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RESPONSE OF A POROELASTIC SEMI-INFINITE STRIP 
TO THE COMPRESSION ACTING UPON ITS LATERAL SIDES  
 

A mixed boundary value problem for a poroelastic semi-infinite strip is formula-
ted using Biot’s theory. Two cases of boundary conditions are considered depen-
ding on the permeability of the longer sides. By using the integral transforms and 
matrix differential calculus, the original boundary value problem was reduced to a 
one-dimensional one, which then is solved analytically. The explicit formulae are 
derived for the effective stress, pore pressure, and displacements. These functions 
are analyzed depending on the permeability of the boundary, the properties of 
poroelastic material, and the compression profile along the sides. 

Key words: poroelastic semi-strip, integral transform, matrix differential calculus, 
vector boundary problem, exact solution. 

 
Introduction. The mechanical performance of poroelastic materials is a 

relevant scientific challenge due to the numerous applications. The poroelastic 
models can cover various engineering applications, such as construction, bio-
mechanics, chemical, petrochemical, and geological industries, etc. In particu-
lar, the problem of poroelasticity for a rectangular domain can be regarded as 
a benchmark problem for groundwater reservoirs as relatively isolated exten-
ded water-saturated rock layers. 

The foundations of the poroelasticity theory were laid by Terzaghi [16] 
and Biot [7]. Various numerical and analytical methods for solving problems 
within the framework of this theory have been developed since. The bounda-
ry element and variational methods can be regarded as the dominant ones 
concerning the numerical mode of attack. The boundary element method was 
used in [10] for studying the dynamic response of an embedded strip and 
shallow rectangular foundations subjected to time-harmonic vertical 
excitation. The vertical vibrations of an assembly of flexible strip foundations 
resting upon multilayered transversely isotropic poroelastic soils were 
addressed in [20]. The dynamic interaction problem was studied by employing 
a variational approach based on the discretization of the strip – soil contact 
area. Numerical methods, however, fail to provide a complete qualitative 
picture, which can be obtained through the analytical approaches. 

The dynamic response of a rectangular poroelastic plate to the harmonic 
loading was analyzed in [17] using an analytical-numerical procedure based on 
the Fourier double series for the case when the plate is simply supported, 
thin, and fluid-saturated. A plane contact problem of interaction between a ri-
gid punch and an elastic strip bonded to a poroelastic half-plane was conside-
red in [8]. The deformation of the half-plane was modeled on the basis of the 
Cowin – Nunziato equations for poroelastic solids. Using the integral Fourier 
transform, the problem was reduced to a singular integral equation for the 
unknown contact stress. This equation was solved by the collocation method. 
The study of dynamic response of a multi-layered poroelastic half-plane was 
outlined in [19] by adopting an exact stiffness matrix method. A semi-analyti-
cal discretization scheme (based on the obtained fundamental solutions) was 
employed to investigate the dynamic response of a rigid strip foundation bon-
ded to poroelastic soils. A problem on the indentation of a half-space with Biot 
poroelastic properties was examined in [18]. The mixed initial-boundary-value 
problems associated with the adhesive-impermeable indentation were reduced 
to a set of coupled Fredholm integral equations of the second kind in the 
Laplace transform domain. A coupled model was proposed in [12] to study the 
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effect of dynamic water pressure caused by the strip vibration in the offshore 
foundations. The solution to the strip vibration problem was obtained there by 
an integral equation method. The results were expressed in terms of dual in-
tegral equations converted into Fredholm integral equations, which then are 
solved numerically. 

A problem of plane-strain poroelasticity induced by surface-normal loa-
ding within a finite rectangular fluid-saturated domain was solved analytical-
ly in [14]. The investigation of the three-dimensional wave propagation in a 
poroelastic plate immersed in an inviscid elastic fluid was performed in [21]. 
An analytical method comprising the transformation of the mixed boundary 
conditions to dual integral equations, which are solved by means of the Jacobi 
orthogonal polynomials, was presented in [25] to determine the response of 
rigid strip footings to harmonic horizontal loads while considering the founda-
tion soil as a poroelastic two-phase medium. An analytical solution was obtai-
ned in [22] for the coupled diffusion–deformation system of equations gover-
ning the quasi-static plane deformation of a poroelastic half-space with ani-
sotropic permeability and compressible constituents. The methods for the 
determination of physical constants in porous liquid-saturated media were 
analyzed in [2] basing on static and quasistatic methods of measurements with 
regard to the initial stresses in the material. The methods of irreversible 
thermomechanics and functional analysis were used in [15] to formulate a 
mathematical model of a thermoelastic solid taking 
into account the structural heterogeneity of the 
material and the geometric irregularity of its 
surface. It was shown that the model was appro-
priate to describe coupled processes in porous and 
nanoporous bodies. Some classical methods of 
elasticity and rheology can be developed for use in 
solving poroelasticity problems [3, 5, 6, 13]. 

Evidently, there are quite a few exact soluti-
ons to boundary value problems of poroelasticity. 
The mutual application of the integral transforms 
method, and matrix differential calculation made 
it possible to derive the exact analytical solutions 
of poroelasticity problems for a semi-plane [23]. An 
application of this method is demonstrated herein 
by deriving an exact solution to the poroelasticity 
problem for a compressed semi-infinite strip. 

1. Formulation of the problem. Consider a poroelastic semi-strip 
< <0 x d , < < ∞0 y , where = /d a h , a  is the width of the semi-strip, and 

h  is a characteristic length (presumably, the length of the loading zone, see 
Fig. 1), within the framework of the Biot model [7]. The boundary conditions 
on the sides = 0x  and =x d  cover the following two cases: 

i) both mechanical and fluid-pressure loadings are applied, as follows: 

 σ = − τ = =1 1 1(0, ) ( ), (0, ) ( ), (0, ) ( )F F
x xyy L y y T y p y P y , 

 σ = − τ = =2 2 2( , ) ( ), ( , ) ( ), ( , ) ( )F F
x xyd y L y d y T y p d y P y ; (1) 

ii) the side = 0x  is subject to the mechanical and fluid-pressure loa-
dings, while the side =x d  is subject to the mechanical loading under the 
undrained conditions: 

 σ = − τ = =1 1 1(0, ) ( ), (0, ) ( ), (0, ) ( )F F
x xyy L y y T y p y P y , 

 
∂

σ = − τ = =
∂2 2
( , )

( , ) ( ), ( , ) ( ), 0F F
x xy

p d y
d y L y d y T y

x
. (2) 

 
Fig. 1 
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Here, < <0 1y , σ = σ%( , ) ( , ) /F F
x xx y x y G , τ = τ%( , ) ( , ) /F F

xy xyx y x y G , σ% ( , )F
xx x y  

and τ% ( , )F
xy x y  are the normal and shear stresses, = %( , ) ( , ) /p x y p x y G , % ( , )p x y  is 

the pore pressure, G  stands for the shear modulus. Note that the given 
functions l ( )L y , l ( )T y , l ( )P y , =l 1,2 , are equal to zero for > 1y . 

Conditions (1) and (2) can be rewritten using the relations between the 
total and effective stresses [24] 

 σ = − − α τ = =1 1 1 1(0, ) ( ) ( ), (0, ) ( ), (0, ) ( )x xyy L y P y d T y p y P y , 

 σ = − − α τ = =2 2 2 2( , ) ( ) ( ), ( , ) ( ), ( , ) ( )x xyd y L y P y d y T y p d y P y , (3) 

and 

 1 1 1 1(0, ) ( ) ( ), (0, ) ( ), (0, ) ( )x xyy L y P y y T y p y P yσ = − − α τ = = , 

 
∂

σ = − − α τ = =
∂2 2 2 2
( , )

( , ) ( ) ( ), ( , ) ( ), ( )x xy
p d y

d y L y P y d y T y P y
x

, (4) 

where σ ( , )x x y  and τ ( , )xy x y  are the dimensionless normal and shear effecti-

ve stresses, and α  is the Biot coefficient. 
Side = 0y  is assumed to be impermeable under the following conditions: 

 
∂

= τ = =
∂
(0, )

( , 0) 0, ( ,0) 0, 0xy
p y

v x x
y

, (5) 

where =( , ) ( , ) /yv x y u x y h  is the dimensionless displacement of the solid ske-

leton. 
The equilibrium and storage equations can be formulated in the following 

dimensionless form [24]: 

 
∂∂ − ∂ ∂ −+ + − α =

+ + ∂ ∂ + ∂∂ ∂

2 2 2

2 2
1 2 1 0
1 1 1

pu u v
x y xx y

æ æ
æ æ æ

, 

 
∂∂ + ∂ ∂+ + − α =

− − ∂ ∂ ∂∂ ∂

2 2 2

2 2
1 2 0
1 1

pv v u
x y yx y

æ
æ æ

, 

 
∂ ∂ α ∂ ∂ + − + − = ∂ ∂ ∂ ∂

2 2

2 2
0PSp p u v p

K x y Kx y
. (6) 

Here, = − µ3 4æ  is the Muskhelishvili constant, µ  is Poisson’s ratio, pS  is the 

storativity of the pore volume, k  is the permeability coefficient, = 2/( )K h Gk , 

and =P pS S G . 

The stresses, pore pressure, and displacements within the considered 
semi-infinite domain are to be found from the formulated boundary value 
problem (3) – (6). 

2. Construction of an exact solution. By making use of the semi-infinite 
sine and cosine Fourier transforms 

 
0

( ) ( , ) cos
( ) ( , ) sin

( , ) cos( )

u x u x y y
v x v x y y dy

p x y yp x

∞β

β

β

  β    = β   
   β  

∫ , 

the boundary value problem (3) – (6) can be reduced to a one-dimensional 
problem in the transform domain 

 β β β β
β − −′′ ′ ′+ − β − α =
+ + +

22 1 1( ) ( ) ( ) ( ) 0
1 1 1

u x v x u x p xæ æ
æ æ æ

, 
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 22 1( ) ( ) ( ) ( ) 0
1 1

v x u x v x p xβ β β β
β +′′ ′− − β + αβ =
− −

æ
æ æ

, 

 2( ) ( ) ( ) ( ) 0PS
p x u x v x p x

K K Kβ β β β
 α α′′ ′− − − β + = 
 

, 

 β β β β
− µ  ′− µ + µβ = α − 

 1, 1,
1 2

(1 ) (0) (0)
2

u v P L , 

 ( )β β β β β
′ − β = =1, 1,(0) (0) , 0v u T p P , 

 β β β β
− µ  ′− µ + µβ = α − 

 2, 2,
1 2

(1 ) ( ) ( )
2

u d v d P L , 

 β β β β β
′ − β = =2, 2,( ) ( ) , ( )v d u d T p d P . (7) 

Here, βl,P , βl,L , and βl,T , =l 1,2 , are the images of functions l ( )P y , l ( )L y , 

l ( )T y  in the mapping domain of the foregoing sine and cosine transforms. 
Formulation (7) can be given [1] in the following vector form: 

 β = < <2 ( ) , 0 1x xL y 0 , 

 1,(0) (0)β β β β β
′ ′+ =A y B y g , 

 2,( ) ( )d dβ β β β β
′ ′+ =A y B y g . (8) 

Here, 2L  is the second-order operator 2 ( ) ( ) ( ) ( )x x x xβ β β β β β
′′ ′= − −L y Iy Q y P y , I  

is the unit matrix, ( ) ( ), ( ), ( )x u x v x p xβ β β β=y �( ) , �  marks the vector transpo-

sition, and matrices βQ , βP , βA , and βВ , and vectors βl,g , =l 1,2 , are 

given in Appendix. 
A solution to the vector-form boundary-value problem (8) can be derived 

by using the matrix differential calculation [4], which yields 

 2 ( ) 0, 0 1x xβ = < <L Y , (9) 

where ( ) exp( )x xβ = ξY I . Substituting (9) into (8) yields the equality 

2 exp( ) ( ) exp( )x xξ = ξ ξL I M , where 

 

2 2

2 2

2 2

21 1
1 1 1

2 1( )
1 1

PS
K K K

β− − ξ − β ξ −α ξ + + +
 β +ξ = − ξ ξ − β αβ − − 

αβα − ξ − ξ − β −
 

M

æ æ
æ æ æ

æ
æ æ

. 

According to [11], a solution to the homogenous matrix equation is con-
structed by using the formula 

 11( ) exp( ) ( )
2

C

x x d
i

−= ξ ξ ξ
π ∫Y MÑ , 

where 1( )− ξM  is the inverse matrix to ( )ξM , C  is a closed contour that 

covers all singular points of the matrix 1( )− ξM , and i  is the imaginary unit. 

The determinant of matrix ( )ξM  has two second-order multiple poles 

ξ = ±β , and two single poles 
2

2 1
1

PS
K K

α −ξ = ± β + +
+

æ
æ

. With the help of the 
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residual theorem, the system of four fundamental matrix solutions ( )j xY , 

1,2,3, 4j = , is derived in correspondence to the foregoing eigenvalues. 
Hence, a general solution to the problem (8) takes the following form: 

 
1 4

2 51 3 2 4

3 6

( ) ( ) ( ) ( ) ( )
c c
c cx x x x x
c c

β

   
   = + + +
   
   

y Y Y Y Y( ) ( ) , (10) 

where constants jc  are found from the boundary conditions (8), 1,2, ,6j = … .  

Solution (10) can be reconstructed in the physical domain by making use 
of the following inverse transforms: 

 
0

( ) cos( , )
2( , ) ( ) sin

( , ) ( ) cos

u x yu x y
v x y v x y d
p x y p x y

∞ β

β

β

 β    = β β   π     β 
∫ .  

In such manner, an exact solution of the formulated problem is found in 
the explicit form. The convergence of the derived integrals was analyzed and 
numerical calculations were carried out in order to establish the patterns of 
stress and pressure distribution depending on semi-strip’s width, the value of 
Biot’s coefficient and the loading profile. 

3. Numerical examples and discussion. Three different case studies are 
considered regarding the loading on the side 0x = :  

1) concentrated normal mechanical load = δ −1 0( ) ( 1/2)L y L y , 1( ) 0T y = , 

1( ) 0P y = , where ( )yδ  is the Dirac delta-function; 

2) distributed normal mechanical load = π1 0( ) sinL y L y , 1( ) 0T y = , 

1( ) 0P y = ;  

3) distributed fluid pressure 1( ) 0L y = , 1( ) 0T y = , = π1 0( ) sinP y L y . 

In what follows, the dimensional multiplayer 0L  is dropped and the 

results are presented in the dimensionless form.  
Consider three different poroelastic materials with properties given in 

Table 1. All the figures below demonstrate the distributions of the normal 
stress xσ  and pore pressure p  at /2x d=  and 0 1y< < . The effect of 

loadings applied to side x d=  in the normal stress and pore pressure within 
the semi-strip is also analyzed numerically.  

Table 1. The characteristics of poroelastic materials [9]. 
Properties 

 
Material 

9

2

10

[N/m ]

G −×
 µ  α  

13

4

10

[m /(N s)]

k ×
×

 
13

2

10

[m /N]
pS ×

 

1 Charcoal granite 18.7 0.27 0.242 0.001 137.7 

2 Ruhr sandstone 13.3 0.12 0.637 2.0 260.4 

3 Boise sandstone 4.2 0.15 0.853 8.0 2.075 

3.1. The case of concentrated normal mechanical load. The permeabi-
lity of the side x d=  affects significantly the pore pressure on this side, while 
the normal stress and pore pressure vary insignificantly. The largest absolute 
values of normal stress and pore pressure are observed when approaching the 
meridian, where the concentrated load is applied. The absolute values of 
normal stress and pore pressure are greater for the case with an impermeable 
boundary x d= . The response of different porous materials of semi-strip on 
the compression is shown at Fig. 2 and Fig. 3. The numbers of curves in all 
the figures correspond to the numbering of materials in Table 1. 
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 a) b) 

Fig. 2. Distributions of the dimensionless effective stress and pore pressure in the semi-
strip for different poroelastic materials under the concentrated normal mechanical 
loading = = δ −1 2( ) ( ) ( 1/2)L y L y y  with side 1x d= =  being permeable. 

   
 a) b) 

Fig. 3. The functions indicated in Fig. 2 with side 1x d= =  being impermeable.  
The numerical analysis shows that the higher are the values of Biot’s 

coefficient, the greater absolute values of the normal stress are attained, and 
the lower pore pressure is observed. This conclusion holds for side x d=  
being either impermeable or permeable.  

3.2. The case of distributed normal mechanical load. As it was stated 
in the previous case for the concentrated mechanical loading, the same 
dependences are observed here: the pore pressure depends significantly on 
the permeability of the lateral side whereas the normal stress remains 
approximately the same. The tensile stress is observed nearer to the ends of 
loaded segment for both cases. 

   
 a) b) 

Fig. 4. Distributions of the dimensionless effective stress and pore pressure in the semi-
strip for different poroelastic materials under the distributed normal mechanical 
loading = = π1 2( ) ( ) sinL y L y y  with side 1x d= =  being permeable. 
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 a) b) 

Fig. 5. The functions indicated in Fig. 4 with side 1x d= =  being impermeable. 
By comparing the situation for this type of load and the case of the 

considered concentrated mechanical load, one can notice that the absolute 
values of normal stress and pore pressure in this case are lower than in the 
case of a concentrated load. The peaks of normal stress and pore pressure are 
observed near the central point of the applied load. Pore pressure is positive 
for both cases. The different porous materials were investigated under the 
distributed mechanical loading impact (see Fig. 4 and Fig. 5). 

The distribution of normal stress and pore pressure is analogous to the 
case of a concentrated load illustrated above. The maximum absolute values 
of the normal stress and minimum ones of the pore pressure are observed for 
the material with the highest Biot coefficient. 

3.3. The case of distributed fluid pressure load. In general, the 
distribution patterns of stress and pore pressures are similar to the results 
given in subsections 4.1 and 4.2. As before, the general trend of the 
dependence of normal stress and pore pressure on permeability remains the 
same. However, in contrast to the cases of distributed and concentrated 
mechanical loads applied to the lateral side, it is noted that both the pressure 
and the absolute values of the normal stress are greater for the material with 
higher Biot’s coefficient (see Fig. 6 and Fig. 7). 

The exact solutions derived in an explicit form make it possible to 
conduct various numerical investigations of both mechanical characteristics 
(stresses, displacements) and pore pressure depending on many factors such 
as the value of Biot’s coefficient, permeability conditions on the lateral sides, 
etc. The analysis of the impact of the load type and the material’s porosity 
revealed the main trends in the change in the hydroelastic state of the semi-
strip under various specified boundary conditions. 

   
 a) b) 

Fig. 6. The distributions of the dimensionless effective stress and pore pressure in the 
semi-strip for different poroelastic materials under the fluid pressure load 

1 2( ) ( ) sinP y P y y= = π  with a loaded surface 1x d= = . 
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 a) b) 

Fig. 7. The functions indicated in Fig. 6 with an impermeable surface 1x d= = . 
The provided analysis showed that for all types of loads the maximum 

absolute values of the normal stress and the pore pressure are observed when 
the width of the semi-strip is smaller than the loaded segment. With the in-
crement of the width the absolute values of the stress and the pore pressure 
become smaller under the fixed loading for different types of permeability. 

The higher is the value of Biot’s coefficient, the higher are the absolute 
values of the normal stress under the influence of all types of loads on both 
lateral sides under different conditions of permeability of the right side. A 
similar trend in the pore pressure change with a change of Biot’s coefficient is 
noted in the case when fluid pressure load is set on the left side, and the 
right side is either loaded with fluid pressure load or is impermeable. 

For all types of porous materials, the highest stress and pore pressure 
values are observed for the concentrated normal mechanical load while their 
lowest values are registered for the distributed normal mechanical load. 

For the case 0α = , the results comply with the ones for pure elasticity 
problems for a semi-strip under the same mechanical conditions. 

Conclusions. An exact solution of the poroelastic problem for a semi-
infinite strip is derived by a new analytical approach, which is based on inte-
gral transform method and matrix differential calculation apparatus. The ex-
plicit formulas for the stress and the pore pressure allowed to provide versati-
le numerical studies of the poroelastic stress state of the semi-strip depending 
on various factors. An analysis of the numerical results revealed regularities 
in the distribution of stress and pore pressure depending on the width of the 
semi-strip, the value of Biot’s coefficient of the poroelastic material, and the 
type of the applied load. The proposed approach can be used for the solving 
of uncoupled thermoporoelasticity problems for rectangular domains. 
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Appendix. The matrices and vectors in (8): 

  

2

2

2

2 1 10 0 01 1 1
2 10 0 , 0

1 1

0 0 0 PS
K K K

β β

β −  − − α β   + + +
   β += = β −αβ   − −   α αβ   β +  

Q P

æ æ
æ æ æ

æ
æ æ

, 
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1 0 0 0 0

0 1 0 , 0 0
0 0 0 0 0 1

β β

− µ βµ   
   = = −β
   
   

A B , 

 
, ,

, ,

(1 2 )( )
1 2 , 1,2

2
2

P L

T
G

GX

β β

β β

− µ α − 
 = =  
 

g
l l

l l

l

l , 

and 1 1,X P β= , 2 2,X P β=  for the case of boundary conditions (5), and 2 0X =  

for the impermeable boundary conditions (6). 
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ВІДПОВІДЬ ПОРОПРУЖНОЇ НАПІВНЕСКІНЧЕННОЇ СМУГИ НА 
СТИСНЕННЯ УЗДОВЖ БІЧНИХ СТОРІН  
 
З використанням теорії Біо сформульовано змішану крайову задачу для поро-
пружної напівнескінченної смуги. Розглянуто два випадки крайових умов залежно 
від проникності довших сторін. Використовуючи інтегральні перетворення та 
матричне диференціальне числення, вихідну крайову задачу зведено до одновимір-
ної, розв’язок якої знайдено аналітично. Отримано явні формули для ефективних 
напружень, порового тиску та переміщень. Проаналізовано залежності цих функ-
цій проникності межі, властивостей пороеластичного матеріалу та профілю 
стисного навантаження на довших сторонах. 

Ключові слова: поропружна півсмуга, інтегральне перетворення, матричне дифе-
ренціальне числення, векторна крайова задача, точний розв’язок. 
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