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MODELING OF THERMOELASTOPLASTIC DEFORMATION 
OF REINFORCED PLATES.  
II. STATEMENT OF THE PROBLEM AND METHOD FOR SOLUTION 
 

A coupled initial-boundary value problem of thermoelastoplastic deformation of 
flexible reinforced plates is formulated. The possible weak resistance of such 
structures to transverse shear is taken into account within the framework of the 
Ambartsumian theory. Geometric nonlinearity is taken into account in the von 
Kármán approximation. The temperature over the thickness of the plates is appro-
ximated by polynomials of different orders. The solution to the two-dimensional 
problem is constructed using an explicit numerical scheme. The dynamic thermo-
elastoplastic behavior of plane criss-cross and spatially reinforced fiberglass and 
metal-composite plates, bending under the action of an air blast wave, is investi-
gated. It is shown that in order to adequately determine the temperature in such 
structures, it must be approximated by polynomials of the 6–7th orders over the 
thickness of the plates. It is demonstrated that relatively thin composite plates are 
heated to a larger extent than relatively thick ones at the same maximum values of 
the intensity of deformations in the binder. The heating level of reinforced structu-
res is insignificant: for fiberglass plates, the temperature increment is 2÷18°С, and 
for metal-composite structures, it is 30°С. Therefore, the dynamic calculation of 
fiberglass plates under the action of a load such as an air blast wave can be carried 
out without taking into account the thermal effect in the absence of additional heat 
sources of non-mechanical origin. In calculating the metal-composite plates, it is 
necessary to take into account the thermal effect, but the thermal sensitivity can be 
ignored. 

Key words: flexible plates, plane reinforcement, spatial reinforcement, dynamic 
bending, Ambartsumian’s theory, thermoelastoplastic deformation, explosive-type 
load, explicit numerical scheme. 

 
This paper continues the study published in [24], where a numerical-ana-

lytical structural model of thermoelastoplastic deformation of a fiber-reinfor-
ced material is developed using the constitutive equations of the theory of 
plastic flow for the components of the composition. In this case, the loading 
surfaces of the materials of the composition are assumed to be depend not 
only on the parameters of reinforcement, but also on the temperature. The 
structural model of a composite material (CM) proposed in [24] is focused on 
the use of explicit numerical schemes for solving coupled problems of thermo-
elastoplasticity. 

The present study is devoted to the formulation of the coupled problem 
of thermoelastoplastic bending deformation of CM-plates, taking into account 
their possible weak resistance to transverse shears, to the development of 
explicit numerical methods for integrating the corresponding initial boundary-
value problems, and to a discussion of the calculation results. A review of the 
relevant publications is given in [24]. 

1. Simulation of thermoelastoplastic deformation of a flexible reinfor-
ced plate. Let us consider the bending behavior of a CM-plate with a thick-
ness 2h  (Fig. 1), refereed to a Cartesian rectangular coordinate system 

1 2 3Ox x x : 1 2Ox x  is a middle plane; the axis 3Ox  is transverse ( 3x h≤ ). The 

structure can be reinforced plane criss-cross (Fig. 1a) or spatially (Fig. 1b) 
with N  families of fibers in arbitrary directions with densities of reinforce-
ment kω , 1 k N≤ ≤ . In the direction 3Ox , the structure of the reinforcement 

is quasihomogeneous. 
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To simulate a possible weak resistance of a flexible CM plate to transver-
se shear (for example, in cases of plane criss-cross reinforcement structures or 
in the case of a spatial reinforcement structure shown in Fig. 1b, under shear 
in a plane 1 3Ox x ), we use Ambartsumian’s theory [2, 20, 23], and the geomet-

ric nonlinearity of the problem we take into account in the von Kármán ap-
proximation. 

  
 a) b) 

Fig. 1. Element of a CM-plate: а) – plane orthogonal reinforcement; b) – spatial reinforcement 
in four directions. 

Remark. It was shown in [21] that in the case of elastoplastic deformation 
of thin-walled structural elements with arbitrary spatial reinforcement struc-
tures, it is not possible to construct an explicit “cross” scheme using Ambart-
sumyan’s theory, if tangential external forces on the face surfaces cannot be 
neglected. Obviously, this result is carried over to the more general case of 
thermoelastoplastic deformation of CM plates. Therefore, in this study, we 
consider only partial cases of spatial 
structures of reinforcement and load 
of CM-structures, in which an expli-
cit numerical scheme of the “cross” 
type can be used. Further, we assu-
me: a particular, but practically im-
portant case of loading of a plate, 
when external tangential forces on 
the face surfaces can be neglected, is 
investigated; the structure of spatial 
reinforcement has a following pro-
perty: if a fiber of a certain family 
has an oblique direction 0 /2k< θ < π  

(see (41)1 and Fig. 2), then there will 
certainly be another family of ob-
lique fibers with reinforcement pa-
rameters m kθ = π − θ , m kϕ = ϕ , 

m kω = ω , 1 k≤ , m N≤ , m k≠ , made from the same material as fibers of 

the k -th family. Structures with such a feature of reinforcement are often 
encountered in practice [17]. In particular, these include the reinforcement 
structure shown in Fig. 1b, as well as structures with orthogonal spatial rein-
forcement [8, 19] or structures with plane criss-cross reinforcement (Fig. 1a). 

                                           
1 In the present work, for the sake of convenience, we continue the enumeration of 
formulas originated in [24]. 

 
Fig. 2. Local coordinate system connected 

with a fibre of the k -th family. 
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According to this remark, in the framework of Ambartsumian’s theory, 
the averaged strains ijε  of the composition and displacement of points iU  of 

the CM-plate are approximated by the formulas [2, 20, 23]: 
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 3 3 0( , ) ( , ),     ,     ,     ,     1,2U t w t x h t t i= ∈ Ω ≤ ≥ =r x x , (52) 

where iu  are displacements of points of the reference plane ( 3 0x = ) in 

tangential directions ix ; w  is deflection; 0
3iε  denotes a deformation of 

transverse shears at points of the reference plane; i∂  is operator of partial 

differentiation with respect to coordinate ix ; Ω  is the domain occupied by 

the structure in the plan; 0t  denotes the initial moment of time t . In 

equalities (51) and (52), the functions iu , w  and 0
3iε , 1,2i = , are unknown. 

In this work, the mechanical behavior of a CM-plate as a flexible thin-
walled system is simulated. Therefore, the transverse normal stress 33 ( , )tσ r  
with an accuracy acceptable for practical applications can be approximated as 
follows [6]: 
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where ( )
33 33( , ) ( , , )t t h±σ ≡ σ ±x x  are the normal stresses on the lower (–) and 

upper (+) face planes, which are known from the force boundary conditions. 
Constitutive matrix equation (37) is a system of six algebraic equations. 

According to correspondence relations, similar to (30), from the third equation 
of this system at a discrete time nt  we determine the rate of transverse 

linear deformation of the composition: 

 
6
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33

1 (1 )
n n n n n n

i i in
i

b p
b =

 ε ≡ ε = σ − − δ ε − 
 ∑& & && , (54) 

where 3ib , 3p , 1,2, ,6i = … , are the elements of the matrixB  and the column 

vector p  in equality (37); the derivative 3σ&  is known from (53) after differen-

tiation with respect to t . The strain rates iε&  on the right-hand side of equa-
lity (54) are obtained after differentiation of equalities (51) with respect to 
time, i.e. they are expressed in terms of two-dimensional functions w , w& , u& l  

and 0
3ε& l , 1,2=l . 

The kinematic relations (51) and (52) should be supplemented by two-
dimensional equations of motion of the flexible plate and the corresponding 
initial and boundary conditions, which are commonly known [2, 23], so we will 
not present them here (see equalities (25)–(29) in [20]). 
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If the mechanical and thermophysical problems of thermoelastoplastic 
deformation of reinforced plates are coupled, it is additionally necessary to 
use the heat balance equation for CM [7, 9]: 

 div ( , )c w tρ Θ = − +q r& , (55) 

where 

 
0 0

1,         ,         ( , )
N N

k k k k k ij ij
k k

c c w t
= =

ρ ≡ ω ρ ≡ ω ρ ≡ σ ε
ρ∑ ∑ r & , (56) 

kρ , ρ  is the volumetric density of the k -th component of the composition 

and CM; kc , c  is the specific heat of the same materials; w  denotes a power 

density of mechanical dissipation of CM; q  is the averaged vector of the heat 

flux in the composition; ijσ , ijε  are averaged stresses and strains in the CM; 

Θ  is a temperature of CM; the overdot denotes the operation of differentia-
tion with respect to time t ; the quantity 0ω  is defined in (38). The relation-

ship between q  and Θ  is given by the Fourier law (see matrix equality (48) 
with regard for (49) and (50)). 

We assume that on the face surfaces of the plate the combinations of 
heat boundary conditions of the second and third kind are specified [11]: 

 
3
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  (57) 

where ( )±α  are the coefficients of heat transfer from the side of the upper (+) 

and lower (–) face planes; ( )±
∞Θ  are ambient temperatures from the side of the 

same surfaces; ( )q ±
∞  are given projections onto the axis 3Ox  of external heat 

fluxes through the same surfaces. 
On the end face the general heat boundary conditions can be specified  

 1 1 2 2 3 0( , ),     ,     ,     q n q n q t x h t t∗ ∗
∗ ∞ ∞+ = α Θ − Θ + ∈ Γ ≤ ≥r x( ) , 

 1 2cos ,      sinn n= β = β , (58) 

where ∗α , ∗
∞Θ , q∗

∞  have the same meaning as similar values in (57), only on 

the end face; Γ  is a contour that bounds the domain Ω ; β  denotes the angle 

that specifies the direction of the outer normal to Γ . In equalities (57) and 
(58), iq , 1,2,3i = , are the components of the vector q  (see (49)). In addition 

to boundary conditions (57) and (58), at the moment of time 0t , it is necessary 

to prescribe the initial condition for the temperature Θ . 
To reduce the dimension of Eq. (55), we approximate the temperature Θ  

of a plate by a polynomial of the M -th degree in the transverse coordinate 

3x : 

 0
3 3 0

0

( , ) ( , ) ,      ,      ,      
M

t t x x h t t
=

Θ − Θ = Θ ∈ Ω ≤ ≥∑r x xl
l

l
, (59) 

where Θl , 0 M≤ ≤l , are the required two-dimensional functions; 0 constΘ =  

is a temperature of the natural state of the CM-structure. For 2M = , we ob-
tain the simplest version of the method of additional boundary conditions [12].  

According to the remark made, for the considered structures of 
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reinforcement, the axis 3Ox  coincides with one of the principal directions of 
the thermophysical anisotropy of the CM, therefore 

 3 3 0,       1,2i i iλ = λ ≡ = , (60) 

where ijλ  are the effective coefficients of thermal conductivity of the 

composition (elements of the 3 3× -matrix Λ  in (48) and (49)). 
Substituting the expansions (59) into equalities (57) and using Fourier’s 

law (48) with regard to (60), after elementary transformations we obtain 
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 0,    t t∈ Ω ≥x , (61) 

where 

 ( )
33 33 ( , , )t h

±
Θ=Θ ±

λ ≡ λ
x

, (62) 

( )
33
±λ  are coefficients of transverse thermal conductivity of CM on the upper 

(+) and lower (–) face surfaces. Relation (62) is true in the case of the thermal 
sensitivity of the coefficient 33 33 ( ; )λ = λ Θx , in the opposite case 

( ) ( )
33 33 33 ( )+ −λ = λ = λ x , in view of the homogeneity of the reinforcement 

structure across the thickness of the plate. 
The system of two equations (61) with regard for (60) and (62), contains 
1M +  unknown two-dimensional functions ( , )tΘ xl , 0 M≤ ≤l . To close this 

system, we will use the generalized Galerkin method, i.e. we integrate the 

heat balance equation (55) over the thickness of the plate with weights 3
mx , 

0 2m M≤ ≤ − , then we obtain 
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where 

 ( )
3 3( , ) ( , )

h
m m

h

U t U t x dx
−

≡ ∫x r , 

 ( ) 1
3 3 3 3 3 3 3 3 3 3( , ) ( , ) ( , ) ( , )

h h
hm m m m

h
h h

Q t q t x dx q t x m q t x dx−
−

− −

≡ ∂ = − =∫ ∫x r r r  

 ( ) ( ) ( 1)
3 3 3( 1) ( , )m m mh q q mQ t+ − −= − − − x[ ] , 

 ( )
3 3( , ) ( , ) ,        1,2,3

h
m m

i i
h

Q t q t x dx i
−

≡ =∫x r , 

 ( )
3 3( , ) ( , ) ,        ( )

h
m m

h

UW t w t x dx c
−
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∂Θ∫x r , (64) 

U  is the specific internal energy of the CM. 
The analysis of experimental data shows [3, 14] that with an accuracy 

acceptable for practical applications in a sufficiently wide temperature range, 
the heat capacity of the k -th component of the composition kc  can be appro-

ximated by a square parabola of the difference 0Θ − Θ  (more complex depen-



57 

dencies 0( )kc Θ − Θ  can also be used, this is not essential). Then, according to 

the second equality (56), the specific heat capacity of the composition in the 
case of taking into account the thermal sensitivity can be represented in the 
form 

 0 0 0 2
0 1 2( ; ) ( ) ( )( ) ( )( ) ,    c C C CΘ − Θ = + Θ − Θ + Θ − Θ ∈ Ωx x x x x , (65) 

where 
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k
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k

C c i
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≡ ρ ω =
ρ ∑x x , (66) 

( )k
ic  are the expansion coefficients of the specific heat capacity of the k -th 

component of the composition 0( )kc Θ − Θ  according to a formula analogous 

to (65). 
From the last formula (64), taking into account (65) and (66), we obtain 

 0 0 0 2 0 31 2
0 0
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2 3
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x x
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  (67) 

where 0U  is a value independent of temperature. Since the temperature Θ  of 

CM is of interest below, and not the internal energy U , the value 0U  

corresponding to the temperature 0Θ  can be given arbitrarily, for example, 
for convenience, equals to zero. 

After substitution (67) into the first equality (64), with regard for the 
expansion (59), we obtain 
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If at the current moment of time t  from any reasonings the values of 

the functions ( )mU  are known, then the system of nonlinear (in the case of 
accounting the thermal sensitivity) equations (61) and (68) with regard for 
(62) and (69) will be closed with respect to the functions ( , )tΘ xl , 0 M≤ ≤l . 

To obtain the boundary conditions corresponding to the two-dimensional 
heat balance equations (63), it is necessary to integrate equality (58) over the 

thickness of the plate with weights 3
mx . Then, taking into account notations 

(64) and expansion (59), we obtain 
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The initial condition for equation (63) has the form 

 ( ) ( )
0 0( , ) ( ),     ,     0 2m mU t U m M= ∈ Ω ≤ ≤ −x x x , (72) 

where ( )
0
mU  are the known two-dimensional functions, which are calculated 

by the first formula in (64) with regard to the expression (67), where it is 

necessary to replace Θ  by the known initial temperature 0 ( )∗Θ r  of the plate. 

From the closed system of two-dimensional equations (61), (63), in view 
of (64), (68), we obtain that the number M  in the temperature expansion (59) 
should be at least two ( 2M ≥ ) if the thermal boundary conditions on the face 
surfaces of the plate are taken into account (see (61)). 

2. Method of calculation. As noted in the Introduction and in [24], to 
integrate the problem we will use explicit step-by-step numerical schemes, 
determining the solution at discrete times nt , 0,1, 2,n = … . In this connection, 

we assume that, for mt t= , in addition to (32), the values of the following 

functions are already known: 
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m m m m
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 31, ,    0 2,   0 ,    ,    m n n r M s M x h= − ≤ ≤ − ≤ ≤ ∈ Ω ≤x , (73) 

where 

 0
3

8( , ) ,     1,2
5i i it w iγ ≡ ε − ∂ =x , (74) 

are functions introduced for the convenience of presentation [20]. 
The derivatives with respect to time in the mechanical component of the 

investigated coupled thermoelastoplastic problem will be approximated by 
central finite differences on a three-point template 1 1, ,n n nt t t− +{ } , which 

enables us to develop an explicit numerical scheme. Replacing the second time 
derivatives of the kinematic variables iu  and iγ  in the equations of motion of 
a flexible CM-plate by their finite-difference analogs and taking into account 
(52) and notations similar to (73), we obtain [20] 
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j

h
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=
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∑ x … , (75) 

where 

 3 3 3 3 3 3,   ,   ,   , 1,2
h h h

ij ij i i ij ij
h h h

F dx F dx M x dx i j
− − −

= σ = σ = σ =∫ ∫ ∫ , (76) 
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∆  is a time step; the density ρ  is determined in (56). The volumetric forces in 
the CM-plate are not taken into account. 

Using (76) and assumptions (73) at a given time nt , we can calculate all 

force factors ijF , 3iF , ijM  and external loads ( )
33
±σ  entered into the right-hand 

sides of equalities (75). Hence, taking into account the corresponding boundary 

conditions [20], the values of the unknown functions 
1n

w
+

, 
1n

iu
+

, 
1n

i

+
γ  at the next 

moment of time 1nt + , сan be calculate from equations (75) by explicit scheme. 

Then, using formulas (51), taking into account (74), we determine the avera-

ged deformations 
1n

ij

+
ε  of the composition.  

According to (51) and (73), the deformations 
1n

ij

−
ε  are already known at 

1nt t −= , therefore, based on the formulas of numerical differentiation with 

respect to t , using formulas (54), we can also calculate the strain rates 
n

ijε&  at 

each point of the plate at the time nt .  

Further, by formulas (42), taking into account the relations (30), we de-

termine the deformation rates 
n

k
&  of the components of the composition, and 

from relations (35), taking into account (36), we determine the stress rates 
n

k
& .  

Using approximations (43) taking into account (73), we calculate the 

stresses 
1n

k

+
  and strains 

1n

k

+
  in the k -th component of the composition, then 

by formula (46), taking into account (44), (45), and (47), we determine the 

value of the Odquist parameter 
1

( )
n

k
+

χ  in the same material at the next moment 

of time 1nt + .  

According to (31), the switching parameter ( )kc  at nt t=  depends on 
n

k
& , 

therefore, at the current instant nt , the constitutive relation (35) (or (29)) 

must be iteratively refined using the method of variable parameters of elasti-
city [18]. The performed calculations show that in order to obtain an accuracy 
acceptable in practical applications, it is sufficient to use two iterations at 
each time step. 

To integrate the thermophysical component of the problem under consi-
deration, we will also use an explicit scheme, but on a two-point template in 
time 1,n nt t +{ } . Then the heat balance equations (63), taking into account the 

notations similar to (73), take the form [15] 

 
1

( ) ( ) ( ) ( ) ( ) ( )
1 1 2 1 3

n n n n n n
m m m m m mU U Q Q Q W
+ρ  − = − ∂ − ∂ − + ∆  

, 

 ,        0 2,        0,1,2,m M n∈ Ω ≤ ≤ − =x … . (77) 

Based on formulas (64), taking into account assumptions (73), at the 
current moment of time nt , we can calculate the right-hand side in (77), and 

then by explicit scheme, with regard for (70)–(73), we determine the values of 

the functions 
1

( )
n

mU
+

 at the next moment of time 1nt + . Further, considering at 
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1nt t +=  equations (61) and (68) (in which the right-hand sides are already 

known) and taking into account (62) and (69), we determine the expansion 

coefficients of temperature 
1
( )

n+
Θ xl , 0 M≤ ≤l , in formula (59). If the thermal 

sensitivity of the materials of the composition is taken into account, system 
(61), (68) is nonlinear. For its linearization, can be used the method of variable 
thermophysical parameters, similar to the method of variable elasticity 
parameters [18]. Calculations have shown that for the convergence of such an 
iterative process with an accuracy acceptable for applications, it is sufficient 
to use two or three iterations. 

According to the structure of the left-hand sides of equations (75) and 
(77), to start calculations by the proposed numerical scheme it is necessary 

preliminarily to know the functions 
m
w , 

m

iu , 
m

iγ , 0,1m = , and 
0
( )U l . In this 

case, the functions 
0
w , 

0

iu , 
0

iγ  and 
0
( )U l , 0 2M≤ ≤ −l , are determined from 

the initial conditions (see (72) and (28) in [20]). If at 0t t=  the CM-plate is at 

rest in the natural state and there are no external loads (
0 0
( ) ( )
33 33 0+ −σ − σ = ), then 

using the Taylor formula we obtain 
1 1

0iw u≈ ≈ , 
1

0iγ ≈ , 1,2i = , accurate to 

within 3∆ . 
Replacing derivatives ( )i∂ i  in (75) and (77) by their finite-difference 

analogs and adding to these equations the necessary boundary conditions (see 
(70) and (71), as well as (29) in [20]), we finally obtain an explicit step-by-step 
scheme of the numerical integration of the coupled problem of 
thermoelastoplastic deformation of a flexible CM-plate. 

3. Discussion of the calculation results. Let us investigate the 
thermoelastoplastic dynamic behavior of flexible plates with a thickness 
2 2h = cm. The domain occupied by them in the plan is Ω : 1 /2x a≤ , 

2 /2x b≤ , 3a b= . The edges of the structures are rigidly fixed: 0iw u= = , 

0iγ = , ∈ Γx , 0t t≥  (see (52), (74), (75)). Until the initial moment of time 

0 0t = , the plates are in the state of rest ( 0iw u= = , 0iγ = , ∈ Ωx , 0t t= , 

1,2i = ) at the temperature of the natural state ( 0 constΘ = Θ = , ∈ Ωx , 

3x h≤ , 0t t= ). At the initial time 0t t= , the structure are loaded from 

below by the pressure ( )p t  generated by the air blast wave [22] 

 ( ) ( ) max max max
33 33

max max max

/ , 0 ,
0,    ( )

exp ( ) , ,

p t t t t
p t

p t t t t
+ − ≤ ≤σ ≡ − σ ≡ =  −α − > [ ]  (78) 

where 

 min max min maxln(0.01)/( ) 0,         t t t tα = − − > ? , (79) 

maxt  is the moment of time when ( )p t  reaches the largest value maxp ; mint  is 

the moment of time above which it can be neglected ( )p t  in comparison with 

maxp  (for example, formula (79) is valid for min max( ) 0.01p t p= ). Based on the 

experimental data [22], in the calculations we take max 0.1t = ms and 

min 2t = ms.  

Through the face surfaces ( 3x h= ± ) convective heat exchange with the 

environment ( ( ) 0q ±
∞ ≡ ) occurs under conditions of natural convection 
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( ( ) 30±α = W/(m2 ⋅ K) [13]) at an air temperature equals to the temperature of 

the natural state of structures: ( ) 0 20±
∞Θ = Θ = °С (see (57)). Boundary 

conditions of the first kind are given on the end surfaces of the plates, and 
the temperature of the structures is maintained equal to the temperature of 

their natural state: ∗α → ∞ , 0∗
∞Θ = Θ  (see (58)). 

The plates are made of magnesium alloy VT65 [3] and reinforced with 
steel wire U8A [10] (metal composition) or epoxy binder [16] reinforced with 
glass fibers [10] (fiberglass). Elastoplastic deformation of the components of 
the composition under active loading and constant temperature Θ  is descri-
bed by a bilinear diagram 

 
( ) ( ) ( ) ( )

s s
( ) ( ) ( ) ( )
s s s s

, / ,

sgn ( ) sgn ( ) , ,     0 ,

k k k k

k k k k

E E

E k N

 ε ε ≤ ε = σ
σ = 

ε σ + ε − ε ε ε > ε ≤ ≤ ( )
 

where σ , ε  are axial stress and strain; ( ) ( )
s s ( )k kE E= Θ  is modulus of linear 

hardening of the material of the k -th component of the composition; 
( ) ( )
s s ( )k kσ = σ Θ  is the yield point of the same component at a fixed temperature 

( constΘ = ). The physical and mechanical characteristics of the materials of 

the composition are given in the Table 1, where /c E= ρ  is the speed of 

sound, 2 /( )a c= λ ρ  is the doubled thermal diffusivity, and in parentheses is 

indicated the temperature ( Θ ),°C, at which the value of the corresponding 
characteristic is determined. The dependences of all physical and mechanical 
characteristics on temperature Θ  in the calculations were approximated 
linearly, according to the data presented in the Table 1. 

To carry out calculations in spatial variables 1x  and 2x  a uniform grid 

1 2 /100x x b∆ = ∆ =  was introduced, and the time step ∆  was chosen equal to 

0.25 μs. We considered relatively thin ( = 1b m, 2 / 1/50h b = ) and relatively 

thick ( 20b = cm, 2 / 1/10h b = ) CM-plates, for which 

1 40
x∆

=
∆

km/s, 2 80h =
∆

km/s, 
2

1( )
400

x∆
=

∆
m2/s for 1b = m, 

1 8
x∆

=
∆

km/s, 2 80h =
∆

km/s, 
2

1( )
16

x∆
=

∆
m2/s for 20b = m. (80) 

To ensure the stability of the explicit scheme (75), it is necessary to 
satisfy the Courant conditions: 1 /x c∆ ∆ ≥  and 2 /h c∆ ≥  [1], and for the 

stability of the explicit scheme (77), it is necessary that 2
1( ) /x a∆ ∆ ≥  [15]. 

According to the numerical data obtained in (80), these ratios significantly 
exceed the corresponding values for c  and a  for the components of the 
compositions presented in the Table 1. Hence, similar necessary conditions for 
the stability of the explicit scheme (75) and (77) will be fulfilled with a 
reserve for the considered compositions.  

Note that scheme (77) has the first order of accuracy with respect to ∆  
[15], however, the smallness of the time step ( 0.25∆ = μs), which guarantees 
the stability of the entire numerical scheme as a whole (see (75) and (77)), 
provides a quite acceptable for practical applications accuracy of calculation. 

Reinforcement structures of CM-plates are homogeneous: constkθ = , 

constkϕ = , constkω = , 1 k N≤ ≤  (see (38), (41), (49) and Fig. 2). Two sche-

mes of reinforcement are considered: 1) plane orthogonal reinforcement 
(Fig. 1a), when two ( 2N = ) families of fibers are laid in directions 1x  and 2x  

with densities of reinforcement 1 0.1ω =  and 2 0.3ω = , respectively; 2) spatial 
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reinforcement in four ( 4N = ) directions (Fig. 1b), when the first two families 
of fibers are still laid in the directions 1x  and 2x , and the third and fourth 

ones are oblique in the plane 2 3Ox x  along the directions that are specified by 

the angles (see (41) and Fig. 2): 3 / 4θ = π , 4 3 / 4θ = π , 3 4 /2ϕ = ϕ = π  (in 

Fig. 1b angle / 4θ = π ). In the second structure, the densities of reinforcement 

are as follows: 1 0.1ω = , 2 0.2ω = , 3 4 0.05ω = ω = . In both schemes of reinfor-
cement, the total fiber consumption is the same. 

 Table 1. Physico-mechanical characteristics of material components [3, 10, 16]. 
Characteristic 
of material 

Epoxy resin Glass-fibres 
material 

Magnesium 
alloy VT65  

Still wire 
U8А 

1210.0 (20) 2520.0 (20) 1800.0 (20) 7800.0 (20) 
ρ , kg/m3 

1208.0 (40) 2519.6 (80) 1796.2 (100) 7791.8 (100) 

2.8 (20) 86.8 (20) 43.0 (20) 210.0 (20) 
E , GPa 

2.3 (40) 86.3 (80) 38.5 (100) 195.0 (100) 

0.33 (20) 0.25 (20) 0.330 (20) 0.3 (20) 
ν  

0.333 (40) 0.254 (80) 0.334 (100) 0.305 (100) 

20 (20) 4500 (20) 267 (20) 3968 (20) 
sσ , MPa 

18 (40) 4400 (80) 219 (100) 3971 (200) 

1.114 (20) 6.230 (20) 0.379 (20) 6.973 (20) 
sE , GPa 

0.783 (40) 5.168 (80) 0.367 (100) 5.014 (200) 

0.243 (20) 0.89 (20) 117.23 (20) 42.7 (20) 
λ , W/(m ∙ K–1) 

0.240 (40) 0.86 (80) 121.42 (100) 41.7 (100) 

68.1 (20) 2.5 (20) 20.9 (20) 12.3 (20) 
610α ⋅ , K–1 

70.3 (40) 2.6 (80) 22.6 (100) 13.2 (100) 

1.54 (20) 0.800 (20) 1.032 (20) 0.485 (20) 
c , kJ/(kg ∙ K) 

1.60 (40) 0.839 (80) 1.054 (100) 0.488 (100) 

1521 (20) 5869 (20) 4888 (20) 5189 (20) 
c , m/c 

1380 (40) 5852 (80) 4635 (100) 5003 (100) 

2.60 710−⋅  (20) 8.80 710−⋅  (20) 1.27 410−⋅ (20) 2.26 510−⋅  (20) 
a , m2/c 

2.48 710−⋅  (40) 8.14 710−⋅ (80) 1.29 410−⋅ (100 2.19 510−⋅  (100) 

In order to clarify the question of choosing the value M  in expansion 
(59), at which an acceptable accuracy of calculations of temperature Θ  is 
ensured, the dependences of the maximum values max

,
( ) max ( , ; )

t
M t MΘ = Θ

r
r  

on M  were investigated ( 1 /2x a≤ , 2 /2x b≤ , 3x h≤ , calculations were 

carried out over a time interval 0 0.1t≤ ≤ s). In Fig. 3 shows the graphs of 
these dependences for relatively thin ( = 1b  m): fiberglass plates (curves 1 
and 2), calculated at max 4p = MPa (see (78)), and metal-composite structures 

at max 10p = MPa (curves 1′ and 2′); and also for relatively thick ( 20b = cm) 

fiberglass plates at max 7p = MPa (curves 1″ and 2″). At such loading levels of 

CM-structures, plastic deformations arise in them. The value 0M =  in Fig. 3 
conditionally corresponds to the case of complete neglect of the thermal 

effect, therefore it is assumed that maxΘ =  0 20= Θ = °С for 0M = . The 
numbers of the curves in Fig. 3 coincide with the numbers of the structures 
of reinforcement. 
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The behavior of all curves in Fig. 3 demonstrates that in passing from va-
lue 6M =  to value 7M = , the increment of value maxΘ  is practically negli-

gible. At values 8M ≥ , the linearized system of equations (61), (68) (with ta-
king into account (69)), from which the temperature expansion coefficients 
(59) are calculated at a given time, becomes ill-conditioned. Therefore, the de-
pendences max ( )MΘ  at 8M ≥  diverge, 
and the corresponding segments of the 
curves in Fig. 3 are not shown. 

When carrying out practical calcu-
lations, it is generally accepted that it is 
quite sufficient to approximate the tem-
perature across the thickness of thin-
walled structures linearly ( 1M = ) or 
with a square parabola ( 2M = ). Compa-
rison of the ordinates of the points on 
the curves in Fig. 3 for values 1M =  or 

2M =  and for 7M =  indicates that in 
cases of elastoplastic dynamic deforma-
tion of flexible CM-plates, the linear and 
quadratic temperature distribution in 
the transverse direction in them leads to 
a significant underestimation of the lar-
gest calculated temperature values. Hence, in order to carry out adequate cal-
culations of the temperature fields under such deformation of thin-walled 
CM-structures, it is advisable to approximate the temperature along their 
thickness by polynomials of the 6th or 7th orders (see (59) for 6M =  or 7M = ). 

To obtain a more visual representation of the difference between the 
temperature fields calculated in the considered CM-plates for 2M =  and 

7M = , in Fig. 4 shows the oscillations of the maximum values of temperature 

m ( ; ) max ( , ; )t M t MΘ = Θ
r

r  as a function of time t . The curves in Fig. 4a are 

calculated for thin fiberglass structures, in Fig. 4b – for relatively thick fiber-
glass plates, and in Fig. 4c – for relatively thin metal-composite structures. In 
order not to clutter up the Fig. 4, it shows the dependences m ( ; )t MΘ  only for 
CM-plates with 2D-structures of reinforcement. Here, solid curves 1 corres-
pond to the case 2M = , and dashed lines 2 correspond to the case 7M = . 
Comparison of the behavior of curves 1 and 2 in Fig. 4 demonstrates the fact 
that the calculation of the dependence m ( ; )t MΘ  with the simplest (quadratic, 

2M = ) approximation of temperature only qualitatively (and very approxi-
mately), but not quantitatively, enable us to calculate the oscillations of the 
largest values Θ  in the considered CM-structures. 

The behavior of the curves in Fig. 4a and Fig. 4c indicates that the 
maximum values of the temperature in relatively thin CM-plates are achieved 
at times (in Fig. 4a at 63t ≈ ms, and in Fig. 4c at 25t ≈ ms), which are much 
larger than the time of action of an external short-term load, i.e. much larger 
than min 2t = ms (see (79)). The behavior of the curves in Fig. 4b shows that in 

the case of relatively thick fiberglass structures, the dependences m ( ; )t MΘ  at 

different values M  reach their maximum values at the first oscillation, i.e. at 
times (in Fig. 4b at 0.3t = ms) close to max 0.1t = ms (see (78)). A qualitatively 

similar behavior of the dependences of m ( ; )t MΘ  at the values 2M =  and 

7M =  also takes place in the case of relatively thick metal-composite plates 
(at =max 50p MPa); therefore, the corresponding curves in Fig. 4 are not 
shown. 

 
Fig. 3. Dependence of the maximum 

value of temperature on the or-
der of its approximating polyno-
mial in transverse direction. 
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 a) b) 

 

с) 
Fig. 4. Time dependences of the highest temperature values: a) in a relatively thin fiber-

glass plates, b) in a relatively thick fiberglass plates, and с) in a relatively thin me-
tal-composite structures, calculated using different approximations of the tempera-
ture field in the transverse direction. 

In Fig. 5 are shown the oscillations of the highest values of the deforma-

tion intensity (0)
∗ε  of the binder of the investigated compositions ( (0)

m ( )tε =  
(0)max ( , )t∗= ε

r
r , 1 /2x a≤ , 2 /2x b≤ , 3x h≤ ). The curves in Fig. 5a – Fig. 5c 

are calculated for the same CM-structures as in Fig. 4a – Fig. 4c, respectively. 
The numbers of the curves in Fig. 5 coincide with the numbers of the struc-
tures of reinforcement, as in Fig. 3. All curves in Fig. 5 (except for curve 2′ in 
Fig. 5d) were calculated for the value 7M =  (see (59)). 

Comparison of curves 1 and 2 in Fig. 5a and Fig. 5c reveals that in 
relatively thin fiberglass and metal-composite plates, replacing the traditional 
2D-structure of reinforcement (see Fig. 1a) with the spatial structure of 4D-
reinforcement (see Fig. 1b) is ineffective, as if it leads to an increase of the 
highest values of deformations of the composition components. The behavior 
of the curves in Fig. 5b indicates that, in relatively thick fiberglass structures, 
such a replacement of structures of reinforcement enable us to reduce the 
maximum values of the intensity of deformations of the binder material by 
two times. Though, at the same time, according to the behavior of curves 1″ 
and 2″ in Fig. 3 for 7M = , a structure with a 4D-structure of reinforcement 
heats up a little more than a plate with a 2D-structure. However, the 
difference in values is insignificant and is less than 1°C. 

Additional calculations showed that, in relatively thick metal-composite 
plates (at =max 50p  MPa), the indicated replacement of the reinforcement 



65 

structure is also ineffective. This is explained by the fact that a relatively 
“rigid” metal binder resists lateral shears quite well even in thick metal-
composite structures with a traditional 2D reinforcement structure. 

  

 a) b) 

  
 c) d) 

Fig. 5. Time dependences of the maximum value of the intensity of deformation of a 
binder: a) in a relatively thin fiberglass plates, b) in a relatively thick fiberglass 
plates, and c), d) in a relatively thin metal-composite structures with 2D- and 4D-
reinforcement structures, respectively.  

Curves 2, 2′, and 2″ in Fig. 3 lie above curves 1, 1′, and 1″, respectively. 
Hence, in all the cases considered above, replacing a 2D-reinforcement 
structure with a 4D-structure leads to an increasing the maximum values of 
temperature in the structure. This is especially pronounced in relatively thin 
fiberglass plates (see curves 1 and 2 in Fig. 3). It was noted in [19] that if the 
thermal conductivity of fibers is much greater than the analogous value of 
the binder, as is the case in fiberglass composites (see Table 1), then the use 
of spatial structures of reinforcement should contribute to more efficient heat 
removal from a thin-walled structure in comparison with traditional plane 
criss-cross structures. The behavior of the curves in Fig. 3 indicates that in 
the case of dynamic inelastic deformation of plates, replacing the 2D-structure 
of reinforcement with a 4D-structure does not contribute to more active heat 
removal from such CM structures. 

The behavior of the curves in Fig. 4a – Fig. 4c and Fig. 5a – Fig. 5c is 
qualitatively similar. Namely, in Fig. 5b, the maximum value of the 

dependence (0)
m ( )tε  is reached at the first oscillation at 0.3t ≈ ms; similarly in 

Fig. 4b, the maximum value of the dependence m ( )tΘ  is reached at the first 
oscillation at the same time instant, i.e. approximately when the external load 
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reaches its highest value (see (78) and (79)). The maximum values of the 

quantities mΘ  and (0)
mε  in Fig. 4a, Fig. 4c, Fig. 5a and Fig. 5c are reached at 

times significantly exceeding min 2t = ms, i.e. after the termination of the 
external short-time load. In this case, the moments of time at which the 

maximum values of the quantities mΘ  and (0)
mε  are reached, do not coincide. 

The fact that in the case of nonlinear dynamic deformation of thin-walled 
CM-structures, deformations can reach their maximum values much later 
than the time of the termination of the action of an intense short-term load, is 
discovered for elastic shells in [6]. 

Comparison of curves 1 in Fig. 5a and Fig. 5b shows that the maximum 
values of the deformation intensity of the binder in fiberglass plates of 
different relative thicknesses with a 2D reinforcement structure are 
comparable with each other. However, a comparison of the behavior of curves 
1 and 1″ curves in Fig. 3 at 7M =  indicates that a relatively thick structure 
(see curve 1″) heats up significantly less than a relatively thin one (see curve 
1). This fact is explained by the fact that in a relatively thick CM-structure, 
the most intense deformation of the components of the composition occurs in 
small zones adjacent to rigidly fixed edges, and transverse shear deformations 
dominate in these zones. In relatively thin CM-plates, the main part of the 
structure (remote from the supporting edges), in which bending deformations 
dominate, is deformed most intensively. Therefore, in relatively thin plates, 
mechanical energy as a whole is more actively dissipated into thermal energy 
than in relatively thick structures, even at comparable levels of maximum 
deformations in their components of the composition. 

All the results discussed above were obtained with taking into account 
the thermal sensitivity of the materials of the composition. Calculations 
performed without taking into account the thermal sensitivity (when the 
values of the characteristics of the materials of the composition given in the 

Table 1 at the temperature of the natural state 0 20Θ = °С are used) show 

that the dependences m ( )tΘ  and (0)
m ( )tε , at the same time, visually almost do 

not differ from the curves shown in Fig. 3, Fig. 4 and Fig. 5a – Fig. 5c. This is 
explained by a small increment of temperature under dynamic elastoplastic 
deformation of the considered CM-structures (by only 2÷30°С) due to the 
action of an explosive-type load. Note that a similar level of heating (about 
10°С) is also observed in experiments on shock loading of samples from 
homogeneous materials [4, 5]. 

In view of the low level of heating of the considered CM-structures, it is 
advisable to compare the above results with the calculations performed 
according to the elastoplastic theory [21], i.e. with complete neglect of the 
thermal effect. It was established that for the investigated CM-plates, the 
results of such calculations for deflections (the corresponding dependences are 
not shown) visually do not differ from the calculations performed according to 
thermoelastoplastic theory. However, there is some (sometimes significant) 

difference for dependencies (0)
m ( )tε . So, curve 2 in Fig. 5d coincides with curve 

2 in Fig. 5c (this is the same curve), and curve 2′ in Fig. 5d was obtained 
under the same conditions as curve 2, but without taking into account this 
effect. The ordinate of the global maximum point (at 1.85t ≈ ms) on curve 2′ 
is less than the same value on curve 2 by 8.8%. Note that the calculation 
performed according to the thermoelastoplastic theory taking into account the 
thermal sensitivity of the components of the composition, but at 2M =  (see 

(59)), leads to a dependence (0)
m ( )tε  that almost does not differ from curve 2′ 

in Fig. 5d. Hence, in the case of relatively thin metal-composite plates, neglect 
of the thermal effect or the calculation of temperature fields with a rough 
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accuracy can lead to a significant (more than 5%) underestimation of the 
calculated values of the intensity of deformations of the composition 
components. In the case of fiberglass plates, the maximum values of the 
intensity of deformations of the components of the composition, obtained with 
and without taking into account the thermal effect, practically do not differ. 
Therefore, the dynamic elastoplastic behavior of thin-walled fiberglass 
structures can be reasonably calculated without taking into account the 
thermal effect. 

In Fig. 5 was not shown the dependences ( )
m ( )k tε  for fibers of the k -th 

family (1 k N≤ ≤ ), as if they are qualitatively similar to the curves shown in 
Fig. 5 for the bonding material, but have lower values along the ordinate axis. 
In particular, for fibers of the second family ( 2k = ), which experience the 

largest deformations, the maximum values (2)
mε  are approximately 1.5÷1.7 

times less than for the dependences shown in Fig. 5. 
Conclusion. A model of thermoelastoplastic deformation of flexible plates 

with arbitrary structures of reinforcement has been developed, which enable 
one to take into account the possible weak resistance of such structures to 
transverse shears and the connectivity of thermophysical and mechanical 
problems. An explicit numerical scheme for integrating the formulated 
coupled initial-boundary value problem has been developed. It is established 
that the time step is determined from the Courant stability criterion for the 
wave equation, and not from the stability criterion of the numerical scheme 
for two-dimensional heat balance equations. 

It is established that for an adequate calculation of the temperature fields 
in CM-plates under their dynamic elastoplastic bending deformation, the tem-
perature in the transverse direction must be approximated by polynomials of 
the 6th or 7th orders. 

Calculations have shown that under dynamic loading of CM-plates by a 
transverse explosive-type load , fiberglass structures are heated up no more 
than 2÷18°C, and metal-composite structures are heated up no more than 
30°C. In this case, relatively thin plates are heated to a greater extent than 
relatively thick ones, even with comparable values of the highest values of 
the deformation intensities of the components of the composition. 

Replacing a plane orthogonal structure of reinforcement (Fig. 1a) with a 
spatial structure of reinforcement (Fig. 1b), while maintaining the total 
consumption of fibers in a relatively thick fiberglass plate, enable one to 
reduce the intensity of deformation of the binder material by two times, 
however, the highest temperature value increases, although insignificantly 
(from 1.5 to 2.5°C). A similar replacement of structures of reinforcement in 
relatively thin fiberglass, as well as in relatively thin and relatively thick 
metal-composite structures is ineffective, as if it leads to an increase in the 
maximum values of the intensity of binder deformations and increments of 
temperature in CM-plates. 

To carry out adequate dynamic calculations of fiberglass plates, flexurally 
deformed by a load due to an air blast wave, it is quite reasonable to ignore 
the effect of thermal action if there are no additional sources of heating or 
cooling of non-mechanical origin.  

However, in metal-composite thin-walled structures under such loading, 
taking into account the thermal effect is mandatory (although the thermal 
sensitivity of the components of the composition can be ignored in this case), 
otherwise the calculations can lead to a significant underestimation of the 
deformed state of the components of the composition. In this case, the 
traditional approximation of the temperature over the thickness of the plates 
in the form of a square parabola also leads to inadequate calculation results, 
similar to the complete neglect of the thermal effect. 
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The work was carried out within the framework of a state assignment (state 
registration No. 121030900260-6). 

 
 1. Абросимов Н. А., Баженов В. Г. Нелинейные задачи динамики композитных кон-

струкций. – Нижний Новгород: Изд-во ННГУ, 2002. – 400 с. 
 2. Амбарцумян С. А. Теория анизотропных пластин. Прочность, устойчивость и 

колебания. – Москва: Наука, 1987. – 360 с. 
 3. Безухов Н. И., Бажанов В. Л., Гольденблат И. И., Николаенко Н. А., Синю-

ков А. М. Расчеты на прочность, устойчивость и колебания в условиях высоких 
температур. – Москва: Машиностроение, 1965. – 568 с. 

 4. Белл Дж. Ф. Экспериментальные основы механики деформируемых твердых 
тел: В 2 ч. – Часть I. Малые деформации. – Москва: Наука, 1984. – 597 с 

 5. Белл Дж. Ф. Экспериментальные основы механики деформируемых твердых 
тел: В 2 ч. – Часть II. Конечные деформации. – Москва: Наука, 1984. – 432 с. 

 6. Богданович А. Е. Нелинейные задачи динамики цилиндрических композитных 
оболочек. – Рига: Зинатне, 1987. – 295 с. 

 7. Грешнов В. М. Физико-математическая теория больших необратимых деформа-
ций металлов. – Москва: Физматлит, 2018. – 232 с. 

 8. Жигун И. Г., Душин М. И., Поляков В. А., Якушин В. А. Композиционные мате-
риалы, армированные системой прямых взаимно ортогональных волокон. 2. Экс-
периментальное изучение // Механика полимеров. – 1973. – № 6. – С. 1011–1018. 

 9. Киселев С. П. Механика сплошных сред: Учеб. пособие. – Новосибирск: Изд-во 
НГТУ, 2017. – 164 с. 

 10. Композиционные материалы. Справочник / Под ред. Д. М. Карпиноса. – Киев: 
Наук. думка, 1985. – 592 с. 

 11. Кудинов А. А. Тепломассообмен: Учеб. пособие. – Москва: ИНФРА-М, 2012. – 
375 с. 

 12. Кудинов В. А., Кудинов И. В. Методы решения параболических и гиперболи-
ческих уравнений теплопроводности / Под ред. Э. М. Карташова. – Москва: 
Либроком, 2012. – 280 с. 

 13. Луканин В. Н., Шатров М. Г., Камфер Г. М., Нечаев С. Г., Иванов И. Е., Матю-
хин Л. М., Морозов К. А. Теплотехника: Учеб. для вузов / Под ред. В. Н. Лука-
нина. – Москва: Высш. шк., 2003. – 672 с. 

 14. Новицкий Л. А., Кожевников И. Г. Теплофизические свойства материалов при 
низких температурах. Справочник. – Москва: Машиностроение, 1975. – 216 с. 

 15. Рихтмайер Р., Мортон К. Разностные методы решения краевых задач. – 
Москва: Мир, 1972. – 418 с.  
То же: Richtmyer R. D., Morton K. W. Difference methods for initial-value 
problems. – New York etc.: Intersci. Publ., 1967. – xiv+405 p. 

 16. Справочник по композитным материалам: В 2 кн. – Кн. 1 / Под ред. Дж. Люби-
на. – Москва: Машиностроение, 1988. – 448 с.  
То же: Handbook of composites / Ed. G. Lubin. – New York: Van Nostrand 
Reinhold, 1982. – xi+786 р. 

 17. Тарнопольский Ю. М., Жигун И. Г., Поляков В. А. Пространственно-армиро-
анные композиционные материалы: Справочник. – Москва: Машиностроение, 
1987. – 224 с. 

 18. Хажинский Г. М. Модели деформирования и разрушения металлов. – Москва: 
Научный мир, 2011. – 231 с. 

 19. Шустер Й., Гейдер Д., Шарп К., Глования М. Измерение и моделирование теп-
лопроводности трехмерных тканых композитов // Механика композитн. матери-
алов. – 2009. – 45, № 2. – С. 241–254. 

 20. Янковский А. П. Вязкоупругопластическое деформирование пластин с 
пространственными структурами армирования // Прикл. механика и технич. 
физика. – 2020. – 61, № 1. – С. 118–132. 

 21. Янковский А. П. Моделирование упругопластического деформирования гибких 
пологих оболочек с пространственными структурами армирования // Вычисл. 
механика сплошных сред. – 2018. – 11, № 3. – С. 335–354.  

 22. Houlston R., DesRochers C. G. Nonlinear structural response of ship panels sub-
jected to air blast loading // Comput. & Struct. – 1987. – 26, No. 1-2. – P. 1–15. 

 23. Reddy J. N. Mechanics of laminated composite plates and shells: Theory and 
analysis. – Boca Raton: CRC Press, 2003. – 858 p. 

 24. Yankovskii A. P. Modeling of thermoelastoplastic deformation of reinforced plates. 
I. Structural model of the reinforced medium // Мат. методи та фіз.-мех. поля. – 
2021. – 64, № 1. – С. 137–148. 



69 

 
МОДЕЛЮВАННЯ ТЕРМОПРУЖНОПЛАСТИЧНОГО ДЕФОРМУВАННЯ АРМОВАНИХ ПЛАСТИН. 
II. ПОСТАНОВКА ЗАДАЧІ ТА МЕТОД РОЗВ’ЯЗУВАННЯ 
 
Сформульовано зв’язану початково-крайову задачу термопружнопластичного де-
формування гнучких армованих пластин. Можливий слабкий опір таких кон-
струкцій поперечному зсуву враховується в рамках теорії Амбарцумяна. Гео-
метрична нелінійність враховується у наближенні Кармана. Температура по 
товщині пластин апроксимується поліномами різних порядків. Розв’язок сфор-
мульованої двовимірної задачі будується з використанням явної чисельної схеми. 
Досліджено динамічну термопружнопластичну поведінку плоско-перехресно і 
просторово армованих склопластикових і металокомпозитних пластин, зги-
нальних під дією повітряної вибухової хвилі. Показано, що для адекватного визна-
чення температури в таких конструкціях її необхідно апроксимувати поліно-
мами 6–7-го порядків по товщині пластин. Продемонстровано, що відносно тонкі 
композитні пластини нагріваються більше, ніж відносно товсті при однакових 
максимальних значеннях інтенсивності деформацій в зв’язуючому. Рівень нагріву 
армованих конструкцій незначний: для склопластикових пластин приріст тем-
ператури становить 2÷18°С, а для металокомпозитних конструкцій – 30°С. То-
му динамічний розрахунок склопластикових пластин при дії навантажень типу 
повітряної вибухової хвилі можна проводити без урахування теплової дії при 
відсутності додаткових джерел тепла немеханічного походження. При розра-
хунках металокомпозитних пластин необхідно враховувати теплову дію, але 
термочутливість можна не враховувати. 

Ключові слова: гнучкі пластини, плоске армування, просторове армування, дина-
мічний згин, теорія Амбарцумяна, термопружнопластичне деформування, 
навантаження вибухового типу, явна числова схема. 
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