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ON TRANSITIVITY COEFFICIENTS FOR MINIMAL POSETS WITH
NON-POSITIVE QUADRATIC TITS FORM

Combinatorial properties of finite posets connected with the positivity of their
quadratic Tits form (playing an important role in the theory of matrix represen-
tations of posets) are explored. The coefficients of tranmsitivity for all minimal
posets with non-positive quadratic Tits form (such posets are called P -critical and
their number is 75 up to isomorphism and duality) are calculated. Some relation-
ships between these coefficients and the heights of posets are established.
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Introduction. In the study of the representations of quivers (directed
graphs) introduced by him, P. Gabriel [15] introduced an integer quadratic

form qq(2) = qq(z;,...,2,) for a finite quiver Q® = (Q),®,) with the set of

vertices @, and the set of arrows Q,, n = |Qo| < o, as follows:

qq(2) = Z zf - Z 22,

€@, i—>j
where i — j runs through Q,. This form was called the quadratic Tits form
of the quiver @. P. Gabriel proved that the quiver @ is of finite

representation type over a field k (ie., has finitely many indecomposable
representations, up to equivalence) if and only if its Tits form is positive. This
Gabriel’s result laid the foundations of a new direction in the theory of
algebra dealing with the investigation of the relationships between the pro-
perties of representations of various objects and the properties of quadratic
forms associated with these objects (see, e.g., [5, 8, 9, 11—-13, 19, 21, 24]).

In [4] Yu. A. Drozd showed that a (finite) poset S is of finite represen-
tation type if and only if its quadratic Tits form

qS(z):z[z) + 2212 + z 22 —zOZzi
ieS i<j ieS
i,j€S
is weakly positive, ie., positive on the nonzero vectors with non-negative co-
ordinates (representations of posets were introduced by L. A. Nazarova and
A. V. Roiter in [5]). In contrast to quivers, the posets with weakly positive Tits
forms and posets with positive Tits forms do not coincide. Since the connected
quivers having positive quadratic Tits form coincide with the quivers whose
underlying graphs are (simply faced) Dynkin diagrams, the posets with
positive Tits form are analogs of the Dynkin diagrams. Therefore
investigations related to posets with positive Tits form are natural (see, e.g.,
[2, 4, 6, 15, 18, 23]).

In particular, in [2] the authors classified all the posets with positive
quadratic Tits form and the minimal posets with non-positive Tits form,
which were called P -critical.

The present paper is devoted to the investigation of combinatorial
properties of P -critical posets.

1. Formulation of the main result. Partially ordered sets arise in the
study of many problems in various areas of mathematics and their applicati-
ons. Among such problems, the study of which continues to this day, an
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important role is played by combinatorial problems associated with the study
of their discrete parameters, the relationship between them and with graph
theory (see, e.g., [1, 7, 10, 16, 17, 20]).

Throughout the paper, all posets (partially ordered sets) are finite. In
considering a poset S =(4,<) the set A will not be written and we keep to
the following conventions: by a subset S’ of S we mean a subset A" of A
together with the induced order relation (which is denoted by the same
symbol <), and we write x € .S instead of x € A, etc.

Linear ordered sets of order n are also called chains of length n, and the
greatest length h(S) among the lengths of all chains of a poset S is called its
height.

A poset S is called positive if its Tits quadratic form

Q5@ =25+ D 2 + Y 22 -2 ) 2
ieS i<j ieS
i,j€S
is positive (see Introduction), and P -critical if its Tits quadratic form is not
positive, but that of any proper subset of S 1is positive. Notice that the poset
S and the dual to it poset S°° are simultaneously positive or non-positive (by

definition, S°® =S as usual sets and x <y in S? if x>y in S).

Let S be a poset and Si ={(x,y)|x,ye S, x<y}. If (x,y)e Si and
there is no z satisfying x <z <y, then x and y are called neighboring. Put

Ny = Ny (S) ::|SE| and denote by n, =n,(S) the number of pairs (x,y) of

neighboring elements of S. On the language of the Hasse diagram of S (that
represents S in the plane), n, is equal to the number of all its edges and n,,

is equal to the number of all its paths, up to parallelity, going bottom-up (two
paths are called parallel if they start and terminate at the same vertices). The

ratio k, =k,(S) of the numbers n, —n, and n, we call the coefficient of
transitivity of S; for n, =0, it is assumed that k, =0 [9]. Obviously, dual
posets have the same coefficient of transitivity.

It is clear, that the coefficient of transitivity of S is the probability that
comparable elements of S are not neighboring.

The main result of this paper is the following theorem:

Theorem 1. Let S and T be P -critical posets. Then

(1) k,(T) >k, (S) if  h(T)>h(S)+1;

@ Kk, (T)>k, (S)- % if R(T)=h(S)+1.

2. Classification of P -critical posets. For subsets X, Y of a poset S, by
XUY we mean the subset XUY if XNY =¢. From Dilworth’s theorem it

follows that any poset can be represented in the form U[" X., where X,,
1=2,...,m, are chains, with additional relations y <z for y and y belonging
to different components. By A;, B,, C, we denote, respectively, the chains
a, <...<ag, b <...<bg, ¢ <...<cq.

The P -critical posets were classified by the authors in [2, Theorem 3]
(see also Section 5 below). The following theorem is a set-theoretic reformu-
lation of this result (in [2] the classification is expressed in terms of Hasse
graphs).

Theorem 2. The P -critical sets are exhausted, up to isomorphism and
duality, by the following posets:

1) A,UB,,a, <b,, b <a,; 2) A;UBs, a, <b,;



3)

5)

1)

9)

11)
13)
15)
17)
19)
21)
23)
25)
27)
29)
31)
33)
34)
36)
38)
40)
42)
44)
46)
48)
50)
52)
54)
56)
58)
60)
62)

A, UB,, a, <bg;
A UBg,a, <b,;

A, UB;, a; < by;

A;UB,, a3 <bg;

A, UBg, a; <b,a, <bg;

A/ UB;, a; <bg;

A, UBg, a; < b, ;

A, UBg, ay <bg ;

A;UB;, a, <by ;

A, U Bg,a; <by,a, <bs;
A,UB,,a,<b;, a5<b,, a, <bg;
A;UBg, a; <by, ay <by;
A;UBg, a; <bj,a, <bg;
A,UB,,a, <bs,a, <b,;

A, UB,UC,;

A UB;UC,, a; <bg, b, <cy;

6)

8)

10)
12)
14)
16)
18)
20)

A, UB,UC,, a;<b,, b <cy, c;<ay;

A UB UC,, b, <cy;

A, UB, UC,, b <cy;

A UB;UC;,a; <by, b <cy;
A UB, UC,;

A UB,UC;, b <c, by <cg;
A UB UCg, b, <cq4;

A UB,UC;, by <cy;

A, UB,UC,, b <c;, b, <cy;
A;UB,UC,, by <cp, by <cg;
A, UB,UC,, b, <cy;

A UB,UC5,a; <b,, b <cg;
A UB;UC,, a; <bg, b <cy;
A UB,UC,, a; <by, b <cg;

A UB,UC,, a; <bg, b <cy;

37)
39)
41)
43)
45)
47)
49)
51)
53)
55)
57)
59)
61)
63)

A;UBg, a; <bj,a; <bg;
A,UB;,a; <bj,a, <b,;
A;UB,, a; <b,;

A UB;, a; <bg;

A; UB;, a, <b;, a; <bg;

A, UBg, a; <by,a, <bg;

A, UBg, a; < b,

A;UB;, a; <by;

A,UB,, a; <bg;

A;UB;, a; <b, a, <b,, a; <bg;
A, UBg, a; <b,,a, <bg;

A, UBg, a; <b;,a, <bg;
A;UB;, a; <b,,a, <bg;

A UB,UC,, a; <by,c; <by;

A UB,UC,, b, <cg;

35) A UB;UCs;
A UB,LUC,, b <c;, b, <cy;
A UB,UC,, a; <by, b <cy;
A, UB,UCs, a, < by, by <cg;
A, UB,UC, by <cg;
A UB;LUC,, b, <y, by <cg;
A UB, UC,, b, <cy;
A, UB, UC,, b, <cqg;
A, UB UC,, b <cg;
A,UB/UC;, b, <cy;
A UB,UC;, a; <by, by <cy;
A UB;UC,, a; <by, b, <cy;
A UB;UC,, a; <bg, b <cy;
A UB,UC,, a; <bg, b <cg;

A UB;UC,, a; <bg, b <cy;



64)
66)
68)
70)
72)
73)

74)

3.
Recall

A UB,UC, ay <bg, by <cy; 65) A,UUB,LUC,,a, <b,, b <c,;
A;UB,UC,, a, <by, b <cy; 67) A UB,UC;, b <cy, b, <cyg;
A UB;UC,, by <cy, by <c,, by<cg; 69) A, UB,LIC,, b, <c,, by <cy;
A, UB;UC,, b, <¢y, by <cy, by<eq; T1) A;UB,UC;, b, <c,, by, <cg;
A UB;UC,, a;<bg, b <cp,by<cy;

A, UB; UC,y, ay< by, by <y, by<cy;

A, UB;UC,, ag<by, b <c, by<cy; T5) A UB UC UD,.

Lemmas on coefficients of transitivity. Let S be a (finite) poset.
(see Section 2) that n,(S) denotes the number of pairs (x,y) of

elements x,y € § satisfying x <y, and n,(S) the number of pairs of neigh-

boring elements. In addition, we denote by ni(X,Y), where X, Y are
subposets of S, the number of pairs (x,y) of elements xeX, yeY
satisfying x<y. If a<b in S, we denote by S\ (a,b) the poset with the
same elements as S for which x<y if x<y in S except x<a<b<y. For

a chain {x; <...<x,}, we denote by [x;,x;], i <j, its subchain {x; <...<x;};

it is assumed that [x;,a;] = {x;}.

For proving Theorem 1 we need the following lemmas.
Lemma 1. Let S =5, US,. Then

n,(S) = n,(S;) +n,(S,), n,(S) =n,(S;)+n,(S,).

Thep r oo f isobvious. ¢
Lemma 2. Let S = A, . Then

(m-1m

n,(S)=m-1, n,,(S) = 5

The lemma is proved by simple combinatorial calculations. ¢

Lemma 3. Let S ={A,, UB,,a;, <b;}. Then

(a)

(b)

n,(S)=m+n-1,

(m-1ym+(n-1)
2

n,(S) = morin—j+1).

The lemma follows from the equalities

n,(S) =n,(A,)+n,(B,)+1,
n,(S) =n,(A,)+n,(B,)+n>(A, ,B.),

nS(A,,B,)=in-j+1)

and Lemmas 1, 2 (with using simple combinatorial calculations). ¢

Lemma 4. Let S ={A,,UB,,a; <b;, a, <b,}, where i < i', j<j . Then

(a)

(b)

n,(S)=m+mn;

(m-1m+(n-1)

5 i+ 1)+ - ).

n,(S) =

The lemma follows from the equalities



n,(S) =n,(4,)+n,(B,)+2,
nw(S) = nw(‘S \ (ai”bj' )) + nfz([aiﬂ’ai']?[b]"’bn]) =
=n,(S\ (ai,,bj,)) +(i —D)m—-j+1)

and Lemmas 2, 3. ¢
Lemma 5. Let S ={A, UB, UC a, < b;, b],, <c,}, where j> j'. Then
(a) n,(S)=m+n+s-1;
m-1m+n-)n+(s—-1)

2
The lemma follows from the equalities

n,(S)=n,4,,)+n,B,)+n,(C,)+2,

(b) n,,(S) = S bitn—j+1)+i'(s—k+1).

n,(S)=n,(4, UB,, a; <b;)+n,(B,UCy, b, <c,)-n,(B,)

and Lemmas 2, 3. ¢

Lemma 6. Let S ={A LB, a, < bj, @iy <bjy, @y < bj+2}. Then

(a) n,(S)=m+mn+1,
(m-1m+(n-1)
2
The lemma follows from the equalities

n,(S)=n,4,,)+n,(B,)+3,

(b) n,(S) = n+(i+2)n—i(j—1)—(2j+l).

n,(S) =1, (S\ (ai+27bj)) + ni({ai+2}7[bj+2’bn]) =

:nw(S\(aHZ,bj))-i-n—j—l
and Lemmas 2, 4. ¢
Lemma 7. Let S={Aml_anqu,ai<bj,bj,<ck,bj,+1<ck+l}, where
i>4 +1. Then
(a) n,(S)=m+n+s;
m-1m+n-n+(s-1)

2
The lemma follows from the equalities

n,(S) = n,(A,)+n,(B,)+n,(C,)+3,

(b) n,(S) = S hin—j+1)+(G + (s —Kk)+7.

n,(S)=n,(A, UB,,a <b;)+

+n,(B, UC,, by <y by < Crr1) — M, (B,)

and Lemmas 2—4. ¢

4. Calculation of the transitivity coefficients. Proof of Theorem 1. We
first calculate the coefficients of transitivity k, of the P -critical posets,
numbered N =1,2,...,75. In the table below the posets are not in increasing
order of their numbers, but in nondecreasing order of their heights (denoted

by h), and if the heights are equal, in nondecreasing order of the transitivity
coefficients.



Theorem 3. The following holds for P -critical posets 1—75:

N |h |n, |n, k, N n, | n, k, N|h |n,|n, k,
7110 |0 0 51|14 | 6 | 11 |045454(47 |5 | 6 | 15 0.6
124 ]| 4 0 604 |7 |13 |046154|67 |5 | 7 |18 |0.61111
30213 | 3 0 694 | 7 | 13 |046154(26|6 | 8 | 19 |0.57895
31213 | 3 0 2014 | 8 | 15 |0.46667 (27 |6 | 8 | 19 |0.57895
3412 |6 | 6 0 2 |14 |5 |10 0.5 646 | 7 | 17 |0.58824
4113 |6 | 8 0.25 814 |6 |12 0.5 6 |6 |7 |18 |0.61111
333 |5 | 7 |028471( 9 |4 |6 | 12 0.5 166 | 7 |18 |0.61111
71137 |10 0.3 20014 | 7 | 14 0.5 1716 | 7 | 18 [0.61111
3213 | 4 033333 3 |4 | 5 | 11 |0.54545(46 |6 | 6 | 16 | 0.625
35134 | 6 |033333[|56 |5 | 7 |13 [046154(44 |6 | 7 | 19 |0.63158
66 |3 | 7 |11 [{0.36364(28(5 | 8 |16 0.5 4516 | 7 | 19 |0.63158
4013 | 6 |10 04 37015 |6 |12 0.5 246 | 8 | 22 [0.63636
544 |6 | 9 |0.33333[|48 |5 | 6 | 12 0.5 256 | 8 | 22 |0.63636
4214 | 7 | 11 (036364505 | 7 | 14 0.5 2216 |9 |25 0.64
4914 | 7 |11 |0.36364 (585 | 7 | 14 0.5 2316 | 9 | 25 0.64
38|14 |5 | 8 0375 |72 5 | 8 | 17 |0.52941(|63 |6 | 7 | 20 0.65
704 | 8 | 13 |0.38461 (18 |5 | 7 | 15 |0.53333|| 5 |6 | 6 | 18 [0.66667
7414 | 8 | 13 [0.38461(19 |5 | 7 | 15 |0.53333 |15 |6 | 7 | 21 |0.66667
3914 1|6 |10 04 625 | 7 | 15 {0.53333|21|6 | 8 | 25 0.68
534 |6 |10 0.4 425 | 5 | 11 |0.54545((43 |6 | 6 | 19 |0.68421
5714 | 7 | 12 |041667(68 |5 | 8 | 18 [0.55556(14 |7 | 8 | 23 |0.65217
614 | 7 |12 |041667|55 |5 | 7 |16 | 05625 ||11|7 | 8 | 26 [0.69231
654 |7 | 12 |041667( 7 |5 | 6 | 14 [057143 127 | 8 | 26 |0.69231
734 | 8 | 14 |042857(49 |5 | 6 | 14 |0.57143[|13 |7 | 7 | 23 [0.69565
4 | 4|6 |11 |045454 (1365 | 5 | 12 (058333107 | 7 | 26 [0.73077

The coefficients of transitivity k, are calculated up to the fifth decimal

place. If the number of decimal places is less than five, then the decimal
fraction is finite, and if it is five, then infinite. If two decimal fractions are
equal up to five digits, then they are exactly equal.

The pr o of of Theorem 3 is carried out by direct calculations using
Lemmas 1, 2 for N =31,35,42, Lemma 3 for N =2,3,5,7,8,9,10,13,15,16,17,
18,19,20, Lemmas 1-3 for N = 32,36,38,43,46,47,48,49,51,53,54, Lemma 4
for N=4,6,11,12,14,21,24,25,26,27,28,29, Lemmas 1, 2, 4 for N = 37,44,45,
50, 52, 67, 69, 71, Lemma 5 for N = 33,39,40,41,55,56,57,58,59,60,61,62,63,
64, 65, 66, Lemma 6 for N =22,23, Lemma 7 for N =72,73,74, Lemmas 1,
2,7 for N =68,70. ¢

Now Theorem 1 follows from Theorems 2, 3 and the fact that dual posets
have the same transitivity coefficients. ¢

5. The table of the P -critical posets (in terms of Hasse graphs) We
follow the paper [2]. The P -critical posets are written up to isomorphism and
duality; their number is 75: PC,, PC,,...,PC,;. Self-dual posets are marked (in

the upper right corners) with “sd”. If we add all the posets dual to unmarked
ones, we obtain the classification of P -critical posets up to isomorphism; their

number is 132: PC, for k=1,2,...,75 and PC{® for s#1,2,4,14,23,29,31,34,
35,37,42,45,52,54,64,66,70,75 .
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NPO KOE®ILIEHTU TPAH3UTUBHOCTI ANA MIHIMAITbHUX YACTKOBO
BNOPAOKOBAHUX MHOXWH 3 HEQOOATHOIO KBAOPATUYHOKO ®OPMOIO TITCA

Jocaidxcyromovess KOMOTHAMOPHT 8AACNMUBOCMI CKIHUEHHUX YACMKO80 6NOPAOKOSAHUX
MHONMCUH, Mog’s3anux 3 dodamuicmio ix xeadpamuunoi opmu Timca (axa eidiepae
8aMHCAUBY POAL Y MeOPli MAMPUUHUL 300PANHCEHD LACTNKOBO 6NOPAOKOBAHUX MHOHCUH).
Jas 8cix MIHIMAABHUL 4ACTKO8O 6NOPAOKOBAHUX MHONMCUH 3 HedodamHoro rxeadpamuu-
Hoto popmoro Timea (maki MHONCUHU HaA3UBAOMDb P -kpumuuHumu, i ix KiibKicmbs, 3
mounicmio 0o i3omopdiamy 1 OyarvHocmi, Oopigrioe T5) obuucnrenHo Koediyienmu
mparH3umueHocmi i 8cmanosaero Oesaxi 368’a3Ku  MIH Yumu Koepiylienmamu ma
B8UCOMAMU UACTNKOBO BNOPAOKOBAHUX MHOHNCUH.

Katouoei caosa: wacmxo8o 8nopadKosaHa MHOHCUHA, 0YaibHICMb, 8uCOma, cYycioni eae-
menmu, 0iazpama Xacce, 0iaepama Junkina, xkeadpamuuna ggopma Timca, dodam-
Hicmdb, P -kpumuuna uacmxoso 8nopsadkosarHa MHOMCUHE, KoePiyienm mpansu-

MueHocmi.
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