hence 
0 0 1
0 0 1

      
   

a a° , because 

0 0 1
0 0 1

      
   

° . Also, by Proposition 4 of [13] every congruence on the semi-

group n convω

uuuuur
I ( )  is Rees, which implies that 

0 0 1
0 0 1

   ≠   
   

a a . Hence, we obtain 

that 
0 1 0 1
0 1 0 1

   =   
   

a . Similarly, by induction we get that 
0 1 
0 1 

k
k

  = 
 

L
L a  

0 1 
0 1 

k
k

 =  
 

L
L  for any 2, , 1k n= … − . 

The definition of the natural partial order °  on nE convω

uuuuur
I (( ))  implies 

that 
1 0 1

0
1 0 1

      
   

° ° . Then the above part of the proof, Lemma 1 and Propo-

sition 4 of [13] imply that  

 
1 0 1 0 1

( )
1 0 1 0 1

     = =     
     

0 0 a a a° . 

Again, by the definition of the natural partial order °  on nE convω

uuuuur
I (( ))  we 

have that the inequalities 
0 1
0 1

x   
 

0 ° °  have two solutions either 
0

 
0

x  =  
 

or 
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1
1

x  =  
 

. Then Proposition 4 of [13] implies that 
1 1
1 1

   =   
   

a . Similar arguments 

and the conditions 
1 1 1 2 0 1 2 0 1 2
1 1 1 2 0 1 2 0 1 2

         = =         
         

a a a° °  imply that 

1 2 1 2
1 2 1 2

   =   
   

a . Next by induction we get that 
1 2 1
1 2 1

k
k

+  = + 
L
L a  

1 2 1
 
1 2 1

k
k

+ =  + 
L
L  for any 2, , 1k n= … − . 

We observe that the proof of the step of induction (if the equalities 

 
1 1

,
1 1

p p p p p p
p p p p p p

+ +       = =       + +       
…a, a , 

 
1 1 1 1
1 1 1 1

p p p n p p p n
p p p n p p p n

+ + − + + −   =   + + − + + −   
L L
L L a  

hold for p m≤ , then these equalities hold for  1p m= + ) is similar to the 
above part of the proof. 

Fix an arbitrary \n nconv E convω ω∈x
uuuuur uuuuur

I I( ) (( ))  with rank k=x , 1, ,k n= … . 

Since x  is a partial convex order isomorphism of ( , )ω ≤ , there exist ,s t ∈ ω  

such that 
1 1
1 1

s s s k
t t t n

+ + − =  + + − 
x

L
L . Since 1 1, nE conv− −

ω∈xx x x
uuuuur

I (( )) , by 

Proposition 1.14.21(1) of [20] we have that 

 1 1 1 1( ) ( ) ( )− − − −⋅ = ⋅ =x x x x xx xxa a a a = a =( ) ( ) ( )  

 
11 1 1 1

1 1 1 1
s s s k s s s k
t t t n t t t n

−+ + − + + −   = =   + + − + + −   
L L
L L  

 
1 1 1 1
1 1 1 1

s s s k t t t k
t t t n s s s n

+ + − + + −   = =   + + − + + −   
L L
L L  

 
1 1
1 1

s s s k
s s s n

+ + − =  + + − 
L
L . 

and  

 1 1 1 1( ) ( ) ( )− − − −⋅ = ⋅ =x x x x x x x xa a a a = a =( ) ( ) ( )  

 
11 1 1 1

1 1 1 1
s s s k s s s k
t t t n t t t n

−+ + − + + −   = =   + + − + + −   
L L
L L  

 
1 1 1 1
1 1 1 1

t t t k s s s k
s s s n t t t n

+ + − + + −   = =   + + − + + −   
L L
L L  

 
1 1
1 1

t t t k
t t t n

+ + − =  + + − 
L
L . 

The above equalities imply that 

 1dom ( ) dom ( ) ( ) , , 1s s k−= ⋅ = … + −x x xa a a { }( ) ( ( ) )  

and 

 1ran ( ) dom ( ) ( ) , , 1t t k−= ⋅ = … + −x x xa a a { }( ) (( ) ) . 

Since ( )x a  is a partial convex order isomorphism of ( , )ω ≤ , we get that 

1 1
( )

1 1
s s s k
t t t n

+ + − =  + + − 
x

L
La , which completes the proof of the lemma.  

To visually simplify the proof of Theorem 1, on Fig. 1, we schematically 

present the natural partial order on the semilattice nE convω

uuuuur
I (( )) . 
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Fig. 1 

For any 0i ∈ ω , we define the endomorphism 
0

: n
i

nconv convω ω→
uuuuur uuuuur

I Ie ( ) ( ) 

in the following way 

 
0 0 0

0 0 0
i i

0 0 0

11
( ) ,     ,     

1 1i

i i i i i ii i i
j j i j j j i j i

+ + + ++      = = =      + + + + +      
0 0e e e , 

 LLLLLLLLLLLLLLLLLLLLLLLLLLLL , 

 
0

0 0 0
i

0 0 0

1 11   1
 

1  1 1 1
i i i i i n ii i i n

j j j n j i j i j n i
+ + + + − ++ + −    =   + + − + + + + − +   

L L
L Le .  

Theorem 1. Let n  be any positive integer 2≥ . For every injective endo-

morphism : n nconv convω ω→
uuuuur uuuuur

I Ia ( ) ( ) , there exists 0i ∈ ω  such that 
0i

=a e . 

P r o o f .  By Lemma 1 we get that ( ) =0 0a . 

It is obvious that 
1 1

: ,
1 1

i i i n
i j

j j j n
+ + −  = ∈ ω  + + −  

L
LM  is the set of all 

maximal idempotents of nE convω

uuuuur
I (( )) , and moreover, every maximal chain in 

the semilattice nE convω

uuuuur
I (( ))  contains 1n +  idempotents. Hence, 

 0
0 0 1 0 1 1

,  ,  ,  
0 0 1 0 1 1

n
L

n
−      =       −      

0
L
L  

and 

 1
1 1 2 1 2

, , , 
1 1 2 1 2

n
L

n
      =       

      
0

L
L  

are maximal chains in nE convω

uuuuur
I (( )) . Since a  is an injective endomorphism of 

the semigroup n convω

uuuuur
I ( ) , Proposition 1.14.21(6) of [20] implies that the images 

0( )L a  and 1( )L a  are maximal chains in nE convω

uuuuur
I (( )) . 

Put 
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0 0 0

0 0 0

1 10 1 1
0 1 1 1 1

i i i nn
n i i i n

+ + −−    = ∈   − + + −   
L L
L La M . 

Since 

 
1 1 1 1 0 1 1

rank 1,       
1 1 1 1 0 1 1

n n n
n

n n n
− − −     = −     − − −     

L L L
L L L°  

and 

 
1 1 1 2
1 1 1 2

n n
n n

−      −   
L L
L L° ,  

the definition of the natural partial order on the semilattice nE convω

uuuuur
I (( ))  and 

Proposition 1.14.21(6) of [20] imply that either 

 0 0 0

0 0 0

1 21 1
1 1 1 2

i i i nn
n i i i n

+ + −−    =   − + + −   
L L
L La  

or  

 0 0 0

0 0 0

1 2 11 1
1 1 1 2 1

i i i nn
n i i i n

+ + + −−    =   − + + + −   
L L
L La . 

Suppose that 

0 0 0

0 0 0

1 21 1
1 1 1 2

i i i nn
n i i i n

+ + −−    =   − + + −   
L L
L La . 

Since 
1 2
1 2

n
n

  ∈ 
 

L
L M , we have that 

1 2
1 2

n
n

  ∈ 
 

L
L a M , and the 

definition of the natural partial order on the semilattice nE convω

uuuuur
I (( ))  and 

Proposition 1.14.21(6) of [20] imply that 

0 0 0

0 0 0

1 21 2
1 2 1 2

i i i nn
n i i i n

− + −   =   − + −   
L L
L La .  

Again, by the definition of the natural partial order on the semilattice 
nE convω

uuuuur
I (( ))  and Proposition 1.14.21(6) of [20], we obtain that  

0 0 0

0 0 0

1 32
2 1 3

i i i nn
n i i i n

− + −   =   − + −   
L L
L La  

because 
2

rank 1
2

n
n

n
  = − 
 

L
L  and 

2 1 2
2 1 2

n n
n n

      
   

L L
L L° . Since  

2 2 3 1
2 2 3 1

n n
n n

+      +   
L L
L L°   

the above arguments imply that  

0 0 0

0 0 0

2 1 32 3 1
2 3 1 2 1 3

i i i nn
n i i i n

− − + −+   =   + − − + −   
L L
L La  

and 

0 0 0

0 0 0

2 1 43 1
3 1 2 1 4

i i i nn
n i i i n

− − + −+   =   + − − + −   
L L
L La .  

Next, we extend the procedure described above step-by-step using the defi-

nition of the natural partial order on the semilattice nE convω

uuuuur
I (( ))  and Pro-

position 1.14.21(6) of [20] and get that 

0 0

0 0

1 1 0 1 2
1 1 0 1 2

i i n n
i i n n

+ + − −   =   + + − −  
L L
L La  

and 

0 0 0

0 0 0

1 1 0 1 1
1 1 0 1 1

i i i n n
i i i n n

+ + − −   =   + + − −  
L L
L La .  
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Since a  is an injective endomorphism of the semigroup n convω

uuuuur
I ( ) , 

0 0 0 0 0

0 0 0 0 0

1 1 1 1
1 1 1 1

i i n i i i n
i i n i i i n

+ + − + + −   
   + + − + + −   

L L
L L°  

and 

0 0 0 0 0

0 0 0 0 0

1 1 1 2
1 1 1 2

i i n i i i n
i i n i i i n

+ + − + + +   
   + + − + + +   

L L
L L°  

in nE convω

uuuuur
I (( )) , we conclude that Proposition 1.14.21(6) of [20] implies that 

0 0 0 0 0

0 0 0 0 0

1 1 1 1
1 1 1 1

i i n i i i n
i i n i i i n

+ + − + + −   
   + + − + + −   

L L
L La a°  

and 

0 0 0 0 0

0 0 0 0 0

1 1 1 2
1 1 1 2

i i n i i i n
i i n i i i n

+ + − + + +   
   + + − + + +   

L L
L La a° . 

But 

0 0 0

0 0 0

1 1 0 1 1
1 1 0 1 1

i i i n n
i i i n n

+ + − −   =   + + − −  
L L
L La  

is the unique idempotent of the semilattice 
nE convω

uuuuur
I (( ))  which is greater than 

0 0

0 0

1 1 0 1 2
1 1 0 1 2

i i n n
i i n n

+ + − −   =   + + − −  
L L
L La . 

The obtained contradiction implies that 

0 0 0

0 0 0

1 21 1
1 1 1 2

i i i nn
n i i i n

+ + −−    ≠   − + + −   
L L
L La  

and hence we get that 

0 0 0

0 0 0

1 2 11 1
1 1 1 2 1

i i i nn
n i i i n

+ + + −−    =   − + + + −   
L L
L La . 

The inequality 
0 1 2 0 1 1
0 1 2 0 1 1

n n
n n

− −      − −   
L L
L L°  

implies that 
0 1 2 0 1 1
0 1 2 0 1 1

n n
n n

− −      − −   
L L
L La a° , 

and hence, the definition of the natural partial order on nE convω

uuuuur
I (( )) , 

injectivity of a , Proposition 1.14.21(6) of [20] and the equality 

0 0 0

0 0 0

1 2 11 1
1 1 1 2 1

i i i nn
n i i i n

+ + + −−    =   − + + + −   
L L
L La  

imply that 

0 0 0

0 0 0

1 20 1 2
0 1 2 1 2

i i i nn
n i i i n

+ + −−    =   − + + −   
L L
L La . 

Again, since 
1 2 2 1 2 1
1 2 2 1 2 1

n n
n n

− −      − −   
L L
L L°  

and 
1 2 2 0 1 2
1 2 2 0 1 2

n n
n n

− −      − −   
L L
L L° , 

we obtain that 
1 2 2 1 2 1
1 2 2 1 2 1

n n
n n

− −      − −   
L L
L La a°  
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and 
1 2 2 0 1 2
1 2 2 0 1 2

n n
n n

− −      − −   
L L
L La a° . 

The above two inequalities and the equalities 

0 0 0

0 0 0

1 2 11 1
1 1 1 2 1

i i i nn
n i i i n

+ + + −−    =   − + + + −   
L L
L La  

and 

0 0 0

0 0 0

1 20 1 2
0 1 2 1 2

i i i nn
n i i i n

+ + −−    =   − + + −   
L L
L La  

imply that 

0 0 0

0 0 0

1 2 21 2 2
1 2 2 1 2 2

i i i nn
n i i i n

+ + + −−    =   − + + + −   
L L
L La . 

Now, if we repeat the above procedure step-by-step we get the following 
equalities 

 0 0 0

0 0 0

1 10 1 1
0 1 1 1 1

i i i nn
n i i i n

+ + −−    =   − + + −   
L L
L La ,  

 0 0 0

0 0 0

1 21 2
1 2 1 2

i i i nn
n i i i n

+ + +   =   + + +   
L L
L La ,  

 0 0 0

0 0 0

1 20 1 2
0 1 2 1 2

i i i nn
n i i i n

+ + −−    =   − + + −   
L L
L La ,  

 0 0 0

0 0 0

1 2 11 2 1
1 2 1 1 2 1

i i i nn
n i i i n

+ + + −−    =   − + + + −   
L L
L La ,  

 LLLLLLLLLLLLLLLLLLLLLL , 

 0 0 0 0

0 0 0 0

1 1 20 1 1 2
,

0 1 1 1 2 1 2
i i i i
i i i i

+ + +      = =      + + +      
a a , 

 0 0

0 0

10 1
,

0 1 1
i i
i i

+      = =      +      
a a . 

Thus, we showed that the initial case of induction holds. 
Next we shall prove that the induction step holds: if the equalities 

 0 0 0

0 0 0

1 11 1
1 1 1 1

p i p i p i np p p n
p p p n p i p i p i n

+ + + + + −+ + −    =   + + − + + + + + −   
L L
L La , 

 0 0 0

0 0 0

1 21 2
1 2 1 2

p i p i p i np p p n
p p p n p i p i p i n

+ + + + + −+ + −    =   + + − + + + + + −   
L L
L La , 

 LLLLLLLLLLLLLLLLLLLLLLLLLLLL ,  

 0 0

0 0

11
1 1

p i p ip p
p p p i p i

+ + ++    =   + + + +   
a , 

 0

0

p ip
p p i

+   =   +   
a , 

hold for some k  and all non-negative p k≤ , then such equalities hold for 

1p k= + . 
By the inductive assumption, we have that 

0 0 0

0 0 0

1 11 1
1 1 1 1

k i k i k i nk k k n
k k k n k i k i k i n

+ + + + + −+ + −    =   + + − + + + + + −   
L L
L La  

and 

0 0 0

0 0 0

1 21 2
1 2 1 2

k i k i k i nk k k n
k k k n k i k i k i n

+ + + + + −+ + −    =   + + − + + + + + −   
L L
L La . 

Since the endomorphism a  is injective, this, the inequalities 
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1 2 1 1
1 2 1 1

k k k n k k k n
k k k n k k k n

+ + − + + −      + + − + + −   
L L
L L°  

and 
1 2 1 1 1
1 2 1 1 1

k k k n k k k n
k k k n k k k n

+ + + − + + −      + + + − + + −   
L L
L L° , 

the definition of the natural partial order on the semilattice nE convω

uuuuur
I (( ))  and 

Proposition 1.14.21(6) of [20] imply that 

0 0 0

0 0 0

1 2 11 2 1
1 2 1 1 2 1

k i k i k i nk k k n
k k k n k i k i k i n

+ + + + + + −+ + + −    =   + + + − + + + + + + −   
L L
L La . 

Again, since 
1 2
1 2

k k k n
k k k n

+ + +  + + + 
L
L  

is the unique idempotent of nE convω

uuuuur
I (( ))  which is greater than 

1 2 1
1 2 1

k k k n
k k k n

+ + + −  + + + − 
L
L  

and is distinct from the idempotent 
1 1
1 1

k k k n
k k k n

+ + −  + + − 
L
L , 

the definition of the natural partial order on the semilattice nE convω

uuuuur
I (( ))  and 

Proposition 1.14.21(6) of [20] imply that 

0 0 0

0 0 0

1 21 2
1 2 1 2

k i k i k i nk k k n
k k k n k i k i k i n

+ + + + + ++ + +    =   + + + + + + + + +   
L L
L La . 

Next, the equality 

0 0 0

0 0 0

1 2 11 2 1
 

1 2 1 1 2 1
k i k i k i nk k k n

k k k n k i k i k i n
+ + + + + + −+ + + −    =   + + + − + + + + + + −   

L L
L La  

and the above reasoning implies that 

0 0 0

0 0 0

1 2 21 2 2
1 2 2 1 2 2

k i k i k i nk k k n
k k k n k i k i k i n

+ + + + + + −+ + + −    =   + + + − + + + + + + −   
L L
L La , 

and by the similar step-by-step way we obtain that the following equalities 

 0 0 0

0 0 0

1 21 2
1 2 1 2

k i k i k i nk k k n
k k k n k i k i k i n

+ + + + + ++ + +    =   + + + + + + + + +   
L L
L La , 

 0 0 0

0 0 0

1 2 11 2 1
 

1 2 1 1 2 1
k i k i k i nk k k n

k k k n k i k i k i n
+ + + + + + −+ + + −    =   + + + − + + + + + + −   

L L
L La , 

 LLLLLLLLLLLLLLLLLLLLLLLLLLLL , 

 0 0

0 0

1 21 2
1 2 1 2

k i k ik k
k k k i k i

+ + + ++ +    =   + + + + + +   
a , 

 0

0

11
1 1

k ik
k k i

+ ++    =   + + +   
a  

hold, and hence we proved the induction step. 
Fix an arbitrary non-idempotent element 

1
1

a a a m
b b b m

+ + =  + + 
x

L
L  

of the semigroup n convω

uuuuur
I ( ) , for some ,a b ∈ ω  and 0,1, , 1m n= … − . Then 

1 1
1

a a a m
a a a m

− + + =  + + 
xx

L
L  

and 
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1 1
1

b b b m
b b b m

− + + =  + + 
x x

L
L , 

and hence by the above part of the proof we have 

1 0 0 0

0 0 0

1
1

i a i a i a m
i a i a i a m

− + + + + + =  + + + + + 
xx

L
La( )  

and 

1 0 0 0

0 0 0

1
1

i b i b i b m
i b i b i b m

− + + + + + =  + + + + + 
x x

L
La( ) . 

Since n convω

uuuuur
I ( )  is an inverse subsemigroup of the symmetric inverse 

monoid ωI  over ω , we conclude that 

 1
0 0 0dom ( ) dom ( ) , 1, ,i a i a i a m−= = + + + … + +x xxa a { }( ) ( )  

and 

 1
0 0 0ran ( ) ran ( ) , 1, ,i b i b i b m−= = + + + … + +x x xa a { }( ) ( ) . 

Now, the definition of the semigroup n convω

uuuuur
I ( )  implies that 

 0 0 0

0 0 0

1
( )

1
i a i a i a m
i b i b i b m

+ + + + + =  + + + + + 
x

L
La . 

By Corollary 1, 
0i

=a e  is an endomorphism of the semigroup n convω

uuuuur
I ( ) , 

which completes the proof of the theorem.  
Lemma 2 and Theorem 1 imply 
Corollary 3. For any positive integer 2n ≥ , every automorphism of the 

semigroup n convω

uuuuur
I ( )  is the identity map of n convω

uuuuur
I ( ) . 

For any positive integer n  and any injective endomorphisms 
1i

e  and 
2i

e  

of the semigroup n convω

uuuuur
I ( ) , we get by simple calculations that 

 
1 2 1 2 2 1i i i i i i+= =o oe e e e e . 

This and Theorem 1 imply 
Theorem 2. For any positive integer 2n ≥ , the semigroup of injective 

endomorphisms of the semigroup n convω

uuuuur
I ( )  is isomorphic to the semigroup 

( , )ω + . In particular, the group of automorphisms of n convω

uuuuur
I ( )  is trivial. 

Since by Theorem 3 of [13], for any n ∈ ω , the semigroup n
ω
FB  is 

isomorphic to the semigroup 1n conv+
ω

uuuuur
I ( ) , Corollary 3 and Theorem 2 imply 

the following two corollaries. 
Corollary 4. For any positive integer n , every automorphism of the 

semigroup n
ω
FB  is the identity map of n

ω
FB . 

Corollary 5. For any positive integer n , the semigroup of injective endo-

morphisms of the semigroup n
ω
FB  is isomorphic to the semigroup ( , )ω + . In 

particular, the group of automorphisms of n
ω
FB  is trivial. 

3. On endomorphisms of the semigroup of λ × λ -matrix units. 
Let λ  be a non-zero cardinal and ∉ λ × λ0 . The set λ = λ × λ ∪B { }0  with 

the following semigroup operation 

 
( , ), ,

( , ) ( , )
, otherwise,

a d b c
a b c d

=⋅ = 
0
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and ( , ) ( , )a b a b⋅ = ⋅ = ⋅ =0 0 0 0 0 , for all , , ,a b c d ∈ λ , is called the semigroup 

of λ × λ -matrix units [9]. It is well known that λB  is a combinatorial, cong-

ruence-free, primitive, completely 0 -simple inverse semigroup [20, 24], and 

moreover, λB  is isomorphic to the semigroup 1
λI . By Proposition 4 of [3] the 

semigroup ω
FB  is isomorphic to the semigroup of ω × ω -matrix units ωB  if 

and only if ,F= ∅F { } , where F  is a singleton subset of ω . 

For a non-zero cardinal λ , by λS  we denote the group of bijective trans-

formations of λ  and by λIT  we denote the semigroup of injective transfor-

mation of λ . 

Theorem 3. The semigroup inj( )λBEnd  of injective endomorphisms of λB  

is isomorphic to λIT , and moreover, the group ( )λBAut  of automorphisms of 

 λB is isomorphic to λS . 

P r o o f .  Let e  be an injective endomorphism of λB . Then ( ) =0 0e  

and the restriction of e  onto ( ) \E λ 0B { }  is an injective, i.e., there exists an 

injective transformation : λ → λei  such that ( , ) ( ) , ( )a a a a= e ee i i( )  for any 

a ∈ λ . It is obvious that λ∈ ITei . Since the composition 1 2oe e  of two 

injective endomorphisms 1e  and 2e  of λB  is an injective endomorphism, 

 
1 1 1 2 1 21 2 2( , ) ( ) , ( ) ( ) , ( )a a a a a a= =o e e e e e ee e i i e i i i i( ) ( ) (( ) ( ) )  

and hence 
1 2 1 2

=o oe e e ei i i  is an injective map of λ . This implies that the so 

defined map inj: λ λ→B ITJ End ( ) , a ee i  is a homomorphism. Next, we shall 

show that the homomorphism J  is surjective. Fix an arbitrary injective map 

: λ → λi . We claim that the mapping : λ λ→B Bie  given by the formulae 

 ( , ) ( ) , ( )a b a b=ie i i( )  for all , ;      ( )a b ∈ λ =0 0ie  

is an injective endomorphism of the semigroup λB . Indeed, since the mapping 

: λ → λi  is injective, 

 
( ) , ( ) , if ( ) ( ) ,

( , ) ( , ) ( ) , ( ) ( ) , ( )
, otherwise,

a d b i c i
a b c d a b c d

=⋅ = ⋅ = =
 0i i

i i
e e i i i i

( )
( ) ( )  

 
( , ) , if ,

( , ) ( , )
, otherwise,

i
i

a d e b c
a b c d e

== = ×
 0

( )  

and 
 ( , ) ( ) ( , ) ( ) ( , )a b a b a b⋅ = ⋅ = = = ⋅0 0 0 0 0i i i i ie e e e e( ) , 

 ( ) ( , ) ( , ) ( ) ( , )a b a b a b⋅ = ⋅ = = = ⋅0 0 0 0 0i i i i ie e e e e( ) , 

 ( ) ( ) ( ) ( )⋅ = ⋅ = = = ⋅0 0 0 0 0 0 0 0i i i ie e e e , 

and hence, ie  is an endomorphism of λB . It is obvious that the injectivity of i  

implies that the endomorphism ie  is injective, too. 

Simple verifications show that if e  is an automorphism of λB , then the 

mapping : λ → λei  is bijective, and the bijectivity of the mapping : λ → λi  

implies that ie  is an automorphism of λB . This completes the proof of the last 

statement.  
Recall [9], a semigroup S  is said to be left (right) cancellative if for all 

, ,a b c S∈ , the equality ab ac=  ( ba ca= ) implies b c= . We remark that 
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simple verifications show that the semigroup λIT  (and hence, inj( )λBEnd ) is 

left cancellative, but λIT  is not right cancellative. 

It is well known that the semigroup λB  of λ × λ -matrix units is congru-

ence-free, i.e., λB  has only two congruencies: the identity and the universal 

congruence. This implies that every endomorphism of λB  is either injective 

(i.e., is an isomorphism “into”) or annihilating. 

By ann ( )λBEnd  we denote the semigroup of all annihilating 

endomorphisms of λB . It is obvious that, for every annihilating endomorphism 

a  of λB , there exits an idempotent λ∈x B  such that ( )y = xa  for all y λ∈ B , 

and later we denote such endomorphism by xa . This implies that 

 ann
0 ( , )( :) aλ = ∈ λ∪B a aEnd a a{ } { } . 

It is obvious that ann ( )λBEnd  is a right zero semigroup, ann ( )λBEnd  is left 

simple and hence it is simple. 

For any inj( )λ∈ Be End  and ann ( )x λ∈ Ba End , we have that x x=oe a a  and 

( )x x=o ea e a . 

We summarize the above reasoning in the following  
Theorem 4. The semigroup ( )λBEnd  of all endomorphisms of the semi-

group of λ × λ -matrix units λB  is the union of the semigroups inj( )λBEnd  and 
ann ( )λBEnd . Moreover, inj( )λBEnd  is a left cancellative semigroup and 

ann ( )λBEnd  

is the minimal ideal of ( )λBEnd  which is a right zero semigroup. 
 
 1. Айзенштат А. Я. Определяющие соотношения полугруппы эндоморфизмов 

конечного линейно упорядоченного множества // Сиб. мат. журн. – 1962. – 3, 
№ 2. – С. 161–169. 

 2. Вагнер В. В. Обобщенные группы // Докл. АН СССР. – 1952. – 84, No. 6. – 
С. 1119–1122. 

 3. Гутік О., Михаленич М. Про одне узагальнення біциклічного моноїда // Вісн. 
Львів. ун-ту. Сер. мех.-мат. – 2020. – Вип. 90. – С. 5–19. 

– http://doi.org/10.30970/vmm.2020.90.005-019. 
 4. Гутік О., Прохоренкова О., Сех Д. Про ендоморфiзми бiциклiчної напiвгрупи та 

розширеної бiциклiчної напiвгрупи // Вісн. Львів. ун-ту. Сер. мех.-мат. – 2021. – 
Вип. 92. – С. 5–16. – (arXiv:2202.00073). 

 5. Жучок Ю. В. Полугруппы эндоморфизмов 2-нильпотентных бинарных отноше-
ний // Фундам. и прикл. математика. – 2008. – 14, № 6. – С. 75–83. 

Translation: Zhuchok Yu. V. Endomorphism semigroups of 2-nilpotent binary 
relations // J. Math. Sci. – 2010. – 164, No. 1. – P. 49–55. 
– https://doi.org/10.1007/s10958-009-9735-1. 

 6. Попова Л. М. Об одной полугруппе частичных эндоморфизмов множества с от-
ношением // Уч. зап. Ленингр. гос. пед. ин-та им. А. И. Герцена. – 1962. – 238. – 
С. 49–77. 

 7. Araujo J., Fernandes V. H., Jesus M. M., Maltcev V., Mitchell J. D. Automor-
phisms of partial endomorphism semigroups // Publ. Math. Debrecen. – 2011. – 
79, No. 1-2. – P. 23–39. – https://doi.org/10.5486/PMD.2011.4703. 

 8. Bardyla S. On topological McAlister semigroups // Preprint. – 2021. 
– (arXiv:2103.03301). 

 9. Clifford A. H., Preston G. B. The algebraic theory of semigroups. – Providence: 
Amer. Math. Soc., 1961. – Vol. 1.– xv+224 p. 

 10. Clifford A. H., Preston G. B. The algebraic theory of semigroups. – Providence: 
Amer. Math. Soc., 1967. – Vol. 2. – xv+352 p. 

 11. Gutik O. V., Reiter A. R. Symmetric inverse topological semigroups of finite rank 
n≤  // Мат. методи та фіз.-мех. поля. – 2009. – 52, No. 3. – P. 7–14. 



57 

Gutik O. V., Reiter A. R. Symmetric inverse topological semigroups of finite 
rank n≤  // J. Math. Sci. – 2010. – 171, No. 4. – P. 425–432. 

 12. Gutik O., Lysetska O. On the semigroup ω
FB  which is generated by the family F  

of singletons of ω  // Preprint. – 2021. 

 13. Gutik O., Popadiuk O. On the semigroup n
ω
FB  which is generated by the family 

Fn  of finite bounded intervals ω  // Preprint. – 2022. – (arXiv: 2208.09155). 

 14. Gutik O., Pozdniakova I. On the group of automorphisms of the semigroup FBZ  

with the family F  of inductive nonempty subsets of ω  // Preprint. – 2022 – 
(arXiv:2206.12819). 

 15. Harzheim E. Ordered sets. – New-York: Springer, 2005. – xii+386 p. 
 16. Fernandes V. H., Jesus M. M., Maltcev V., Mitchell J. D. Endomorphisms of the 

semigroup of order-preserving mappings // Semigroup Forum. – 2010. – 81, No. 2. 
– P. 277–285. – https://doi.org/10.1007/s00233-010-9220-7. 

 17. Fernandes V. H., Santos P. G. Endomorphisms of semigroups of order-preserving 
partial transformations // Semigroup Forum. – 2019. – 99, No. 2. – P. 333–344.  

– https://doi.org/10.1007/s00233-018-9948-z. 
 18. Fitzpatrick S. P., Symons J. S. V. Automorphisms of transformation semigroups // 

Proc. Edinburgh Math. Soc. – 1975. – 19, No. 4. – P. 327–329. 
– https://doi.org/10.1017/S0013091500010427. 

 19. Lavers T., Solomon A. The endomorphisms of a finite chain form a Rees congru-
ence semigroup // Semigroup Forum. – 1999. – 59, No. 2. – P. 167–170.  

– https://doi.org/10.1007/PL00006004. 
 20. Lawson M. V. Inverse semigroups. The theory of partial symmetries. – Singapore: 

World Sci., 1998. – 428 p. 
 21. Levi I., O’Meara K. C., Wood G. R. Automorphisms of Croisot – Teissier semi-

groups // J. Algebra. – 1986. – 101, No. 1. – P. 190–245.  
– https://doi.org/10.1016/0021-8693(86)90107-9. 

 22. Magill K. D, Jr. Automorphisms of the semigroup of all relations on a set // Can. 
Math. Bull. – 1966. – 9, No. 1. – P. 73–77.  

– https://doi.org/10.4153/CMB-1966-009-7. 
 23. Mazorchuk V. Endomorphisms of nB , P nB , and nC  // Commun. Algebra. – 2002. 

– 30, No. 7. – P. 3489–3513. – https://doi.org/10.1081/AGB-120004500. 
 24. Petrich M. Inverse semigroups. – New York: John Wiley & Sons, 1984. – 674 p. 
 25. Schein B. M., Teclezghi B. Endomorphisms of finite full transformation semigroups 

// Proc. Amer. Math. Soc. – 1998. – 126, No. 9. – P. 2579–2587.  
– https://doi.org/10.1090/S0002-9939-98-04764-9.  

 26. Schein B. M., Teclezghi B. Endomorphisms of finite symmetric inverse semigroups 
// J. Algebra. – 1997. – 198, No. 1. – P. 300–310.  

– https://doi.org/10.1006/jabr.1997.7132. 
 27. Sullivan R. P. Automorphisms of transformation semigroups // J. Austral. Math. 

Soc. – 1975. – 20, No. 1. – P. 77–84.  
– https://doi.org/10.1017/S144678870002396X. 

 

ПРО НАПІВГРУПУ ІН’ЄКТИВНИХ ЕНДОМОРФІЗМІВ НАПІВГРУПИ n
ω
FB , ПОРОДЖЕНУ 

СІМ’ЄЮ nF  ПОЧАТКОВИХ СКІНЧЕННИХ ІНТЕРВАЛІВ У ω  
 

Описано ін’єктивні ендоморфізми інверсної напівгрупи ω
FB , яку введено в статті 

[3], у випадку коли сім’я nF  породжена множиною 0,1, ,n…{ } . Зокрема, показано, 

що напівгрупа ін’єктивних ендоморфізмів напівгрупи ω
FB  є ізоморфною напівгрупі 

( , )ω + . Також описано структуру напівгрупи ( )λBEnd  усіх ендоморфізмів напів-

групи λ × λ -матричних одиниць λB . 

Ключові слова: біциклічне розширення, інверсна напівгрупа, ендоморфізм, авто-
морфізм, напівгрупа λ × λ  матричних одиниць. 
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