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RESPONSE OF A POROELASTIC SEMI-INFINITE STRIP
TO THE COMPRESSION ACTING UPON ITS LATERAL SIDES

A mixed boundary value problem for a poroelastic semi-infinite strip is formula-
ted using Biot’s theory. Two cases of boundary conditions are considered depen-
ding on the permeability of the longer sides. By using the integral transforms and
matrix differential calculus, the original boundary value problem was reduced to a
one-dimensional one, which then is solved analytically. The explicit formulae are
derived for the effective stress, pore pressure, and displacements. These functions
are analyzed depending on the permeability of the boundary, the properties of
poroelastic material, and the compression profile along the sides.
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vector boundary problem, exact solution.

Introduction. The mechanical performance of poroelastic materials is a
relevant scientific challenge due to the numerous applications. The poroelastic
models can cover various engineering applications, such as construction, bio-
mechanics, chemical, petrochemical, and geological industries, etc. In particu-
lar, the problem of poroelasticity for a rectangular domain can be regarded as
a benchmark problem for groundwater reservoirs as relatively isolated exten-
ded water-saturated rock layers.

The foundations of the poroelasticity theory were laid by Terzaghi [16]
and Biot [7]. Various numerical and analytical methods for solving problems
within the framework of this theory have been developed since. The bounda-
ry element and variational methods can be regarded as the dominant ones
concerning the numerical mode of attack. The boundary element method was
used in [10] for studying the dynamic response of an embedded strip and
shallow rectangular foundations subjected to time-harmonic vertical
excitation. The vertical vibrations of an assembly of flexible strip foundations
resting upon multilayered transversely isotropic poroelastic soils were
addressed in [20]. The dynamic interaction problem was studied by employing
a variational approach based on the discretization of the strip — soil contact
area. Numerical methods, however, fail to provide a complete qualitative
picture, which can be obtained through the analytical approaches.

The dynamic response of a rectangular poroelastic plate to the harmonic
loading was analyzed in [17] using an analytical-numerical procedure based on
the Fourier double series for the case when the plate is simply supported,
thin, and fluid-saturated. A plane contact problem of interaction between a ri-
gid punch and an elastic strip bonded to a poroelastic half-plane was conside-
red in [8]. The deformation of the half-plane was modeled on the basis of the
Cowin — Nunziato equations for poroelastic solids. Using the integral Fourier
transform, the problem was reduced to a singular integral equation for the
unknown contact stress. This equation was solved by the collocation method.
The study of dynamic response of a multi-layered poroelastic half-plane was
outlined in [19] by adopting an exact stiffness matrix method. A semi-analyti-
cal discretization scheme (based on the obtained fundamental solutions) was
employed to investigate the dynamic response of a rigid strip foundation bon-
ded to poroelastic soils. A problem on the indentation of a half-space with Biot
poroelastic properties was examined in [18]. The mixed initial-boundary-value
problems associated with the adhesive-impermeable indentation were reduced
to a set of coupled Fredholm integral equations of the second kind in the
Laplace transform domain. A coupled model was proposed in [12] to study the
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effect of dynamic water pressure caused by the strip vibration in the offshore
foundations. The solution to the strip vibration problem was obtained there by
an integral equation method. The results were expressed in terms of dual in-
tegral equations converted into Fredholm integral equations, which then are
solved numerically.

A problem of plane-strain poroelasticity induced by surface-normal loa-
ding within a finite rectangular fluid-saturated domain was solved analytical-
ly in [14]. The investigation of the three-dimensional wave propagation in a
poroelastic plate immersed in an inviscid elastic fluid was performed in [21].
An analytical method comprising the transformation of the mixed boundary
conditions to dual integral equations, which are solved by means of the Jacobi
orthogonal polynomials, was presented in [25] to determine the response of
rigid strip footings to harmonic horizontal loads while considering the founda-
tion soil as a poroelastic two-phase medium. An analytical solution was obtai-
ned in [22] for the coupled diffusion—deformation system of equations gover-
ning the quasi-static plane deformation of a poroelastic half-space with ani-
sotropic permeability and compressible constituents. The methods for the
determination of physical constants in porous liquid-saturated media were
analyzed in [2] basing on static and quasistatic methods of measurements with
regard to the initial stresses in the material. The methods of irreversible
thermomechanics and functional analysis were used in [15] to formulate a
mathematical model of a thermoelastic solid taking
into account the structural heterogeneity of the
material and the geometric irregularity of its
surface. It was shown that the model was appro-
priate to describe coupled processes in porous and
nanoporous bodies. Some classical methods of
elasticity and rheology can be developed for use in
solving poroelasticity problems [3, 5, 6, 13].

Evidently, there are quite a few exact soluti-
ons to boundary value problems of poroelasticity.
The mutual application of the integral transforms
method, and matrix differential calculation made
it possible to derive the exact analytical solutions
of poroelasticity problems for a semi-plane [23]. An
application of this method is demonstrated herein
by deriving an exact solution to the poroelasticity
problem for a compressed semi-infinite strip.
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1. Formulation of the problem. Consider a poroelastic semi-strip
0<x<d, 0<y<o, where d =a / h, a is the width of the semi-strip, and

h is a characteristic length (presumably, the length of the loading zone, see
Fig. 1), within the framework of the Biot model [7]. The boundary conditions
on the sides x =0 and x = d cover the following two cases:

1) both mechanical and fluid-pressure loadings are applied, as follows:

or(0,y) =-Li(y), 1,0,9)=T(), p0O,y =Py,

on(d,y) = -Ly(¥), 1,d,y) =T,1), pdy)=Py); (1)
12) the side x =0 is subject to the mechanical and fluid-pressure loa-

dings, while the side x = d is subject to the mechanical loading under the
undrained conditions:

on(0,y) = -Li(y), 71,09 =T@), pOy =PF®y),

ol y) =Ly, dy=Tw), LYo @)
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Here, 0<y<1, oh(x,y)=6L(x,y)/G, 1,,(xy) =71,y /G, &5,(xy)
and %iy(x, y) are the normal and shear stresses, p(x,y) = p(x,y)/ G, p(x,y) is

the pore pressure, G stands for the shear modulus. Note that the given
functions L,(y), T,(y), P,(y), £ =1,2, are equal to zero for y > 1.

Conditions (1) and (2) can be rewritten using the relations between the
total and effective stresses [24]

0,(0,y) = -Ly(y) —aP(y), 71,,(0,d)=T(y), p0,y)=~Fy),

0,(d,y) = -Ly(y) —aR(y), 1,(dy)=T1), pdy =Rk, O
and

0,0,9) =-L(y) -aP(y), 1,09 =T, »0y =P,

0. (dy) =Ly - 0Bl T,y =Tw PLU_pg) @

where o_(x,y) and rxy(x,y) are the dimensionless normal and shear effecti-

ve stresses, and a is the Biot coefficient.
Side y = 0 is assumed to be impermeable under the following conditions:

_ _ op0,y) _
v(xio) - 07 Txy(xyo) - 07 T =0 ’ (5)
where v(x,y) = uy(:r,y) / h is the dimensionless displacement of the solid ske-

leton.
The equilibrium and storage equations can be formulated in the following
dimensionless form [24]:

OPu @-10%w 2 o  x-10p _,
ox? ®+1lgy* x=+10xdy x+10x

’

2 2 2
6v+ae+161)+ 2  0'u 5_19_0

o2 x—l@ x_loxoy Coy

*p  o%p a(aquavj Sp

o’ oy K

Here, ® =3 —4p is the Muskhelishvili constant, p is Poisson’s ratio, Sp is the

Stay) KP=O (6)

K

storativity of the pore volume, k is the permeability coefficient, K = h?/(Gk),
and Sp =S5,G.

The stresses, pore pressure, and displacements within the considered
semi-infinite domain are to be found from the formulated boundary value
problem (3) — (6).

2. Construction of an exact solution. By making use of the semi-infinite
sine and cosine Fourier transforms

ug(X)| o« (u(a,y)cosPy
v(x) f = | {v(x,y)sin[}y}dy,
py(x)| 0 (P(z,y)cosBy

the boundary value problem (3) — (6) can be reduced to a one-dimensional
problem in the transform domain

2p

x+1

’ _ 22 —1 _ x—1 —
’UB(.I‘) Bx+1uﬁ(x) ax+1pﬁ(x) 0,

ug(.x') +
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B Bzxi}”ﬁ(x)‘*'aﬁpg(x):(),

[3( )_ uB( x) -

” ’ S
Py () = 72 up(x) —%vﬁ(x) - (32 + ?Pj py(x) = 0

(1- W (0) + oy (0) = 252 ( Py - Ll,ﬁj :

'U;}(O BuB (0) = 1[37 Py (0) = PLB ,

(1- P«)u[,?,(d) + HBUB(d) = ! _22M ( apP 2.8 LZ’B)’

vl;(d ~PBug(d) =Ty, pg(d) = Ppy. (7)

Here, P 0B and TfB’ ¢ =1,2, are the images of functions P,(y), L,(y),

0B
T,(y) in the mapping domain of the foregoing sine and cosine transforms.

L

Formulation (7) can be given [1] in the following vector form:
LzyB(x)=0, 0<x<l,
Apy(0) + Byyj(0) = g, 5,
A[}YE} (d) + BBYEg(d) =855 (8)
Here, L, is the second-order operator L2yB(x) = Iyg(:r) - Qﬁyé(x) - PByB(:r), I
is the unit matrix, yB(x) = (uB(x),vﬁ(x),pB(x))T, T marks the vector transpo-

sition, and matrices Qﬁ, Pﬁ, Aﬁ, and Bﬁ, and vectors gw, /=12, are

given in Appendix.
A solution to the vector-form boundary-value problem (8) can be derived
by using the matrix differential calculation [4], which yields

Yﬁ(x)zo, O<ax<l, 9)
where Yﬁ(x) = exp(&x)I. Substituting (9) into (8) yields the equality
L, exp(&x)l = M(§) exp(&x), where

2 @®—-1g,2 2B x -1
é_$B+1B 33+1§ B 33+1§
_ 2 2+1,2
M() = 1> & _EB op .
o of 2 a2
—E& -8 gk

According to [11], a solution to the homogenous matrix equation is con-
structed by using the formula

Y(@) = 5 exp(E)M ' (©)dE,
c

where M"l(é) is the inverse matrix to M(§), C is a closed contour that

covers all singular points of the matrix M_l(c“;) ,and 7 is the imaginary unit.
The determinant of matrix M(§) has two second-order multiple poles

S
& =+p, and two single poles & = iJ i +?P+ (;{ Z~° With the help of the
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residual theorem, the system of four fundamental matrix solutions Y].(x),

j=1,2,3,4, is derived in correspondence to the foregoing eigenvalues.
Hence, a general solution to the problem (8) takes the following form:

1 Cy
¥p(@) = (Y, (@) + Yy ()| ¢ |+ (Yy(@) + Y (@))] ¢5 |, (10)
Cs3 Cq

where constants c; are found from the boundary conditions (8), j =1,2,...,6.

Solution (10) can be reconstructed in the physical domain by making use
of the following inverse transforms:

u(x,y) 9 uB(x)cosBy
v(x,y) :EJ. vﬁ(x)sinﬁy dp.
p(x,y) 0 pB(x)cosBy

In such manner, an exact solution of the formulated problem is found in
the explicit form. The convergence of the derived integrals was analyzed and
numerical calculations were carried out in order to establish the patterns of
stress and pressure distribution depending on semi-strip’s width, the value of
Biot’s coefficient and the loading profile.

3. Numerical examples and discussion. Three different case studies are
considered regarding the loading on the side x =0:

1) concentrated normal mechanical load L,(y) = Lyd(y —1/2), Ti(y)=0,
P/ (y) = 0, where §(y) is the Dirac delta-function;

2) distributed normal mechanical load L,(y)=L,sinny, T (y)=0,
P(y)=0;
3) distributed fluid pressure L,(y) =0, T}(y) =0, P (y) = L, sinny.

In what follows, the dimensional multiplayer L, is dropped and the

results are presented in the dimensionless form.
Consider three different poroelastic materials with properties given in
Table 1. All the figures below demonstrate the distributions of the normal

stress o, and pore pressure p at x=d/2 and 0<y<1. The effect of

loadings applied to side x =d in the normal stress and pore pressure within
the semi-strip is also analyzed numerically.

Table 1. The characteristics of poroelastic materials [9].

Properties Gx107? Iex 10%3 S x10%
u o P
Material [N/m’] [m*/(Nxs)] | [m®/N]
1 | Charcoal granite 18.7 0.27 | 0.242 0.001 137.7
2 | Ruhr sandstone 13.3 0.12 | 0.637 2.0 260.4
3 | Boise sandstone 4.2 0.15 | 0.853 8.0 2.075

3.1. The case of concentrated normal mechanical load. The permeabi-
lity of the side x = d affects significantly the pore pressure on this side, while
the normal stress and pore pressure vary insignificantly. The largest absolute
values of normal stress and pore pressure are observed when approaching the
meridian, where the concentrated load is applied. The absolute values of
normal stress and pore pressure are greater for the case with an impermeable
boundary x = d. The response of different porous materials of semi-strip on
the compression is shown at Fig. 2 and Fig. 3. The numbers of curves in all
the figures correspond to the numbering of materials in Table 1.
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Fig. 2. Distributions of the dimensionless effective stress and pore pressure in the semi-
strip for different poroelastic materials under the concentrated normal mechanical
loading L, (y) = Ly(y) = 8(y — 1/2) with side x = d = 1 being permeable.
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Fig. 3. The functions indicated in Fig. 2 with side x = d = 1 being impermeable.

The numerical analysis shows that the higher are the wvalues of Biot’s
coefficient, the greater absolute values of the normal stress are attained, and
the lower pore pressure is observed. This conclusion holds for side x =d
being either impermeable or permeable.

3.2. The case of distributed normal mechanical load. As it was stated
in the previous case for the concentrated mechanical loading, the same
dependences are observed here: the pore pressure depends significantly on
the permeability of the lateral side whereas the normal stress remains
approximately the same. The tensile stress is observed nearer to the ends of
loaded segment for both cases.
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Fig. 4. Distributions of the dimensionless effective stress and pore pressure in the semi-
strip for different poroelastic materials under the distributed normal mechanical
loading L, (y) = Ly(y) = sinny with side x = d = 1 being permeable.
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Fig. 5. The functions indicated in Fig. 4 with side x = d = 1 being impermeable.

By comparing the situation for this type of load and the case of the
considered concentrated mechanical load, one can notice that the absolute
values of normal stress and pore pressure in this case are lower than in the
case of a concentrated load. The peaks of normal stress and pore pressure are
observed near the central point of the applied load. Pore pressure is positive
for both cases. The different porous materials were investigated under the
distributed mechanical loading impact (see Fig. 4 and Fig. 5).

The distribution of normal stress and pore pressure is analogous to the
case of a concentrated load illustrated above. The maximum absolute values
of the normal stress and minimum ones of the pore pressure are observed for
the material with the highest Biot coefficient.

3.3. The case of distributed fluid pressure load. In general, the
distribution patterns of stress and pore pressures are similar to the results
given in subsections 4.1 and 4.2. As before, the general trend of the
dependence of normal stress and pore pressure on permeability remains the
same. However, in contrast to the cases of distributed and concentrated
mechanical loads applied to the lateral side, it is noted that both the pressure
and the absolute values of the normal stress are greater for the material with
higher Biot’s coefficient (see Fig. 6 and Fig. 7).

The exact solutions derived in an explicit form make it possible to
conduct various numerical investigations of both mechanical characteristics
(stresses, displacements) and pore pressure depending on many factors such
as the value of Biot’s coefficient, permeability conditions on the lateral sides,
etc. The analysis of the impact of the load type and the material’s porosity
revealed the main trends in the change in the hydroelastic state of the semi-
strip under various specified boundary conditions.
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Fig. 6. The distributions of the dimensionless effective stress and pore pressure in the
semi-strip for different poroelastic materials under the fluid pressure load
P (y) = P,(y) = sinny with aloaded surface x =d = 1.
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Fig. 7. The functions indicated in Fig. 6 with an impermeable surface x =d = 1.

The provided analysis showed that for all types of loads the maximum
absolute values of the normal stress and the pore pressure are observed when
the width of the semi-strip is smaller than the loaded segment. With the in-
crement of the width the absolute values of the stress and the pore pressure
become smaller under the fixed loading for different types of permeability.

The higher is the value of Biot’s coefficient, the higher are the absolute
values of the normal stress under the influence of all types of loads on both
lateral sides under different conditions of permeability of the right side. A
similar trend in the pore pressure change with a change of Biot’s coefficient is
noted in the case when fluid pressure load is set on the left side, and the
right side is either loaded with fluid pressure load or is impermeable.

For all types of porous materials, the highest stress and pore pressure
values are observed for the concentrated normal mechanical load while their
lowest values are registered for the distributed normal mechanical load.

For the case a =0, the results comply with the ones for pure elasticity
problems for a semi-strip under the same mechanical conditions.

Conclusions. An exact solution of the poroelastic problem for a semi-
infinite strip is derived by a new analytical approach, which is based on inte-
gral transform method and matrix differential calculation apparatus. The ex-
plicit formulas for the stress and the pore pressure allowed to provide versati-
le numerical studies of the poroelastic stress state of the semi-strip depending
on various factors. An analysis of the numerical results revealed regularities
in the distribution of stress and pore pressure depending on the width of the
semi-strip, the value of Biot’s coefficient of the poroelastic material, and the
type of the applied load. The proposed approach can be used for the solving
of uncoupled thermoporoelasticity problems for rectangular domains.
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Appendix. The matrices and vectors in (8):

_ 2B x-1 22 —1
2 +1 0Lae+1 B x+1 0 0
Q=2 o 0 |, p=| 0 pEELoap |
o aB S
a 0 0 of o Sp
K 0 x Prx
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1-u 0 0 0 Bu O

Ay=| 0 10[, By=-p 0 0],
0 00 0 0 1
(1-20)(@P 5 - Lyy)
gw :% ZTAB y /=12,
2GX,

and X; =P, X, =P, for the case of boundary conditions (5), and X, =0

for the impermeable boundary conditions (6).
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BIANOBIAb NOPOMPYXHOI HANIBHECKIHYEHHOT CMYIY HA
CTUCHEHHSA Y300BX BIYHUX CTOPIH

3 sukopucmanuam meopii Bio cgopmyavosarno smiwany xpaviosy sadauwy 0as nopo-
NPYHHOT HANIBHECKIHUEHHOT cmyeu. Poszzasanymo 0sa sunadxu xpatiosux ymos 3aiedHcHO
810 npoHuKHocmMi 0o8WUX CMOPIH. Buxopucmosyrouu inmezpaivHi nepemesopeHHs ma
mampuure ougeperyionbre HUCIeHHA, BUXIOHY Kpatiosy 3adauy 36edeno 00 00HOBUMID-
HO%, P0368’'A30K AKO0L 3HAUOeHO aHarimuuno. OMmpumano s6HL opmysu 0rs eheKkmusHUX
HANPYHCEHD, NOPOBO2O MUCKY Mma nepemiwend. IIPOaHAAI308aHO 3anreHHOCTNE YUL PYHK-
Yill NPOHUKHOCMI MedHci, eaacmusocmel. MOPOLAACTNIUYHOZO Mmamepiaay ma npoghinio
CMUCHO20 HABAHMANHCEHHSA HA O08UWUL CTMOPOHAX.

Kawouoei caoea: noponpyicra niscmyza, tHmeepasvie nepemeoperts, mampuune ouge-
peHyiasbHe HUCAeHHS, 8eKMOPHA Kpallosa 3adaia, mouHul po3s’ a30K.
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