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MODELING OF THERMOELASTOPLASTIC DEFORMATION
OF REINFORCED PLATES.
Il. STATEMENT OF THE PROBLEM AND METHOD FOR SOLUTION

A coupled initial-boundary value problem of thermoelastoplastic deformation of
flexible reinforced plates is formulated. The possible weak resistance of such
structures to transverse shear is taken into account within the framework of the
Ambartsumian theory. Geometric nonlinearity is taken into account in the von
Kadrman approximation. The temperature over the thickness of the plates is appro-
ximated by polynomials of different orders. The solution to the two-dimensional
problem is constructed using an explicit numerical scheme. The dynamic thermo-
elastoplastic behavior of plane criss-cross and spatially reinforced fiberglass and
metal-composite plates, bending under the action of an air blast wave, is investi-
gated. It is shown that in order to adequately determine the temperature in such
structures, it must be approximated by polynomials of the 6—7th orders over the
thickness of the plates. It is demonstrated that relatively thin composite plates are
heated to a larger extent than relatively thick ones at the same maximum values of
the intensity of deformations in the binder. The heating level of reinforced structu-
res is insignificant: for fiberglass plates, the temperature increment is 2+18°C, and
for metal-composite structures, it is 30°C. Therefore, the dynamic calculation of
fiberglass plates under the action of a load such as an air blast wave can be carried
out without taking into account the thermal effect in the absence of additional heat
sources of non-mechanical origin. In calculating the metal-composite plates, it is
necessary to take into account the thermal effect, but the thermal sensitivity can be
ignored.

Key words: flexible plates, plane reinforcement, spatial reinforcement, dymamic
bending, Ambartsumian’s theory, thermoelastoplastic deformation, explosive-type
load, explicit numerical scheme.

This paper continues the study published in [24], where a numerical-ana-
lytical structural model of thermoelastoplastic deformation of a fiber-reinfor-
ced material is developed using the constitutive equations of the theory of
plastic flow for the components of the composition. In this case, the loading
surfaces of the materials of the composition are assumed to be depend not
only on the parameters of reinforcement, but also on the temperature. The
structural model of a composite material (CM) proposed in [24] is focused on
the use of explicit numerical schemes for solving coupled problems of thermo-
elastoplasticity.

The present study is devoted to the formulation of the coupled problem
of thermoelastoplastic bending deformation of CM-plates, taking into account
their possible weak resistance to transverse shears, to the development of
explicit numerical methods for integrating the corresponding initial boundary-
value problems, and to a discussion of the calculation results. A review of the
relevant publications is given in [24].

1. Simulation of thermoelastoplastic deformation of a flexible reinfor-
ced plate. Let us consider the bending behavior of a CM-plate with a thick-
ness 2h (Fig. 1), refereed to a Cartesian rectangular coordinate system
Ox,x,x,: Ox x, is a middle plane; the axis Ox; is transverse (|a;| < h). The

structure can be reinforced plane criss-cross (Fig. la) or spatially (Fig. 1b)
with N families of fibers in arbitrary directions with densities of reinforce-
ment o, , 1<k < N.In the direction Ox,, the structure of the reinforcement

is quasihomogeneous.
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To simulate a possible weak resistance of a flexible CM plate to transver-
se shear (for example, in cases of plane criss-cross reinforcement structures or
in the case of a spatial reinforcement structure shown in Fig. 1b, under shear

in a plane Ox,x;), we use Ambartsumian’s theory [2, 20, 23], and the geomet-

ric nonlinearity of the problem we take into account in the von Kérman ap-

proximation.
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Fig. 1. Element of a CM-plate: a) — plane orthogonal reinforcement; b) — spatial reinforcement

in four directions.

Remark. It was shown in [21] that in the case of elastoplastic deformation
of thin-walled structural elements with arbitrary spatial reinforcement struc-
tures, it is not possible to construct an explicit “cross” scheme using Ambart-
sumyan’s theory, if tangential external forces on the face surfaces cannot be
neglected. Obviously, this result is carried over to the more general case of
thermoelastoplastic deformation of CM plates. Therefore, in this study, we

consider only partial cases of spatial
structures of reinforcement and load
of CM-structures, in which an expli-
cit numerical scheme of the “cross”
type can be used. Further, we assu-
me: a particular, but practically im-
portant case of loading of a plate,
when external tangential forces on
the face surfaces can be neglected, is
investigated; the structure of spatial
reinforcement has a following pro-
perty: if a fiber of a certain family

has an oblique direction 0<0, <m/2
(see (41)! and Fig. 2), then there will

certainly be another family of ob-
lique fibers with reinforcement pa-

rameters 0, =n-0,, @, =,
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Fig. 2. Local coordinate system connected
with a fibre of the k -th family.

0, =0, 1<k, m<N, m=#k, made from the same material as fibers of

m

the k-th family. Structures with such a feature of reinforcement are often
encountered in practice [17]. In particular, these include the reinforcement
structure shown in Fig. 1b, as well as structures with orthogonal spatial rein-
forcement [8, 19] or structures with plane criss-cross reinforcement (Fig. la).

1 In the present work, for the sake of convenience, we continue the enumeration of

formulas originated in [24].
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According to this remark, in the framework of Ambartsumian’s theory,

the averaged strains ¢, of the composition and displacement of points U, of

the CM-plate are approximated by the formulas [2, 20, 23]:

x
g;(t,r) = %(@uj + 8jui) — x30,0,w + ﬁ(i’)hz - x%)(@is% + 6j8?3) +
1
+§6iw6jw,
2 9

_x . .
h—gsgg(t7x)7 X={x‘1,x2}, r={x1,x2,x3}, 1,7 =1727 (51)

Sig(t,l‘) = 5

2x
U,(t,r) = u,(t,x) - x,0,w+ ﬁ@h2 - xg)s% ,

Us(t,r) =w(t,x), xeQ, |xy/<h, t=t, =12, (52)
where wu,; are displacements of points of the reference plane (x; =0) in

tangential directions x,; w is deflection; 8?3 denotes a deformation of
transverse shears at points of the reference plane; 0, is operator of partial
differentiation with respect to coordinate xa;; Q is the domain occupied by

the structure in the plan; t, denotes the initial moment of time ¢. In

equalities (51) and (52), the functions u;, w and 8?3,
In this work, the mechanical behavior of a CM-plate as a flexible thin-

walled system is simulated. Therefore, the transverse normal stress c44(%,r)

i =1,2, are unknown.

with an accuracy acceptable for practical applications can be approximated as
follows [6]:

of (%) ~ o/ (%) o) (t,%) + o) (t,%)
2h s 2 ’
xeQ, |x;|<h, t>tg, (53)

Gys(t, 1) = 04(t, 1) =

where o4 (t,x) = 044(t,x,th) are the normal stresses on the lower (—) and

upper (+) face planes, which are known from the force boundary conditions.
Constitutive matrix equation (37) is a system of six algebraic equations.

According to correspondence relations, similar to (30), from the third equation

of this system at a discrete time t, we determine the rate of transverse

linear deformation of the composition:

n n 1 n 6 non n
€g3 = &4 27(63—2(1—631)b31 Si—p3j, (54)
by i=1
where b;;, p;, ©=1,2,...,6, are the elements of the matrix B and the column
vector p in equality (37); the derivative &, is known from (53) after differen-
tiation with respect to t. The strain rates &, on the right-hand side of equa-
lity (54) are obtained after differentiation of equalities (51) with respect to
time, ie. they are expressed in terms of two-dimensional functions w, w, u,
and égg, (=1,2.
The kinematic relations (51) and (52) should be supplemented by two-
dimensional equations of motion of the flexible plate and the corresponding

initial and boundary conditions, which are commonly known [2, 23], so we will
not present them here (see equalities (25)—(29) in [20]).
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If the mechanical and thermophysical problems of thermoelastoplastic
deformation of reinforced plates are coupled, it is additionally necessary to
use the heat balance equation for CM [7, 9]:

pc® = —divq + W(t, ), (55)

where

o |~

N N
p= Z ('Okpk’ c Z OJkapk, 17)(1,‘,1‘) = Gijéij ’ (56)
k=0 k=0

pi,» p is the volumetric density of the k-th component of the composition
and CM; ¢, , c is the specific heat of the same materials; w denotes a power
density of mechanical dissipation of CM; q is the averaged vector of the heat

flux in the composition; c.., €. are averaged stresses and strains in the CM;

i) “ig
® is a temperature of CM; the overdot denotes the operation of differentia-

tion with respect to time t; the quantity , is defined in (38). The relation-
ship between q and ® is given by the Fourier law (see matrix equality (48)
with regard for (49) and (50)).

We assume that on the face surfaces of the plate the combinations of
heat boundary conditions of the second and third kind are specified [11]:

a$P(t,x) = g4(t, x,h) = o (@ - 6)

+q(¢t,x),
x3:h

00

(= — _ (= -) (=
Q3)(t,x)=Q3(t,X,—h)—_0‘ )(G)_@( )|x3:_h+qw)(t7x)7 XEQi t2t07

(57)

(£)

where a'~’ are the coefficients of heat transfer from the side of the upper (+)

and lower (—) face planes; 0'*) are ambient temperatures from the side of the

same surfaces; qg) are given projections onto the axis Ox; of external heat
fluxes through the same surfaces.
On the end face the general heat boundary conditions can be specified

Qn +qn, =0, (0-0,)+q.(t,r), xel, |x;|<h, t2>t,,
n, = cosp, n, = sinf, (58)

where a,, @; s q:o have the same meaning as similar values in (57), only on
the end face; I' is a contour that bounds the domain Q; B denotes the angle
that specifies the direction of the outer normal to I'. In equalities (57) and
(98), q;, i1 =1,2,3, are the components of the vector q (see (49)). In addition
to boundary conditions (57) and (58), at the moment of time ¢, it is necessary
to prescribe the initial condition for the temperature ©.

To reduce the dimension of Eq. (55), we approximate the temperature ©®
of a plate by a polynomial of the M -th degree in the transverse coordinate
Xy

M
ot -0" =Y 0,txx;, xeQ ENES - (59)
(=0

where ©,, 0 < /¢ < M, are the required two-dimensional functions; 0" = const

is a temperature of the natural state of the CM-structure. For M =2, we ob-
tain the simplest version of the method of additional boundary conditions [12].
According to the remark made, for the considered structures of
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reinforcement, the axis Ox; coincides with one of the principal directions of
the thermophysical anisotropy of the CM, therefore

Ag; =h;5 =0, 1=12, (60)
where }»ij are the effective coefficients of thermal conductivity of the

composition (elements of the 3 x 3-matrix A in (48) and (49)).
Substituting the expansions (59) into equalities (57) and using Fourier’s
law (48) with regard to (60), after elementary transformations we obtain

M
=S DR +haD)O,(tx) = a7 (0 - 0°) + ¢0) (¢, x),
(=0

M
D RO + hal)O, (k%) = a0 - 0°) - ¢t %),
£=0
xeQ, txt, (61)
where

(£) =
hag = hag ©=0(t,x,th)’ (62)

k%) are coefficients of transverse thermal conductivity of CM on the upper
(+) and lower (—) face surfaces. Relation (62) is true in the case of the thermal
sensitivity of the coefficient Aiyy =2X4(x;0), in the opposite case
kf{;)) = ké})) = Ahg3(x), in view of the homogeneity of the reinforcement

structure across the thickness of the plate.
The system of two equations (61) with regard for (60) and (62), contains

M +1 unknown two-dimensional functions ©,(t,x), 0 < ¢ < M. To close this
system, we will use the generalized Galerkin method, ie. we integrate the
heat balance equation (55) over the thickness of the plate with weights xj",
0<m <M -2, then we obtain

pU™ = -3,Q™ - 0,Q™ - Q™ + W™ (t,x),
xeQ, t>=t, 0<ms<M-2, (63)

where

h
U™(t,x) = j U(t, r)xl da, ,
-h

h h
_ h _
Qém)(t,x) = j 05q5(t,r) s dxy = q3(t,r)x§”|_h - mj qs(t, r)xy" ! dx, =

“h “h

=h"[q{"” - (1) ¢} ] - m@{™ V¢, x),

h
Qim)(tx) = .[ qz(tyr)xgn dx3’ Z = 1’2’3’
-h
t oU
W(m)(t,x) = J;lw(t,r)xgn dx3, % =c(9), (64)

U is the specific internal energy of the CM.
The analysis of experimental data shows [3, 14] that with an accuracy
acceptable for practical applications in a sufficiently wide temperature range,

the heat capacity of the k-th component of the composition ¢, can be appro-

ximated by a square parabola of the difference ® — ©° (more complex depen-
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dencies ¢, (® - ®0) can also be used, this is not essential). Then, according to

the second equality (56), the specific heat capacity of the composition in the
case of taking into account the thermal sensitivity can be represented in the
form

e(x;0-0") = Cy(x) + C,(x)(© - 0°) + C,(x)(® - 0°)*, xeQ,  (65)

where

N
C,(x) = Z P (x), 1=0,1,2, (66)

1
pf

o)

. are the expansion coefficients of the specific heat capacity of the k-th

component of the composition ck(®—®0) according to a formula analogous
to (65).
From the last formula (64), taking into account (65) and (66), we obtain

C() C()

U(x;0-0°) = U, +Cy(x)(0-0°) + -—(0-0°) + 2—(©-0"),

(67)
where U, is a value independent of temperature. Since the temperature ® of

CM is of interest below, and not the internal energy U, the value U,

corresponding to the temperature ®° can be given arbitrarily, for example,
for convenience, equals to zero.

After substitution (67) into the first equality (64), with regard for the
expansion (59), we obtain

M C M M
COZH(i+m)®i+7IZZH(i+j+m)®i®j+
i=0 1=0j=0
C2 M M M ] ) (m)
?ZZZH(1+]+€+m)®i®j®Z=U (t,x),
i=0 j=0 (=0
xeQ, t>t, 0<m<M-2, (68)
where
H(s) = ﬂh —(-1)*]. (69)
s+1

If at the current moment of time t from any reasonings the values of

the functions U™ are known, then the system of nonlinear (in the case of
accounting the thermal sensitivity) equations (61) and (68) with regard for

(62) and (69) will be closed with respect to the functions @,(t,x), 0< /¢ <M.

To obtain the boundary conditions corresponding to the two-dimensional
heat balance equations (63), it is necessary to integrate equality (58) over the

thickness of the plate with weights x;'. Then, taking into account notations
(64) and expansion (59), we obtain

M
Q™n, +@Q™n, -0, Y H(t + m)®, = -a,Hm)(O], -0°) + QU (¢,x),

(=0
xel, t>t, 0<m<M-2, (70)
where
h
Q;m>(t,x)zjq;(t,r)x$dx3, 0<m<M-2. (71)

-h
57



The initial condition for equation (63) has the form

U™(t,,x) =UM™(x), xeQ, 0<m<M-2, (72)

where U(()m) are the known two-dimensional functions, which are calculated
by the first formula in (64) with regard to the expression (67), where it is
necessary to replace ® by the known initial temperature @3(1‘) of the plate.

From the closed system of two-dimensional equations (61), (63), in view
of (64), (68), we obtain that the number M in the temperature expansion (59)
should be at least two (M 2> 2) if the thermal boundary conditions on the face
surfaces of the plate are taken into account (see (61)).

2. Method of calculation. As noted in the Introduction and in [24], to
integrate the problem we will use explicit step-by-step numerical schemes,

determining the solution at discrete times t,, n =0,1,2,.... In this connection,

we assume that, for t =t in addition to (32), the values of the following

m?

functions are already known:

Uy () =y, %), W) ZW(E,, %), Ty (X)=7,(6,, %), 0y(0)=0,(t,,,1),

m n

n
o%)(x) = o%(t,,,x), UT(x)=U"(t,,x), q,(r)=q,t,,r),

n n m

0,(x) = 0,(t,,x), ¢'x)=q7(t,,x), V) =c(t,,1),

S

m m
e ()= (t,,,0), 1=y, r), £=12 4,j=123 0<k<N,

m=n-1n, 0<r<M-2 0<s<M, xeQ, |x;|<h, (73)
where

v,(t,%) = %8?3 —ow, =12, (74)

are functions introduced for the convenience of presentation [20].
The derivatives with respect to time in the mechanical component of the
investigated coupled thermoelastoplastic problem will be approximated by

central finite differences on a three-point template {tn_l,tn,tn+1} , Which
enables us to develop an explicit numerical scheme. Replacing the second time
derivatives of the kinematic variables u; and vy, in the equations of motion of

a flexible CM-plate by their finite-difference analogs and taking into account
(52) and notations similar to (73), we obtain [20]

2hp n+l n  n-1 2 n 2 n n n n
?(w—Zw—k wj=Zaf(F[?)JrZFMawj—i—cgg)—c(g;),

=1 j=1
2hp n+1 n  n-1 n n n n ”7 n
?(ui—Zuﬁ u, =Za]. F~F30,w|- (3?—0(33) 0, w,
j=1
2h3p n+l n n-1 2 n n
: (yi—2yi+ yij:26jMij—Fi3, i=1,2, xeQ, n=12,..., (75)
SA ]‘:1
where
h h

= [ oyxyday, 4,5=1,2, (76)
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A is a time step; the density p is determined in (56). The volumetric forces in
the CM-plate are not taken into account.
Using (76) and assumptions (73) at a given time ¢

M,
J
sides of equalities (75). Hence, taking into account the corresponding boundary

n+l n+l n+l
conditions [20], the values of the unknown functions w , u;, y, at the next

we can calculate all

n’?

force factors F,., F, and external loads 6(3? entered into the right-hand

i T3

moment of time t can be calculate from equations (75) by explicit scheme.

n+1?
Then, using formulas (51), taking into account (74), we determine the avera-

n+l

ged deformations ¢, of the composition.

n-1
According to (51) and (73), the deformations g; are already known at

t =t, ,, therefore, based on the formulas of numerical differentiation with

n

respect to t, using formulas (54), we can also calculate the strain rates éi]. at

each point of the plate at the time ¢, .
Further, by formulas (42), taking into account the relations (30), we de-

n
termine the deformation rates €, of the components of the composition, and

from relations (35), taking into account (36), we determine the stress rates
n
6, .

Using approximations (43) taking into account (73), we calculate the

n+l n+1
stresses ©, and strains €, in the k-th component of the composition, then
by formula (46), taking into account (44), (45), and (47), we determine the
n+l

value of the Odquist parameter x(k) in the same material at the next moment

of time ¢t ;.

n

) at ¢t = t, depends on g, ,

According to (31), the switching parameter c
therefore, at the current instant ¢ , the constitutive relation (35) (or (29))

must be iteratively refined using the method of variable parameters of elasti-
city [18]. The performed calculations show that in order to obtain an accuracy
acceptable in practical applications, it is sufficient to use two iterations at
each time step.

To integrate the thermophysical component of the problem under consi-
deration, we will also use an explicit scheme, but on a two-point template in

time {tn,tn+1}. Then the heat balance equations (63), taking into account the

notations similar to (73), take the form [15]

n+1l n n n _n n
%(UW— U“")) = -0, QM- 0, QM- M+ W,
xeQ, 0<m<M-2, n=0,12.... (77)

Based on formulas (64), taking into account assumptions (73), at the

current moment of time ¢ , we can calculate the right-hand side in (77), and

then by explicit scheme, with regard for (70)—(73), we determine the values of
n+l

the functions U™ at the next moment of time t,.- Further, considering at
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t =t,,; equations (61) and (68) (in which the right-hand sides are already

known) and taking into account (62) and (69), we determine the expansion
n+1

coefficients of temperature ®,(x), 0 < ¢ <M, in formula (59). If the thermal
sensitivity of the materials of the composition is taken into account, system
(61), (68) is nonlinear. For its linearization, can be used the method of variable
thermophysical parameters, similar to the method of wvariable elasticity
parameters [18]. Calculations have shown that for the convergence of such an
iterative process with an accuracy acceptable for applications, it is sufficient
to use two or three iterations.

According to the structure of the left-hand sides of equations (75) and
(77), to start calculations by the proposed numerical scheme it is necessary

m m m

0
preliminarily to know the functions w, u;, y;, m =0,1, and U . In this

0 0 0 0
case, the functions w, u;, y; and U(Z), 0<¢{<M-2, are determined from

the initial conditions (see (72) and (28) in [20]). If at ¢t = ¢, the CM-plate is at
0 0
rest in the natural state and there are no external loads (6(3?— 6(3_3) =0), then
1 1 1
using the Taylor formula we obtain w~=u, =0, y; =0, =12, accurate to
within A®.

Replacing derivatives 0,(+) in (75) and (77) by their finite-difference
analogs and adding to these equations the necessary boundary conditions (see
(70) and (71), as well as (29) in [20]), we finally obtain an explicit step-by-step
scheme of the numerical integration of the coupled problem of
thermoelastoplastic deformation of a flexible CM-plate.

3. Discussion of the calculation results. Let us investigate the
thermoelastoplastic dynamic behavior of flexible plates with a thickness

2h = 2cm. The domain occupied by them in the plan is Q: |x;|<a/2,
|x,| <b/2, a=3b. The edges of the structures are rigidly fixed: w =u; =0,
v; =0, xeI', t=>t, (see (52), (74), (75)). Until the initial moment of time
t, = 0, the plates are in the state of rest (w=u; =0, v, =0, xeQ, t=t,
1=1,2) at the temperature of the natural state (® = e’ = const, xe€Q),
|xs| <h, t=t;). At the initial time t =t,, the structure are loaded from
below by the pressure p(t) generated by the air blast wave [22]

t/t 0<t<t

RIS EECE K U RS
where

o =-1In(0.01) /(t,;, — tmax) > 0, tin = toax (79)
t,.x 1S the moment of time when p(t) reaches the largest value p, . ; t.., is

the moment of time above which it can be neglected p(t) in comparison with
Prax )=0.01p_.. ) Based on the

experimental data [22], in the calculations we take ¢ . =0.1ms and

(for example, formula (79) is valid for p(t ;.

tin = 2ms.
Through the face surfaces (x; = £h) convective heat exchange with the

. + oy .
environment (qfx;) =0) occurs under conditions of natural convection
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(oc(i) =30 W/(m? - K) [13]) at an air temperature equals to the temperature of

the natural state of structures: @S) =0 =20°C (see (57)). Boundary

conditions of the first kind are given on the end surfaces of the plates, and
the temperature of the structures is maintained equal to the temperature of

their natural state: o, — o, @) = ®" (see (58)).

The plates are made of magnesium alloy VT65 [3] and reinforced with
steel wire U8A [10] (metal composition) or epoxy binder [16] reinforced with
glass fibers [10] (fiberglass). Elastoplastic deformation of the components of
the composition under active loading and constant temperature ® is descri-
bed by a bilinear diagram

_ [EW, le| < e
sgn(e)o + EF) (e —sgn(e)el?), |e| > ¢
wherec, € are axial stress and strain; Eék) = Eék)((*)) is modulus of linear

hardening of the material of the k-th component of the composition;

(k)
GS

= G(sk)(®) is the yield point of the same component at a fixed temperature
(® = const). The physical and mechanical characteristics of the materials of
the composition are given in the Table 1, where ¢ = \/T/P is the speed of
sound, a = 2\ /(cp) is the doubled thermal diffusivity, and in parentheses is

indicated the temperature (©® ),°C, at which the value of the corresponding
characteristic is determined. The dependences of all physical and mechanical
characteristics on temperature ©® in the calculations were approximated
linearly, according to the data presented in the Table 1.

To carry out calculations in spatial variables x; and x, a uniform grid
Ax; = Ax, =b /100 was introduced, and the time step A was chosen equal to
0.25 ps. We considered relatively thin (b=1m, 2h /b =1/50) and relatively
thick (b =20cm, 2h /b =1/10) CM-plates, for which

A Ax,)?
i=40krr1/s, %=80km/s, ﬂ:‘lOOmZ/s for b=1m,
A A A
A Ax,)?
% = 8km/s, % _ 80km/s, zl) ~16m?/s for b=20m. (80)

To ensure the stability of the explicit scheme (75), it is necessary to
satisfy the Courant conditions: Ax, /A >c¢ and 2h/A>c [1], and for the

stability of the explicit scheme (77), it is necessary that (Ax1)2 /A>a [15]

According to the numerical data obtained in (80), these ratios significantly
exceed the corresponding values for ¢ and a for the components of the
compositions presented in the Table 1. Hence, similar necessary conditions for
the stability of the explicit scheme (75) and (77) will be fulfilled with a
reserve for the considered compositions.

Note that scheme (77) has the first order of accuracy with respect to A
[15], however, the smallness of the time step (A = 0.25 ps), which guarantees
the stability of the entire numerical scheme as a whole (see (75) and (77)),
provides a quite acceptable for practical applications accuracy of calculation.

Reinforcement structures of CM-plates are homogeneous: 6, = const,

¢, =const, @, =const, 1<k <N (see (38), (41), (49) and Fig. 2). Two sche-

mes of reinforcement are considered: 1) plane orthogonal reinforcement
(Fig. 1a), when two (N = 2) families of fibers are laid in directions x, and x,

with densities of reinforcement o, = 0.1 and o, = 0.3, respectively; 2) spatial
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reinforcement in four (N = 4) directions (Fig. 1b), when the first two families
of fibers are still laid in the directions ax; and x,, and the third and fourth
ones are oblique in the plane Ox,x; along the directions that are specified by
the angles (see (41) and Fig. 2): 6, =n/4, 0, =3n/4, ¢; =¢, =n/2 (in
Fig. 1b angle 0 = n/4). In the second structure, the densities of reinforcement
are as follows: o, =0.1, 0, =0.2, w; = 0, = 0.05. In both schemes of reinfor-
cement, the total fiber consumption is the same.
Table 1. Physico-mechanical characteristics of material components [3, 10, 16].

Characteristic | Epoxy resin | Glass-fibres | Magnesium Still wire
of material material alloy VT65 USA
o kg/m’ 1210.0 (20) | 2520.0 (20) 1800.0 (20) | 7800.0 (20)
1208.0 (40) | 2519.6 (80) 1796.2 (100) | 7791.8 (100)
2.8 (20) 86.8 (20) 43.0 (20) 210.0 (20)
E , GPa
2.3 (40) 86.3 (80) 38.5 (100) 195.0 (100)
N 0.33 (20) 0.25 (20) 0.330 (20) 0.3 (20)
0.333 (40) 0.254 (80) 0.334 (100) | 0.305 (100)
20 (20) 4500 (20) 267 (20) 3968 (20)
c,, MPa
18 (40) 4400 (80) 219 (100) 3971 (200)
1.114 (20) 6.230 (20) 0.379 (20) 6.973 (20)
E,, GPa
0.783 (40) 5.168 (80) 0.367 (100) | 5.014 (200)
0.243 (20 0.89 (20 117.23 (20 42.7 (20
% W/(m - K (20) (20) (20) (20)
0.240 (40) 0.86 (80) 121.42 (100) | 41.7 (100)
o ., | 681(20) 2.5 (20) 20.9 (20) 12.3 (20)
a-10°, K
70.3 (40) 2.6 (80) 22.6 (100) 13.2 (100)
1.54 (20) 0.800 (20) 1.032 (20) 0.485 (20)
¢, kJ/(kg - K)
1.60 (40) 0.839 (80) 1.054 (100) | 0.488 (100)
& m/ 1521 (20) 5869 (20) 4888 (20) 5189 (20)
c,m/c
1380 (40) 5852 (80) 4635 (100) | 5003 (100)
— 2.60-1077 (20)|8.80-1077 (20)| 1.27-107*(20)| 2.26-107° (20)
a,m”/c
2.48-1077 (40)| 8.14 -1077(80)| 1.29-107*(100[2.19-107° (100)

In order to clarify the question of choosing the value M in expansion
(59), at which an acceptable accuracy of calculations of temperature ® is

ensured, the dependences of the maximum values O . (M) = maxO(t,r; M)
t,r

on M were investigated (|x;|<a/2, |x,|<b/2, |x;| <h, calculations were
carried out over a time interval 0 <t <0.1s). In Fig. 3 shows the graphs of
these dependences for relatively thin (b =1 m): fiberglass plates (curves 1
and 2), calculated at p,_ ., =4 MPa (see (78)), and metal-composite structures
at p,.. =10MPa (curves 1' and 2'); and also for relatively thick (b =20 cm)
fiberglass plates at p .. =7MPa (curves 1" and 2"). At such loading levels of

CM-structures, plastic deformations arise in them. The value M =0 in Fig. 3
conditionally corresponds to the case of complete neglect of the thermal
=0" =20°C for M =0. The
numbers of the curves in Fig. 3 coincide with the numbers of the structures
of reinforcement.

effect, therefore it is assumed that O . =
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The behavior of all curves in Fig. 3 demonstrates that in passing from va-

lue M =6 to value M =7, the increment of value ®_.  is practically negli-

gible. At values M > 8, the linearized system of equations (61), (68) (with ta-
king into account (69)), from which the temperature expansion coefficients
(59) are calculated at a given time, becomes ill-conditioned. Therefore, the de-
pendences ©_. (M) at M >8 diverge, g oC
and the corresponding segments of the F
curves in Fig. 3 are not shown. 48 |
When carrying out practical calcu-
lations, it is generally accepted that it is
quite sufficient to approximate the tem- g
perature across the thickness of thin- 36 f
walled structures linearly (M =1) or 32f /
with a square parabola (M = 2). Compa- g | e
rison of the ordinates of the points on % w | o
N 24 12
the curves in Fig. 3 for values M =1 or F
M =2 and for M =17 indicates that in T, s . s s M
cases of elastoplastic dynamic deforma-

max
max’

L

44 [

40 |

[

Fig. 3. Dependence of the maximum

tion of flexible CM-plates, the linear and value of temperature on the or-
quadratic temperature distribution in der of its approximating polyno-
the transverse direction in them leads to mial in transverse direction.

a significant underestimation of the lar-
gest calculated temperature values. Hence, in order to carry out adequate cal-
culations of the temperature fields under such deformation of thin-walled
CM-structures, it is advisable to approximate the temperature along their
thickness by polynomials of the 6th or 7th orders (see (59) for M =6 or M=7).
To obtain a more visual representation of the difference between the
temperature fields calculated in the considered CM-plates for M =2 and
M =17, in Fig. 4 shows the oscillations of the maximum values of temperature
0, (t;M) = maxO(t,r; M) as a function of time t. The curves in Fig. 4a are
r

calculated for thin fiberglass structures, in Fig. 4b — for relatively thick fiber-
glass plates, and in Fig. 4c — for relatively thin metal-composite structures. In

order not to clutter up the Fig. 4, it shows the dependences ® (t; M) only for
CM-plates with 2D-structures of reinforcement. Here, solid curves 1 corres-
pond to the case M =2, and dashed lines 2 correspond to the case M =7.
Comparison of the behavior of curves 1 and 2 in Fig. 4 demonstrates the fact
that the calculation of the dependence ® _(t; M) with the simplest (quadratic,
M =2) approximation of temperature only qualitatively (and very approxi-
mately), but not quantitatively, enable us to calculate the oscillations of the
largest values ® in the considered CM-structures.

The behavior of the curves in Fig. 4a and Fig. 4c indicates that the
maximum values of the temperature in relatively thin CM-plates are achieved
at times (in Fig. 4a at t = 63ms, and in Fig. 4c at t = 25ms), which are much
larger than the time of action of an external short-term load, i.e. much larger
than t_, = 2ms (see (79)). The behavior of the curves in Fig. 4b shows that in
the case of relatively thick fiberglass structures, the dependences ®_ (t; M) at
different values M reach their maximum values at the first oscillation, ie. at
times (in Fig. 4b at ¢t = 0.3ms) close to t,, = 0.1ms (see (78)). A qualitatively
similar behavior of the dependences of ® _(t;M) at the values M =2 and
M =7 also takes place in the case of relatively thick metal-composite plates
(at p.x = 90MPa); therefore, the corresponding curves in Fig. 4 are not
shown.
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Fig. 4. Time dependences of the highest temperature values: a) in a relatively thin fiber-
glass plates, b) in a relatively thick fiberglass plates, and ¢) in a relatively thin me-
tal-composite structures, calculated using different approximations of the tempera-
ture field in the transverse direction.

In Fig. 5 are shown the oscillations of the highest values of the deforma-

tion intensity 810) of the binder of the investigated compositions (sgg)(t) =
= max e (t,r), |, |< a/2, |xy|<b/2, |xs] < h). The curves in Fig. 5a — Fig. 5¢
r

are calculated for the same CM-structures as in Fig. 4a — Fig. 4c, respectively.
The numbers of the curves in Fig. 5 coincide with the numbers of the struc-
tures of reinforcement, as in Fig. 3. All curves in Fig. 5 (except for curve 2' in
Fig. 5d) were calculated for the value M =7 (see (59)).

Comparison of curves 1 and 2 in Fig. 5a and Fig. 5c¢ reveals that in
relatively thin fiberglass and metal-composite plates, replacing the traditional
2D-structure of reinforcement (see Fig. la) with the spatial structure of 4D-
reinforcement (see Fig. 1b) is ineffective, as if it leads to an increase of the
highest values of deformations of the composition components. The behavior
of the curves in Fig. 5b indicates that, in relatively thick fiberglass structures,
such a replacement of structures of reinforcement enable us to reduce the
maximum values of the intensity of deformations of the binder material by
two times. Though, at the same time, according to the behavior of curves 1”
and 2" in Fig. 3 for M =17, a structure with a 4D-structure of reinforcement
heats up a little more than a plate with a 2D-structure. However, the
difference in values is insignificant and is less than 1°C.

Additional calculations showed that, in relatively thick metal-composite
plates (at p,,, =50 MPa), the indicated replacement of the reinforcement
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structure is also ineffective. This is explained by the fact that a relatively
“rigid” metal binder resists lateral shears quite well even in thick metal-
composite structures with a traditional 2D reinforcement structure.
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Fig. 5. Time dependences of the maximum value of the intensity of deformation of a
binder: @) in a relatively thin fiberglass plates, b) in a relatively thick fiberglass
plates, and ¢), d) in a relatively thin metal-composite structures with 2D- and 4D-
reinforcement structures, respectively.

Curves 2, 2', and 2" in Fig. 3 lie above curves 1, 1’, and 1", respectively.
Hence, in all the cases considered above, replacing a 2D-reinforcement
structure with a 4D-structure leads to an increasing the maximum values of
temperature in the structure. This is especially pronounced in relatively thin
fiberglass plates (see curves 1 and 2 in Fig. 3). It was noted in [19] that if the
thermal conductivity of fibers is much greater than the analogous value of
the binder, as is the case in fiberglass composites (see Table 1), then the use
of spatial structures of reinforcement should contribute to more efficient heat
removal from a thin-walled structure in comparison with traditional plane
criss-cross structures. The behavior of the curves in Fig. 3 indicates that in
the case of dynamic inelastic deformation of plates, replacing the 2D-structure
of reinforcement with a 4D-structure does not contribute to more active heat
removal from such CM structures.

The behavior of the curves in Fig. 4a — Fig. 4c and Fig. 5a — Fig. 5c is
qualitatively similar. Namely, in Fig. 5b, the maximum value of the

dependence sgg)(t) is reached at the first oscillation at t = 0.3 ms; similarly in

Fig. 4b, the maximum value of the dependence ©® (t) is reached at the first
oscillation at the same time instant, i.e. approximately when the external load
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reaches its highest value (see (78) and (79)). The maximum values of the
quantities ®_ and gig) in Fig. 4a, Fig. 4c, Fig. 5a and Fig. 5c are reached at

times significantly exceeding t_;, =2ms, ie. after the termination of the
external short-time load. In this case, the moments of time at which the

maximum values of the quantities ® _, and 852) are reached, do not coincide.

The fact that in the case of nonlinear dynamic deformation of thin-walled
CM-structures, deformations can reach their maximum values much later
than the time of the termination of the action of an intense short-term load, is
discovered for elastic shells in [6].

Comparison of curves 1 in Fig. 5a and Fig. 5b shows that the maximum
values of the deformation intensity of the binder in fiberglass plates of
different relative thicknesses with a 2D reinforcement structure are
comparable with each other. However, a comparison of the behavior of curves
1 and 1" curves in Fig. 3 at M =7 indicates that a relatively thick structure
(see curve 1") heats up significantly less than a relatively thin one (see curve
1). This fact is explained by the fact that in a relatively thick CM-structure,
the most intense deformation of the components of the composition occurs in
small zones adjacent to rigidly fixed edges, and transverse shear deformations
dominate in these zones. In relatively thin CM-plates, the main part of the
structure (remote from the supporting edges), in which bending deformations
dominate, is deformed most intensively. Therefore, in relatively thin plates,
mechanical energy as a whole is more actively dissipated into thermal energy
than in relatively thick structures, even at comparable levels of maximum
deformations in their components of the composition.

All the results discussed above were obtained with taking into account
the thermal sensitivity of the materials of the composition. Calculations
performed without taking into account the thermal sensitivity (when the
values of the characteristics of the materials of the composition given in the

Table 1 at the temperature of the natural state ©° =20°C are used) show

that the dependences ©® _(t) and a(rg)(t), at the same time, visually almost do

not differ from the curves shown in Fig. 3, Fig. 4 and Fig. 5a — Fig. 5c. This is
explained by a small increment of temperature under dynamic elastoplastic
deformation of the considered CM-structures (by only 2+30°C) due to the
action of an explosive-type load. Note that a similar level of heating (about
10°C) is also observed in experiments on shock loading of samples from
homogeneous materials [4, 5].

In view of the low level of heating of the considered CM-structures, it is
advisable to compare the above results with the calculations performed
according to the elastoplastic theory [21], ie. with complete neglect of the
thermal effect. It was established that for the investigated CM-plates, the
results of such calculations for deflections (the corresponding dependences are
not shown) visually do not differ from the calculations performed according to
thermoelastoplastic theory. However, there is some (sometimes significant)

difference for dependencies sg)(t). So, curve 2 in Fig. 5d coincides with curve
2 in Fig. 5c¢ (this is the same curve), and curve 2’ in Fig. 5d was obtained
under the same conditions as curve 2, but without taking into account this
effect. The ordinate of the global maximum point (at t = 1.85 ms) on curve 2’
is less than the same value on curve 2 by 8.8%. Note that the calculation
performed according to the thermoelastoplastic theory taking into account the
thermal sensitivity of the components of the composition, but at M =2 (see
(59)), leads to a dependence 8$)(t) that almost does not differ from curve 2’

in Fig. 5d. Hence, in the case of relatively thin metal-composite plates, neglect
of the thermal effect or the calculation of temperature fields with a rough
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accuracy can lead to a significant (more than 5%) underestimation of the
calculated values of the intensity of deformations of the composition
components. In the case of fiberglass plates, the maximum values of the
intensity of deformations of the components of the composition, obtained with
and without taking into account the thermal effect, practically do not differ.
Therefore, the dynamic elastoplastic behavior of thin-walled fiberglass
structures can be reasonably calculated without taking into account the
thermal effect.

In Fig. 5 was not shown the dependences a(nlf)(t) for fibers of the k-th

family (1< k < N), as if they are qualitatively similar to the curves shown in
Fig. 5 for the bonding material, but have lower values along the ordinate axis.
In particular, for fibers of the second family (k =2), which experience the
(2)

m
times less than for the dependences shown in Fig. 5.

Conclusion. A model of thermoelastoplastic deformation of flexible plates
with arbitrary structures of reinforcement has been developed, which enable
one to take into account the possible weak resistance of such structures to
transverse shears and the connectivity of thermophysical and mechanical
problems. An explicit numerical scheme for integrating the formulated
coupled initial-boundary value problem has been developed. It is established
that the time step is determined from the Courant stability criterion for the
wave equation, and not from the stability criterion of the numerical scheme
for two-dimensional heat balance equations.

It is established that for an adequate calculation of the temperature fields
in CM-plates under their dynamic elastoplastic bending deformation, the tem-
perature in the transverse direction must be approximated by polynomials of
the 6th or 7th orders.

Calculations have shown that under dynamic loading of CM-plates by a
transverse explosive-type load , fiberglass structures are heated up no more
than 2+18°C, and metal-composite structures are heated up no more than
30°C. In this case, relatively thin plates are heated to a greater extent than
relatively thick ones, even with comparable values of the highest values of
the deformation intensities of the components of the composition.

Replacing a plane orthogonal structure of reinforcement (Fig. la) with a
spatial structure of reinforcement (Fig. 1b), while maintaining the total
consumption of fibers in a relatively thick fiberglass plate, enable one to
reduce the intensity of deformation of the binder material by two times,
however, the highest temperature value increases, although insignificantly
(from 1.5 to 2.5°C). A similar replacement of structures of reinforcement in
relatively thin fiberglass, as well as in relatively thin and relatively thick
metal-composite structures is ineffective, as if it leads to an increase in the
maximum values of the intensity of binder deformations and increments of
temperature in CM-plates.

To carry out adequate dynamic calculations of fiberglass plates, flexurally
deformed by a load due to an air blast wave, it is quite reasonable to ignore
the effect of thermal action if there are no additional sources of heating or
cooling of non-mechanical origin.

However, in metal-composite thin-walled structures under such loading,
taking into account the thermal effect is mandatory (although the thermal
sensitivity of the components of the composition can be ignored in this case),
otherwise the calculations can lead to a significant underestimation of the
deformed state of the components of the composition. In this case, the
traditional approximation of the temperature over the thickness of the plates
in the form of a square parabola also leads to inadequate calculation results,
similar to the complete neglect of the thermal effect.

largest deformations, the maximum values ¢ are approximately 1.5+1.7
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MOLENOBAHHA TEPMONPYXHOMIACTUYHOIO AE®OPMYBAHHA APMOBAHUX MJTIACTUH.
Il. TOCTAHOBKA 3A0AYI TA METO[ PO3B’A3YBAHHA

CPhopmyavo8aHo 36’A30HY MOUAMKOB0-KPAUO8Y 3a0AUY MEePMONPYHCHONAACMULHOZO Oe-
POPMYBAHHA SHYUKUX APMOBAHUX NaacmuH. Modxcausuti caadKuil Onip maxux KoH-
CMPYKYLL monepeuHomy 3CY8Y BPAXOBYEMbLCS 8 pamkax meopli Ambapyymana. eo-
MemPUUHA HeATHIUHICMb 8paxosyemsvbes Yy Hadaudxcenui Kapmana. Temnepamypa mo
MOBWUHT NAACTNUK ANPOKCUMYEMDBCA NOATHOMAMU DPIZHUX nopadxie. Poss’sasox cgop-
MYADOBAHOT 0808UMIPHOL 3adauil 6YOYeEMbCS 3 BUKOPUCTNAHHAM S6HOT UUCEALHOL CLeMU.
HocaiOxiceno OuHaMIUHY MePMONPYHIHONAACTIUYHY NO8EOTHKY NAOCKO-NePexrpecHo i
NPOCMOPOBO APMOBAHUX CKAOMAACTIUKOBUX 1 MEMALOKOMNOZUMHUL NAACMUH, 32U-
HAABHUX N0 0i€r0 NogIMPAHOT 8ubyxosoi xeuni. ITokasano, wo 0aa adexsamuozo u3Ha-
YeHHS MmemMnepamypu 8 MmaKux KOHCMPYKYIAX il HeobXiOHO anpoxcumMysamu MOAIHO-
mamu 6=7-20 nopAdKi8 N0 MOBWUHT NaacmMuHr. IIpodemoHcmpPosaro, U0 810HOCHO MOHKL
KOMNOZUMHT NAACMUHU HA2PIBAIOMbCA Olabvwie, HIHC 8I0HOCHO MOBCMI NPU O00HAKOBUX
MAKCUMAABHUL 3HAUEHHAX THMeHcusHocmi Oedhopmayi 8 38’ a3yrouomy. Pigens nazpisy
APMOBAHUXL KOHCMPYKYLU He3HAUHUL: OAS CKAONAACTMUKOSUX NMAACTIUH NPUpicm mem-
nepamypu cmarosums 2+18°C, a daa memanoxomnodumuux konempyxyitd — 30°C. To-
MY OUHAMIUHUL PO3PATYHOK CKAONAACTIUKOBUX MAACTMUK NPU 011 HABAHMANCEHL MUNY
no8IMPAHOT 8UOYL080L XEUAL MONCHA Mpogodumu 06e3 YypaxrysanHHs menaosoi 0ii nmpu
gidcymuocmi dodamxosux Odxcepes menaa Hemexaniunozo noxooddxicenHns. ITpu pospa-
TYHKAX MEeMAAOKOMNOSUMHUL NAACMUK HeoOXIOHO 8paxosysamu mennosy O0it0, aqae
MEePMOUYMAUBICTND MONHCHA He 8PAX08Y8AMU.

Kaiouoei caosa: eHyuxi naacmuru, niocke apmyeants, npocmopose apmyearts, Ouna-
MIYHUTL 32U, meopis AmMOaPYyymsana, mepmonpyxrcronsacmuure O0eopmysanus,
HABAHMANCEHHSL 8UOYL08020 MUNY, ABHA UUCL08A CLEMA.
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