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ON THE SEMIGROUP OF INJECTIVE ENDOMORPHISMS
OF THE SEMIGROUP B(f" WHICH IS GENERATED BY THE FAMILY F,
OF INITIAL FINITE INTERVALS OF o

F

®

An injective endomorphisms of the inverse semigroup B introduced in the

paper [3], in the case where the family F, is generated by the set {0,1,...,n} are
described. In particular, it is shown that the semigroup of injective endomor-
phisms of the semigroup BZ: is isomorphic to (®,+). Also, the structure of the
semigroup €nd(B,) of all endomorphisms of the semigroup of A x A -matrix units
B, are described.
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1. Introduction, motivation and main definitions. We shall follow the
terminology of [9, 10, 20, 24]. By ® we denote the set of all non-negative
integers.

Let P(w) be the family of all subsets of ®. For any F € P(o) and
nmew, weput n-m+F={n-m+k:keF} if F#J and n-m+J =
=. A subfamily F c P(o) is called w-closed if F, N (-n+F,) e F for all
neow and F,F, € F.

We denote [0;0] ={0} and [0;k]={0,...,k} for any positive integer k.
The set [0;k], k € ©, is called an initial interval of ®.

A partially ordered set (or shortly a poset) (X,<) is the set X with the
reflexive, antisymmetric and transitive relation <. In this case the relation <
is called a partial order on X. A partially ordered set (X,<) is a linearly
ordered set or is a chain if x <y or y<x forany x,ye X. A map f froma
poset (X,<) onto a poset (Y,<) is said to be an order isomorphism if f is
bijective and x <y if and only if f(x) < f(y). A partial order isomorphism f
from a poset (X,<) into a poset (Y,<) is an order isomorphism from a subset
A of a poset (X,<) onto a subset B of a poset (Y,<). For any element x of a

poset (X,<), we denote TS rx={yeX:x<y}.
A nonempty set S with a binary associative operation is called a semi-
group. By (®,+) we denote the set ® with the usual addition (x,y) > x+y.

A semigroup S is called inverse if for any element x € .S there exists a

; -1 -1 -1, -1 -1 -1
unique x €S such that xx" =2 and x xx™ =x . The element x ™ is

called the inverse of x € S.If S is an inverse semigroup, then the mapping

inv: S - S which assigns to every element x of S its inverse element x*

is called the inversion.

If S is a semigroup, then we shall denote the subset of all idempotents
in S by E(S).If S is an inverse semigroup, then E(S) is closed under multi-
plication and we shall refer to E(S) as a band (or the band of S). Then the

semigroup operation on S determines the following partial order < on E(S):
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e X f if and only if ef = fe = e. This order is called the natural partial order
on E(S). A semilattice is a commutative semigroup of idempotents. By
(o, min) we denote the set ® with the semilattice operation x -y = min{x,y}.

For semigroups S and T,amap h:S — T is called:

e a homomorphism if h(s; -s,) = b(s;)-h(s,) for all s;,s, € S;

e an annihilating homomorphism if b is a homomorphism and

bh(s;) = b(s,) for all s;,s, €5

e an isomorphism if h: S —> T is a bijective homomorphism.

For a semigroup S, a homomorphism (an isomorphism) h: S — S is
called an endomorphism (automorphism) of S. For simplicity of calculation,
the image of s e€.S under an endomorphism e of a semigroup S we shall
denote by (s)e.

A congruence on a semigroup S is an equivalence relation € on S such
that (s,t) € € implies that (as,at),(sb,tb) € € for all a,b e.S. Every congru-
ence ¢ on a semigroup S generates the associated natural homomorphism
s> S /€ which assigns to each element s of S its congruence class [s],
in the quotient semigroup S /€. Also, every homomorphism h:S - T of
semigroups S and T generates the congruence Qﬁh on S: (s,s,) € Qﬁh if and
only if (s;)h = (sy)bh.

A nonempty subset I of a semigroup S is called an ideal of S if
SIS ={asb:sel,a,be S} cI.Everyideal I of a semigroup S generates the

congruence ¢, = (IxI)UAg on S, which is called the Rees congruence on S .
Let Z, denote the set of all partial one-to-one transformations of X
together with the following semigroup operation:
x(af) = (xa)p if x € dom(ap) = {y € doma : ya € domP} for a,P e Z, .
The semigroup Z, is called the symmetric inverse semigroup over the

cardinal A (see [9]). For any o € Z,, the cardinality of doma is called the

rank of o and it is denoted by ranka. The symmetric inverse semigroup
was introduced by V. V. Wagner [2] and it plays a major role in the theory of
semigroups.

Put I ={aeZ, :ranka<n} for n=123,.... Obviously, I,
n=1,23,..., are inverse semigroups, moreover, I{L is an ideal of Z, for each
n =1,2,3,.... The semigroup Z;' is called the symmetric inverse semigroup of

finite transformations of the rank < n [11]. By

(xl Ty ... xnj
Y Yy - Y,
we denote a partial one-to-one transformation which maps a; onto y,, x,

onto y,, .., and x, onto y,. Obviously, in such case we have x, # x; and
Y; Y for i#j, 1,7=1,2,3,...,n. The empty partial map J: A =LA is

denoted by 0. It is obvious that 0 is zero of the semigroup Z,'.

For a partially ordered set (P,<), a subset X of P is called order-con-
vex, if x <z<y and x,y € X implies that z € X for all x,y,z € P [15] It is
obvious that the set of all partial order isomorphisms between convex subsets
of (o,<) under the composition of partial self-maps forms an inverse subsemi-
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group of the symmetric inverse semigroup Z, over the set w. We denote this
semigroup by Z)(conv). We put I (conv) = Z (conv)(NZ) and it is obvious
that Z(conv) is closed under the semigroup operation of 7, and the semi-

group 7. (conv) is called the inverse semigroup of convex order isomorphisms
of (®,5) of the rank < n. Obviously that every non-zero element of the semi-

group Z"(conv) of the rank k <n has a form

(i 1+1 .. i+lc—1j
j j+1 ... j+k-1
for some 1,j € .
The bicyclic monoid C(p,q) is the semigroup with the identity 1 gene-
rated by two elements p and g subjected only to the condition pg =1. The

semigroup operation on C(p,q) is determined as follows: qkp[-qmp" =

k+m-min{¢,m} __(+n-min{{,m}

=q b
It is well known that the bicyclic monoid C(p,q) is a bisimple (and hence

simple) combinatorial E -unitary inverse semigroup and every non-trivial
congruence on C(p,q) is a group congruence [9].
On the set B, =owx® we define the semigroup operation “-” in the
following way
S oo
R s i
It is well known that the semigroup B, is isomorphic to the bicyclic

monoid by the mapping h: C(p,q) > B,, qkp[ — (k,¢) (see, [9, Secti. 1.12] or
[24, Exercise IV.1.11(37)]).

Next, we shall describe the construction which is introduced in [3].

Let B, be the bicyclic monoid and F be an -closed subfamily of P().

“w o

On the set B, x F we define the semigroup operation in the following
way
(i =1 +9, 05, (G =G + )N Fy), 5y <y,
(il’jl _iz +j27F1 ﬂ(iz _j1 +Fz))’ 0 2 12'

In [3] it is proved that if the family F < P(w) is w-closed, then
(B, x F,-) is a semigroup. Moreover, if an o-closed family F < P(w) contains

(1), 71, F1) - (29, 55, ) :{

the empty set &, then the set I ={(i,7,9):4,j € o} is an ideal of the semi-
group (B, x F,-). Also, in [3], for any o-closed family F < P(w), it is defined
the semigroup
) 2
® )y )
that generalizes the bicyclic monoid and the countable semigroup of matrix
units. It is proved in [3] that B(f is a combinatorial inverse semigroup and
Green’s relations, the natural partial order on B(f and its set of idempotents
are described. The criteria of simplicity, 0 -simplicity, bisimplicity, 0 -bisim-
plicity of the semigroup B(f and the criterion for Bf to have the identity,
to be isomorphic to the bicyclic semigroup or the countable semigroup of
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matrix units are given. In particular, in [3] it is proved that the semigroup
B(f is isomorphic to the semigroup of o x o -matrix units if and only if F

consists of a singleton set and the empty set.
In the case where the family F consists of the empty set and some

singleton subsets of ®, the semigroup Bf is studied in [12]. It is proved that

the semigroup B(f is isomorphic to the subsemigroup B(Z(Fm ) of the Brandt

o -extension of the subsemilattice (F,min) of (®,min), where F =UF . Also,

in

topologizations of the semigroup Bf and its closure in semitopological semi-
groups are studied.

For any n e ®, we put F, ={[0;k]:k =0,...,n}. It is obvious that F, is
an o -closed family of .

In the paper [13], we study the semigroup Bf". It is shown that the
Green relations O and J coincide in Bf", the semigroup Bf" is isomorphic
to the semigroup Ig“(conv), and Bf" admits only Rees congruencies. Also,

in [13], we study shift-continuous topologies of the semigroup B(f". In parti-
cular, we prove that for any shift-continuous T, -topology 1 on the semigroup
2 Fo s : : 2 2
B,", every non-zero element of B, is an isolated point of (B,",1), B," ad-
mits the unique compact shift-continuous T, -topology, and every o,-compact

shift-continuous T, -topology is compact. We describe the closure of the semi-
group B(f" in a Hausdorff semitopological semigroup and prove the criterion

when a topological inverse semigroup B(f" is H -closed in the class of Haus-

dorff topological semigroups.

Surprisingly, not so many articles are devoted to endomorphisms and au-
tomorphisms of semigroups. In particular, in [7] the authors propose a general
recipe for calculating the automorphism groups of semigroups consisting of
partial endomorphisms of relational structures over a finite set with a single
m -ary relation for any positive integer m, which determine the automor-
phism groups of the following semigroups: the full transformation semigroup,
the partial transformation semigroup, and the symmetric inverse semigroup,
the wreath product of two full transformation semigroups, the partial endo-
morphisms of any partially ordered set, the full spectrum of semigroups of
partial mappings preserving or reversing a linear or circular order. In the pa-
per [16] the authors characterize the endomorphisms of the semigroup of all
order-preserving mappings on a finite chain. In [17] Fernandes and Santos
characterize the monoids of endomorphisms of the semigroup of all order-pre-
serving partial transformations and of the semigroup of all order-preserving
partial permutations of a finite chain. Also, the semigroups of a finite chain
are described in [6, 19]. Endomorphisms and automorphisms of other types of
semigroups are studied in [1, 4, 5, 8, 14, 18, 21—-27] and other papers.

This paper is a continuation of the investigation which is presented in

[13]. Here we describe injective endomorphisms of the semigroup Z_ (WJ)
for a positive integer n > 2. In particular, we show that for n > 2 the semi-
group of injective endomorphisms of the semigroup Bf" is isomorphic to
(w,+). Also, we describe the structure of the semigroup €nd(B,) of all endo-

morphisms of the semigroup of A x A -matrix units B, .
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2. On injective endomorphisms of the semigroup B(f"

Proposition 1. For any non-negative integer m and arbitrary p € o, the
map e, : B(f" —>B(f" defined by the formulae (0)e, =0 and (i,3,[0;k])e, =

= (p+1,p +5,[0;k]) is an endomorphism of the semigroup B.".
Pr oo f.Itisobvious that (O)ep -(O)ep =0-0=0= (O)e)D =(0- O)ep and

(0)e, - (i, 4, [O;k])ep =0-(p+i,p+5[0;k])=0= (0)e, = (0-(4,7, [O;k]))ep
(i,j,[O;k])ep “(0)e, = (p+i,p+7]0k])-0=0= (0)e, = ((4,4,]0;K]) - O)ep
for any non-zero element (i, 7,[0;k]) of the semigroup Bf" . Also, for any non-

zero elements (i},7,,[0;k,]) and (i,,J,,[0;k,]) of the semigroup B , we have
that

(il’jh[o;kl])ep '(iQ’ij[O;kz])ep = (p+ip, P+ 5,[0 K ]) - (P + iy, D+ 15, [05 Ky ]) =

(p+i, —(p+5)+P+iy, D+ 7y, (P+7, —(p+iy) +[0;7,]) N [0;k,]), p+7, <p+iy,
= (p+i;, P+, [0k, ] N [0; K, ]), P+j=p+iy, =
(p+iy, p+i —(P+i)+p+7p [0k ] N (p+iy —(p+5)+ [0k, ]), p+3y >p+iy,

(p+i1—j1+i2,p+j2,(j1—i2+[0;k1])ﬂ[0;k2]), I <1y,
= (P +1, D + 75, [0k, ] N [0; K, ), B =1y,
(p+1i, 0+ — 1y + 55, [0 TN (2 — 5y + (05K, D), Gy > 4y,
and
((i17j1’[0;k1])'(iz’j27[0;k2]))ep =
(4 = J1 + 490 555 (G = 3 + (05K, ]) N [0;162])%7
(7. 0] [0, e o = i -
(41,7 12+927[07k1]ﬂ(2_j1+[0§k2]))ep’ i > 1y,
(
(
(

A
.
o

p+11 jl +izap+j2,(j1 ) [O;kl])ﬂ[O;kz])’ jl <i2’
p+ll’p+]2’[0k]ﬂ[0k]) j1=i27
DHi,D+ T~y +]27[0,k1]ﬂ(i2 - i +[0;k2]))7 B > 1,

and hence the so defined map e, :B(f" - B(f" is an endomorphism of the

semigroup B(f". ¢

By Theorem 1 of [13], for any n € ®, the semigroup Bf" is isomorphic to
the semigroup Z"'(conv) by the mapping J:B." — Z""! defined by the
formulae J(0) =0 and

L oragne (o1 +1 L i+ k
QJJQRDJ_(j j+1 ... j+k)

This and Proposition 1 imply the following corollary.
Corollary 1. For any positive integer n and arbitrary p € ®, the map

¢, : I, = I, defined by the formulae (0)¢, = 0 and

p ®
i i+1 ... i+k p+i p+i+1l ... p+i+k
. . e, = . . .
j oj+1 ... j+k p+j p+j+1 ... p+j+k

is an endomorphism of the semigroup Z, .
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Later we study endomorphisms of the semigroup Z_ (conv).

Lemma 1. Let n be any positive integer and a be an arbitrary non-anni-
hilating endomorphism of the semigroup Z, . Then (0)a =0.

Proof. Since 0 is an idempotent of Z!(conv), so is the image (0)a.
Suppose to the contrary that (0)a =e # 0. By Theorem 3 from [13] the image

of I} (%) under endomorphism a is isomorphic to the semigroup
)y (HE) for some positive integer m <n. Hence the subsemigroup
(Z(conv))a of Z"(conwv) has infinitely many idempotents. But by Theorem 1
and Lemma 1 from [13] the set T e is finite, a contradiction. The obtained

contradiction implies the equality (0)a =0. ¢
Lemma 1 implies the following corollary.
Corollary 2. Let n be any positive integer and a be an arbitrary endo-

morphism of the semigroup Z..If (0)a # 0 then a is annthilating.

Lemma 2. Let n be any positive integer > 2 and a be an arbitrary non-

0
0) then a

annihilating endomorphism of the semigroup I (conv). If (8)0 = (
is the identity automorphism of I (conv).

P r o o f . First, we shall show that the restriction of the endomorphism
a onto the band E(Z(conv)) is the identity map of E(Z](conv)).

The definition of the natural partial order < on E(Z)(conv)) implies

that
TO_OOl___Olmn—l
=\o) |l)2lo 1) 01 -+ n-1)["
By Proposition 1.14.21(6) of [20] every homomorphism of inverse semigroups

0 lja, because

preserves the natural partial order, and hence (8)aj(0 1

(8] = (8 D Also, by Proposition 4 of [13] every congruence on the semi-

group Z!(conv) is Rees, which implies that GDCL # (8 D a. Hence, we obtain
01 01 . . . 01 - k
that (0 lja = (0 1). Similarly, by induction we get that (0 1 .. kja =
01 - k
—(0 1 . kj forany k=2,...,n-1.

The definition of the natural partial order < on E(Z)(conv)) implies

that 0 =< Gj = (8 B Then the above part of the proof, Lemma 1 and Propo-

sition 4 of [13] imply that

1 01 01
o-ou{le=(s Yoot 1)

Again, by the definition of the natural partial order < on E(Z](conv)) we

have that the inequalities 0 < x =< (8 D have two solutions either x = (8) or
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1

x = Gj Then Proposition 4 of [13] implies that Gja = (1

j . Similar arguments

.. 1 1 1 2 01 2 01 2) .
and the conditions (J = (1) a= (1 2) a= (0 1 2) a= (0 1 2) imply that
1 2 1 2 . . 1 2 k+1
(1 2] a= (1 2). Next by induction we get that (1 9 K+ J a=

1 2 k+1
—(1 9 k+1j forany k=2,...,n-1.
We observe that the proof of the step of induction (if the equalities
GG G on)-0 at)e -
p) \p)7 \p p+1) (p p+1)7 ’
p p+1 p+n-1 (p p+1 p+n-1 a
p p+l p+n—-1)" p p+1 p+n—1

hold for p <m, then these equalities hold for p=m+1) is similar to the
above part of the proof.

Fix an arbitrary x € Z"(conv)\ E(Z"(conv)) with rankx =k, k=1,...,n.
Since x is a partial convex order isomorphism of (®,<), there exist s,t € ®

s s+1 s+k-1
t t+1 t+n-1
Proposition 1.14.21(1) of [20] we have that

(x)a - ((x)a)! =(x)a-(x)a = (xx")a = xx"

such that x=( ) Since xx',x 'x € E(Z"(conv)), by

(s s+1 s+k—-1\(s s+1 s+k-1\"
Tt ot+1 t+n-1)\t t+1 t+n-1)
(s s+1 s+k-1\(t t+1 t+k-1)
“\t t+1 t+n—-1){s s+1 s+n-1)"
(s s+1 s+k-1
“ls s+1 s+n-1)

and

((X)a)_1 - (X)a = (x_l)a -(X)a = (x_lx)a =xx =

s s+1

t t+1
t+1
s+1
t+1
t+1
The above equalities imply that

s+k-1
t+n-—-1

t+k-1
S+n—

t+k-1
t+n-—-1

J

s s+1

t

t+1

I
)

s s+1
t t+1

dom ((x)a) = dom ((x)a - ((x)a)™") = {s,...,s + k -1}

ran ((x)a) = dom (((x)a)™ - (x)a) = {t,...,t + k —1}.

and

Since (x)a

(X)__s s+1 s+k-1
=l t+1 t+n—-1

To visually simplify the proof of Theorem 1, on Fig. 1, we schematically

s+k-1

t+n—1)

s+k-1
t+n-—-1

present the natural partial order on the semilattice E(Z(conv)).
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is a partial convex order isomorphism of (®,<), we get that

j, which completes the proof of the lemma.
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Fig. 1
For any i, € o, we define the endomorphism ¢, I} (conv) — I} (conv)

in the following way

(0)e, =0, G e =[Lt , ! ?+1)a [ttt ?+?°+1,
iy j) J+1 j j+1)n J+i j+iy+1

1 i+1 - i+n-1 (it i1+ - itm-—147
j j+1 ~—-j+n-1 big = jHiy jHl+dy o jAn-1+14)
Theorem 1. Let n be any positive integer > 2. For every injective endo-
morphism a : Z;(conv) — I (conv), there exists iy € o such that a =¢, .
Proof. ByLemmal we get that (0)a=0.

i i+l - dtn-1

It is obvious that m:{( . .
j j+1 - j4+n-1

j:i,jem} is the set of all

maximal idempotents of E(Z)(conv)), and moreover, every maximal chain in

the semilattice E(Z,(conv)) contains n +1 idempotents. Hence,
0y (0 1y (0 1 -+ mn-1
t={o(g) (0 1)} (61 70T
1y (1 2 (1 2 - n
n- o6 263D

are maximal chains in E(Z(conv)). Since a is an injective endomorphism of

and

the semigroup Z.(conv), Proposition 1.14.21(6) of [20] implies that the images

(Ly)a and (L;)a are maximal chains in E(Z (conv)).
Put
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A oy G+l o g +n-—1
(01 n 1)a=(l.° i iy + 1 jefm.

01 - n-1 iy fp+1 - iy +n-—1

rankl - n—1 Cmo] 1 -+ n-1 01 - n-1
1 -+ n-1)" ’ 1 - n-1 01 - mn-1

1 «+ n-1 1 2 -~ n

R El (|

the definition of the natural partial order on the semilattice E(Z}(conv)) and
Proposition 1.14.21(6) of [20] imply that either

Since

PN

and

1 -+ n-1 i, o+l o fp+n-—2
a=|. . .
1 -+ n-1 i, g+l - fp+n-—2
or
1 - m—=1)  (fp+1 4 +2 - dp+n-1
1o n=1)% Tl +1 dg+2 - dg+n—1)
Suppose that
1 -« n-1 iy Gy +1 - i +m—2
a=|. . : .
1 -+ n-1 iy fp+1 - iy +mn—2
Since 12 " e M, we have that 12 " ae, and the
1 2 n 12 -+ n

definition of the natural partial order on the semilattice E(Z] (conv)) and
Proposition 1.14.21(6) of [20] imply that

12 - n ip—1 45 - i +n—-2

& 2-~'J“:(%—1 iy - %+n—2)
Again, by the definition of the natural partial order on the semilattice
E(Z"(conv)) and Proposition 1.14.21(6) of [20], we obtain that

(2 n) (io—l iy e io+n—3j
a=|. . .
2 - n i,—1 4 - i3+n-3
because rank 2 om =n-1 and 2 om = L2 . Since
9 ... om 9 .. om 1 2 - n
2 n = 2 3 - n+l
2 - n)=\2 3 - n+1
the above arguments imply that
2 3 - n+l -2 -1 - ;+n-3
a=|. . .
2 3 - n+1 -2 4,—-1 - i +n-3
3 - m+1) (-2 4p-1 o dp+n-—4
3 o n+1)" T4 -2 iy -1 - g +n-—4)

Next, we extend the procedure described above step-by-step using the defi-

and

nition of the natural partial order on the semilattice E(Z](conv)) and Pro-
position 1.14.21(6) of [20] and get that

i+l o fp+n-1) (0 1 -+ mn—2
ig+1 o dp+n—1)"70 1 - n-2

iy 4+l - HE+n-1) (0 1 - n-1
iy g+l e dg+n=1)"70 1 - m-1)

and
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Since a is an injective endomorphism of the semigroup Z_ (conv),

ip+n-—1 - iy fp+1 - iy +n-1
iy +n—1 iy fp+1 - iy +n-1
and
ip+1 -0 iy +n-1 - i, +1 4, +2 .. ij+n
ip+1 - iy +n-1 i, +1 4, +2 - ij+mn

in E(Z)( conv)) , we conclude that Proposition 1.14.21(6) of [20] implies that

+1 - gy +n-1 i, tp+1 - fp+n-1
( +1 e %+n—J“<(% Gy +1 %+n—J“
and
( +1 -y +n-— 1} _<(1,:0+1 z:o+2 z:0+nj
+1 - gy +n-1 i, +1 4, +2 - ij+mn
But
(% %+1~.%+n—qa=@ 1~-n—j
iy fp+1 - iy +n-—1 01 - n-1
is the unique idempotent of the semilattice E(Z(conv)) which is greater than
(i0+1 i0+n—1ja=(0 1 - n—2)
iy +1 e G +m—1 01 « n-2)
The obtained contradiction implies that
1 -+ n-1 i, g+l v iy+n-2
@ - n—J“i(i £+1-~ £+n—ﬂ
and hence we get that
1 - nm—=1)  [(fp+1 4 +2 - dp+n-1
& - n—J“‘(%+1 Gy +2 e %+n—J'

The inequality
(0 1 .- n—2j<(0 1 .- n—l)
01 - n-2)"\01 - mn-1
implies that
01 - mn-2y (01 mn-1
@ 1~-n—ﬁ“—& 1~-n—J“
and hence, the definition of the natural partial order on E(Z (m)) ,

injectivity of a, Proposition 1.14.21(6) of [20] and the equality

1 - nm=1)  (fp+1 4 +2 - dp+n-1

& - n—J“‘(%+1 Gy +2 e %+n—J
imply that

01 n-2\_ (i i+l - dpt+n-2

(01 n—2a_(% Gy +1 - %+n_ﬂ-

Again, since

)
L
)

)

[N
3 3
I
(LN

1 2 - n-2
1 2 «+ n-2
we obtain that

12 -+ n-2
12 - n-2
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and
1 2
1 2

(

n —
n —

01

2
~
Ja—& 1

n-—2 a
n-2)"

The above two inequalities and the equalities

1o n—1) (ig+1 4y+2

& n—J“‘(%+1 iy + 2
and

01 -« n-2 iy iy +1

(01 n_ﬁa:(% iy +1
imply that

12 - n-2 Gy +1 gy +2

@ 2 n_ﬂa=(%+1 iy +2

Now, if we

(

i, +n-1

i, +n-1

iy +n—2

iy +n—2
iy +n—2
iy +n—-2)

i0+n—1j

. b

ip+n—1

10+nj

. I

iy +n

1O+n—2j

. I

iy +n—2
zo+n—1j
. ’
iy +n—1

b

iy +1 10+2)

. . ,

iy +1 i;+2

equalities

01 n—1 o= i, iy +1

01 n-1 Gy gy +1

12 n  (fg+1 gy +2

12 - n)% Tl +1 4y +2

01 n—2 o= i, i, +1

01 n-2 Gy gy +1

1 2 n-1 G +1 iy +2
a=|. .

1 2 n-1 iy +1 5 +2

0 1) (i) 4 +1 1 2)

o 1) i 4,+1) 1 2)*7

0 1, 1 iy +1

(o)~

0

)

)

e

1

(

)

i, +1

Thus, we showed that the initial case of induction holds.

Next we shall prove that the induction step holds: if the equalities

e p+ iO e
D+
D+,
D+,

p+1
p+1

p+n—ga:(
p+n-1

p+n—-2)
p+n—ﬂa_(

p+i,+1
p+i,+1
p+i,+1
p+i,+1

repeat the above procedure step-by-step we get the following

pP+ig+tn—1
pP+ig+tn-—1

)
)

p+igtn—2
pP+ip+tn—2

b
b

(5)e-(

p+1

ja
p + 1,
p + 1,

P+

o
)

p+i,+1
p+i,+1

)

hold for some k and all non-negative p <k, then such

p=k+1.

By the inductive assumption, we have that

k k+1
k k+1

(
(

and

k k+1
k k+1

k+n-1
k+n-1

k+n-2
k+n-2

e

a

k+1,
k+1,

k+1,
k+1,

k+iy+1
k+iy+1

k+i,+1
k+i,+1

equalities hold for

)

k+iy+n-2
k+iy+n-2)

k+iy+n-1
k+iy+n-1

Since the endomorphism a is injective, this, the inequalities
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(k k+1 - k+n—2j<(k k+1 - k+n—1)
k k+1 -+ k+4n-2)—\k k+1 -+ k+n-1
and
(k+1 k+2 - k+n—1)<(k k+1 - Ic+n—1j
k+1 k+2 - k+n-1)—\k k+1 - k+n-1)’
the definition of the natural partial order on the semilattice E(Z(conv)) and
Proposition 1.14.21(6) of [20] imply that
k+1 k+2 - k+n-1 k+ig+1 k+iy+2 - k+i;+n-1
(lc+1 k+2 - k+n—1)a=(k+i0+1 k+iy+2 - Ic+i0+n—1)'
Again, since
k+1 k+2 - k+n
(lc+1 k+2 - Ic+nj

is the unique idempotent of E(Z) (m)) which is greater than
k+1 k+2 - k+n-1
(k+1 k+2 - k+n—1j
and is distinct from the idempotent
k k+1 -~ k+n-1
(k k+1 - Ic+n—1j’
the definition of the natural partial order on the semilattice E(Z] (M)) and
Proposition 1.14.21(6) of [20] imply that
k+1 k+2 - k+n)_ (k+ip+1 k+ig+2 . k+ig+n
(lc+1 k+2 - k+nja_(k+i0+1 k+iy+2 - k+i0+nj'
Next, the equality
k+1 k+2 - k+n-1 k+ig+1 k+iy+2 - k+i;+n-1
(lc+1 k+2 - k+n—1ja=(k+i0+1 k+iy+2 - k+i0+n—1j
and the above reasoning implies that
k+1 k+2 - k+n-2 k+iy+1 k+iy+2 -« k+i,+n—2
(lc+1 k+2 - k+n—2)a=(k+i0+1 k+iy+2 - k+i0+n—2j’
and by the similar step-by-step way we obtain that the following equalities
k+1 k+2 - k+n k+iy+1 k+iy+2 - k+i,+n
(lc+1 k+2 - k+nja=(k+i0+1 k+i,+2 - Ic+i0+nj’

k+1 k+2 - k+n-1\ (k+i+1 k+iy+2 .. k+i;+n—1
k+1l k+2 - k+n-1)"" k+ig+1 k+iy+2 - k+iy+n—-1)’
k+1 k+2) (k+ig+1l k+i,+2

k+1l k+2)%7 k+ig+1 k+i,+2)’

k+1) (k+i+1

k+1)% "k + Ty +1
hold, and hence we proved the induction step.
Fix an arbitrary non-idempotent element

<=[¢ a+l - a+m
b b+l -+ b+m
of the semigroup IZ)L (com)), for some a,be ® and m =0,1,...,n—1. Then
1 (a a+1 - a+mj
XX = =
a a+l - a+m

and
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. (b b+l - b+m
X X=b bs1 - b+m)

and hence by the above part of the proof we have

(xxfl)a: 1A0+a 1.0+a+1 140+a+m
iy+a ig+a+l - {y+a+m
and
(x'x)a = z.0+b 1.0+b+1 ’.0+b+m_
i, +b iy +b+1 -+ ;+b+m

Since Zg(conv) is an inverse subsemigroup of the symmetric inverse

monoid Z, over ®, we conclude that

dom ((x)a) = dom ((xx ")a) = {i, + a,iy +a+1,...,4, +a+m}

and
ran((x)a) = ran ((x 'x)a) = {i, + b, i, +b+1,...,5, + b+ m}.
Now, the definition of the semigroup Z. (conv) implies that
(fpta fp+ta+l - fpta+m
(X)a_(io +b dy+b+1 - dy+b+m)
By Corollary 1, a =e, is an endomorphism of the semigroup Z; (conv),
which completes the proof of the theorem. ¢

Lemma 2 and Theorem 1 imply
Corollary 3. For any positive integer n > 2, every automorphism of the

semigroup I, (conv) is the identity map of Z, (conv).

For any positive integer n and any injective endomorphisms e, and e,
1 2

of the semigroup Z; (conv), we get by simple calculations that

G ©C, T €4y, T 8, 08 -

This and Theorem 1 imply
Theorem 2. For any positive integer m > 2, the semigroup of injective

endomorphisms of the semigroup Z.(conv) is isomorphic to the semigroup
(0,+) . In particular, the group of automorphisms of I (conv) is trivial.
Since by Theorem 3 of [13], for any n € ®, the semigroup Bf" is

isomorphic to the semigroup Z*'(conv), Corollary 3 and Theorem 2 imply

the following two corollaries.
Corollary 4. For any positive integer n, every automorphism of the

semigroup Bf" is the identity map of B(f" .
Corollary 5. For any positive integer m, the semigroup of injective endo-

morphisms of the semigroup B(f" is isomorphic to the semigroup (®,+). In

particular, the group of automorphisms of B(f" 18 trivial.

3. On endomorphisms of the semigroup of A x A -matrix units.
Let A be a non-zero cardinal and 0 ¢ A x 1. The set B, = AxAU{0} with

the following semigroup operation
(a,d), b=c,
0, otherwise,

(a,b) - (c,d) ={
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and (a,b)-0=0-(a,b)=0-0=0, for all a,b,c,d € A, is called the semigroup
of A xXA-matrix units [9]. It is well known that B, is a combinatorial, cong-
ruence-free, primitive, completely 0 -simple inverse semigroup [20, 24], and
moreover, B, is isomorphic to the semigroup I}{. By Proposition 4 of [3] the
semigroup B(f is isomorphic to the semigroup of o x w-matrix units B, if
and only if F ={F,J}, where F is a singleton subset of ®.

For a non-zero cardinal A, by S, we denote the group of bijective trans-
formations of A and by Z7, we denote the semigroup of injective transfor-
mation of A.

Theorem 3. The semigroup anbinj(Bk) of injective endomorphisms of B,
s isomorphic to I7T, , and moreover, the group Aut(B,) of automorphisms of
B, is isomorphic to S, .

Proof. Let ¢ be an injective endomorphism of 5,. Then (0)e =10
and the restriction of ¢ onto E(B,)\ {0} is an injective, ie., there exists an
injective transformation i, : A — A such that (a,a)e =((a)ie,(a)ie) for any
aek. It is obvious that i, € I7,. Since the composition e, oe, of two
injective endomorphisms ¢; and ¢, of B, is an injective endomorphism,

(a,a)(e; ©¢y) = ((@)i, , (@i Jey = (@i i, (@i, )i, )
and hence ieloe2 = iel ° iez is an injective map of A. This implies that the so
defined map J: ¢nd™ (B,) » I7,, e+ i, is a homomorphism. Next, we shall
show that the homomorphism J is surjective. Fix an arbitrary injective map
i:X = A.We claim that the mapping ¢, : B, — B, given by the formulae

(a,b)e; = ((a)i,(b)i) forall a,bek; (0)e; =0
is an injective endomorphism of the semigroup B, . Indeed, since the mapping
i: A > A is injective,

(a,be; - (c,d)e; = ((a)i,(b)i)- ((0)i,(d)i) = {

_[(a,d)e;, itb=c,
- 0, otherwise,

((@)i, (d)i), if (b)i = (c)i,
0, otherwise, B

= ((a,b) x (c,d))e;
and

(a,b)e; - (0)e; = (a,be; -0 =0 =(0), =((a,b)-0)e,,

(0)e; - (a,be, =0-(a,b)e; =0 =(0), =(0-(a,b),,

(0)e; - (0)e; =0-0=0=(0)e;, =(0-0)e,,
and hence, ¢; is an endomorphism of 5, . It is obvious that the injectivity of i
implies that the endomorphism ¢, is injective, too.

Simple verifications show that if ¢ is an automorphism of B, , then the

mapping i, : A — A is bijective, and the bijectivity of the mapping i: A — A
implies that ¢, is an automorphism of B, . This completes the proof of the last

statement. ¢

Recall [9], a semigroup S is said to be left (right) cancellative if for all
a,b,c € §, the equality ab=ac (ba =ca) implies b=c. We remark that
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simple verifications show that the semigroup Z7, (and hence, (’Enainj(Bk)) is
left cancellative, but I7, is not right cancellative.

It is well known that the semigroup B, of A xA-matrix units is congru-
ence-free, ie., B, has only two congruencies: the identity and the universal
congruence. This implies that every endomorphism of B, is either injective
(i.e., is an isomorphism “into”) or annihilating.

By ¢nd*™(B,) we denote the semigroup of all annihilating
endomorphisms of B, . It is obvious that, for every annihilating endomorphism
a of B,, there exits an idempotent x € B, such that (y)a =x for all y € 3,

and later we denote such endomorphism by a,. This implies that
End*™(B,) = {a;} U{ay, aeci}.

It is obvious that €nd*™"(B,) is a right zero semigroup, End*"(B,) is left
simple and hence it is simple.

For any ¢ € (’Enainj(Bx) and a, € End*™(B, ), we have that eca, =a, and
Ay 0 =0(,,-
We summarize the above reasoning in the following
Theorem 4. The semigroup €nd(B,) of all endomorphisms of the semi-

group of A xA-matrix units B, is the union of the semigroups anbinj(Bk) and
End*™ (B, ). Moreover, anbinj(Bk) is a left cancellative semigroup and End*™ (B, )

s the minimal ideal of End(B,) which is a right zero semigroup.
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NPO HANIBIrryny IHEKTUBHUX EHOOMOP®I3MIB HAMIBIrPYnu BZ):" , TOPOXKEHY
CIM’er0 fn NOYATKOBUX CKIHYEHHUX IHTEPBANIB Y ®

Onucaro i1’ ekmugti eH0oMOPPI3MU THBEPCHOT HANIBLPYNU Bf, axy eeedeno 8 cmammsi
[3], y eunadxy xoau cim’s F, mopoodxrcenHa MHONCUHOW {O,l,...,n}. 3oxpema, NOKA3AHO,
wo Hanigzpyna v exkmusnHuxr eHlomopPiamis Haniezpynu Bf € 13omopgHor0 Hanigzpyni
(o,+). Taxox onucano cmpyxmypy wnanieepynu End(B,) ycix endomopdhiamie Hanis-
epynu A x A -mampuuHux odunuys B, .

Katouoei caoea: 6iyukaiune Po3wWUPeHHs, iH8epcHa Hanigzpyna, endomopghiam, asmo-
Mmopghiam, Hanigzpyna A X A MAMPUUHUL 0OUHUYD.
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