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MODELING OF THERMOELASTOPLASTIC DEFORMATION
OF REINFORCED PLATES.
1. STRUCTURAL MODEL OF THE REINFORCED MEDIUM

A numerical-analytical structural model of thermoelastoplastic deformation of a
composite material cross-reinforced with fibers in arbitrary directions is developed
on the basis of the time steps algorithm. The materials of the constituents of the
composition are isotropic; their plastic deformation is described by the theory of
flow with isotropic hardening, taking into account the dependence of the loading
function on temperature. Conditions, determining thermoelastic deformation,
unloading, neutral and active loading of the thermosensitive constituents of the
composition are obtained. The coupled problems of the thermophysical and
mechanical behavior of the reinforced material are considered. Structural
relationships that are necessary for solving the thermophysical component of the
investigated problem are presented. The developed structural model is focused on
the use of explicit numerical integration schemes for both elastoplastic and
thermophysical problems.
Key words: fiber reinforcement, structural models, thermoelastoplasticity, thermal
sensitivity, flow theory, effective relations, step-by-step algorithm, explicit
numerical schemes.

Thin-walled structural elements made of composite materials (CM) are
widely used in engineering applications [9, 13, 18, 20, 22, 23, 26]. Often, CM
products are subjected to high-intensity both force and thermal loading [9,
13], which can deform plastically [21, 23] the materials of the composition.
Consequently, the modeling of thermoelastoplastic deformation of CM structu-
res is an urgent problem that is now at the stage of formation [21, 23]. The
elastic-plastic behavior of dispersion-hardened CMs was modeled in [19, 27], a
similar behavior of fibrous media at large and small deformations of the com-
ponents of the composition was modeled in [3, 17]. However, it is known, that
under intense thermal action on many modern CM structures [9], the materi-
als of the composition change their mechanical properties [4, 5]. This circum-
stance can significantly affect the inelastic behavior of reinforced thin-walled
elements under high-intensity loads. Structural models of CM, with regard to
the thermal effect on the elastoplastic deformation of the components of the
composition (within the framework of the theory of flow), have not yet been
constructed. In this case, it is necessary to take into account the connectedness
of the temperature and elastoplastic problems.

To take into account the poor resistance of thin-walled CM structures to
transverse shear, the nonclassical theories of Reissner [1, 6, 13, 25], Reddy
[24], or Ambartsumian [2, 17] are usually used. Less commonly are used theo-
ries based on the broken line hypothesis [12]. Numerical solutions of physically
and geometrically nonlinear problems of the dynamics of thin-walled structu-
ral elements, as a rule, are constructed using explicit schemes [1, 10, 17].

According to the above, this work is devoted to modeling thermoelasto-
plastic deformation of flexible reinforced plates taking into account their poor
resistance to transverse shear. The numerical solution of the coupled thermo-
mechanical problem, arising in this case, is supposed to be constructed using
explicit step-by-step schemes.

1. Numerical and analytical modeling of thermoelastoplastic deforma-
tion of CM. As in [1, 7, 10, 17], we assume that small strains &y of the isotro-
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pic component of the composition can be represented as a sum of elastic €

incompressible plastic p,; and temperature components 8:']‘8@ :

t

65 = €y + Dy + 8,80, L1=123, p; =0, o= [0aOdt, (1)
ty

where © is the temperature of the material; o denotes coefficient of linear

thermal expansion; t, is the initial moment of time ¢ Sij is the Kronecker

symbol; point denotes a derivative with respect to time t.
Plastic flow of a material is associated with a loading surface f =0 cor-
responding to the von Mises yield condition [7, 10]:

f(T,%,0)=T? —1(1,0) =0, (2)
where
t
1 —

T = 1, 3 SiSij %= J-J 2p,;p;; dt, $;; =04 — 8,00,

ty
1 -
60_56557 7/7.7_172737 (3)

G, are components of stress tensor; y is the Odqvist parameter; 1, denotes

yield point at pure shear. The initial loading surface T = 1,(®) = 1,(0,0) is the
usual temperature-dependent ® yield point [4, 5]. (In this section, unless
otherwise stated, summation is performed over repeated indices from 1 to 3.)
Based on the associated law of plastic flow, in view of (2) and (3) under
active loading, we obtain [7, 10]
S..

. ij
p“ = —
R VA )
Within the framework of the theory of plasticity with isotropic
hardening, the power of plastic deformations W, = SmiPme 1S expressed in

SpePmer  HI=123. (4)

terms of the power of shape deformations W = smﬁ ie. assume that [10]

me
Wp = BEW, SmePme = TS Cmp = TSpp€inys (5)
where
— 1
€t = € — Omi€o> g = gaii, m,l=1,2,3, (6)

x = &(y) is proportionality factor, which depends on the hardening parameter

¥ and is expressed in terms of the shear modulus G and the tangent

modulus of the material in the pure shear diagram. Relation (5) is considered
to be true for any type of stress-strain state (SSS) of a material that is not
sensitive to temperature changes. In particular, for a pure shear, the energy
relation (5), with regard to (3) and (6), takes the form:

™, =&)Y, vy =207, (M
where
t Tp
x=prdt=jdvp=vp, (8)
t 0

and t is a shear stress at pure shear; 7y denotes complete angular

deformation; vy, is the plastic component of the quantity y. Relation (7) is
true when equality (2) is satisfied, where T =1 and ot, /00 =0.
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Let us now assume that the diagram of material deformation at pure
shear depends on temperature, i.e. according to (2) we have

1=1,(10) =1,7,,9), 9)

where y is determined by expression (8). Using (9), we obtain an energy

relation similar to (7). Differentiating (9) in time, under active loading we will
have

T = rx)'( + T®® = rxyp + TG)@, (10)
where
ot, Oty = ot
Ty Ty, G, Yo T %0 (1)

T, = rx(yp,G)), Tg = re(yp,G)) are functions known from experiment; T, = G

is the tangent modulus in the diagram t ~ v, at constant temperature ©.

On the other hand, the change of shear stress at pure shear, taking into
account the thermal sensitivity of the material, can be expressed through
Hooke’s law (Tt = G(O)y,) [7]:

=Gy, +Ggy,0 = Gy, + G'G410, (12)
where
_ dG(9) _
G®(®)=W’ Ye =V = Vp- (13)

After substitution the expression (12) into the left-hand side of equality
(10) and in view of the second relation (13), we get

1 .1 B .
Ty =i [Gy + LG, TQG)®]
After multiplying this equality by t, we have
Ty Gty +—rG - 11 G@J 14
o, G[ v+ = 0G) (14)

If the material is insensitive to temperature changes (1o =0,

TZTS(X)ZTS(YP) and Gg =0), then relation (7) follows from (14) with

2=G/(G+ C_3). We assume that the energy relation (14) must be true for any
SSS. Therefore we obtain (see (2) and (3))

St = o [Gsmzsmz + L 7T, G)@J _
1 .
- [Gsmlsml + L (c,Gy - reG)eﬂ . (15)

Equality (15) generalizes relation (5). Let us substitute (15) into the right-
hand side of (4), and on the left-hand side of (4) we express plastic
deformations in terms of elastic ones (see (1) and (6)) and use Hooke’s law for

L. L = 1 = 1
a thermosensitive material: e; = sij%, whence €;; —( i~ Si G e} Gj 5G
where e;; =e; —8,¢&,. Then, in view of (2), we have
- §ij $;;Geo - 8;j . T .
= - + — G , + 2 (1.Ggy — 165G
81] 2G 2G2 S 2(G N G)Ti [ Sme€me G (Ts [©) To )®] ’

1,7=12,3,
from which follows
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. - . 1 .
8§ = ZGSi_j - GAsijsMamf +E[G® -1,(1,Gg — TQG)A]si]@,
t,j =123, (16)
where
A=—Ge
(G +G)t(x, ©)
c is switching parameter: ¢ =0 under thermoelastic deformation, unloading
and neutral loading of the material, and c¢ =1 under active loading and

thermoelastoplastic deformation.
Let us determine the conditions under which ¢ =0 and c =1. According

to (2), thermoelastic deformation is determined by the condition f(T,y,®)<0,

17

ie.
T < 1,(x,0). (18)

The beginning of unloading from the loading surface is characterized by
the conditions

£(T,%,©) =0, f<o0. (19)

Thus, using (2) and in view of (3) and (11), we calculate the time
derivative of the loading function

. Of . of . of - . ~. .

f= as];- S+ a—;x " %@ =88 — 21,(GY + 160). (20)
According to (3), we have y = 1[21{)1.].1{)1.], >0, therefore during unloading

from the loading surface (f = 0) there is no increase in plastic deformations

(x =0). Therefore, taking into account f <0 (see (19)), from (20) we obtain

the unloading conditions

T =1,(1,0), Sy — 21,160 < 0. (21)

7
Under the conditions of neutral loading, we have f =0 and f =0, while

there is no increase in plastic deformations (¢ = 0 ), therefore, from (20) follow

the similar to (21) conditions for neutral loading, where the “less” sign must
be replaced by the “equal” sign. Under conditions of active loading during

plastic deformation the equalities f =0 and f= 0 are still satisfied, but at
the same time y > 0. Taking into account that according to the experimental
data [4] 1, >0 and G > 0, we obtain from (2) and (20) the conditions for
active loading
T =1,(x,0), Sy — 27,60 > 0. (22)
The inequality in (22) with regard to (3) can be rewritten as
(T?) - 21,150 >0 = 2TT - 21,150 > 0.

Therefore, for T =1, >0 (see (2)) conditions (22) can be written as
follows:

T =1,(1,0), T-1,0>0. (23)

It is known from experiments [4], that usually (except for steels in the
temperature range from 0 to 110+120°C [5]) 1o <0 (see (11)). Therefore

from (23) we obtain: 1) in the isothermal case (© =0) an plastic deformations
increment is possible only with an increase in the intensity of shear stresses
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(@ >0); 2) at a constant T (TEO) an plastic deformations increment is

possible only with an increase in temperature (© > 0). These results are in
complete agreement with the known experimental data [4, 5].

Relations (21) and (22) can be written in a different form. Let us
substitute expression (16) into (21). Under thermoelastic deformation,
unloading and neutral loading, we have ¢ =0 and A =0 (see (17)). Therefore,
from (21) we obtain

0l %j@so (24)

Under active loading, from Hooke’s law for a thermosensitive material, in
view of (4), we have

Gs;ig5 + T (r Go

.,—2Ge +5,,Ge EG)—ZG( ~Py;) +5,Ge EG)_

= 2G¥,; +5,,Go G@ GLsspbm Hi=123. (25

S
According to Drucker’s postulate, the inequality s, ,p,,, >0 holds.

Therefore, after substituting (25) into (22) and with regard to G >0, we
obtain the conditions for active loading in another form:

T =1,(%,0), Gsyéy + 1, (‘CSGG é - rgj ©>0. (26)
Taking into account (1), (3), and (6), relations (16) can be rewritten as
Syy = 2Gé; + WD E,, — GAsys, b, + {5 | Ko 501~ 3K+
+é[G® —1.(1,Gg — ‘CG)G)A]S”}Q, ii=1,23, (27)
where Kg(0) = dl;g@) ; K=K(®) denotes bulk modulus of elasticity;

A =A(®) is the Lame parameter; coefficient A was calculated by formula
(17), in which the switching parameter according to (2), (24) and (26) is
expressed as

c=0 if T<1t(y,®) or T=1/(x09),

and Gs;&; + 1, (‘CSG@ é - T@jé <0,

c=1 if T=1,(y0) and Gsijéij + 1 (r Go T®j® >0, (28)

G
In the case of isothermal deformation (@ =0), relations (27), (28) are
reduced to the corresponding relations given in [10], where the thermal effect
does not take into account.
As in [7, 17], for the convenience of further presentation, the governing
equations for the k-th material of the composition can be written in matrix
form (see (17), (27), (28)):

G, =Z,€, +B,0, z,=72,-GYZ,, k=012,..,N, (29)
where

_ (k) (k) (k) (k) (k) _(B)YT _ (k) (k) (k) (k) (k) (k)\T
—{51 Gy O3° Gy Op 66} ={511 Ggy O3z Oa3 O3 cY12} )
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— folk) (k) (k) (k) (k) (YT _ fo(k) (k) (k) (k) (k) (k)T
g, ={er ey &) €y ey g5} ={eg) ey ey 2ep7 257 285},
(30)
z,=z), z, =(z)") are symmetric 6x 6-matrices, B, = {B{"} is a six-
component column vector whose nonzero elements are defined as:

z) =25,G 0,z =G",

K(k) 3 s(.k)
(k) = "6 (ko) () o, () (k) _ (k) (k) (k) (k) (k)N 4 (k)
B =Sk ® Zlc’" -3KWq +c;<k> [GU) — 2] (Gl _ Gl 4]
me
() _ SU Teale) _ 000 () ale) _ (Y)Y 400
B = (68 ~ (G —eG)AY) i j=123, (=455,
(k) (k)2 (, (k) —
S0 _ g0k iq 9 g a0 S s (", @) o G®
i i j o yJ=1,4,...,0, —77 x _W’
(1+2") G
Gg" B K% EY (k) _ v g
h )y’ - oy’ = ® oy
2(1+ V) 3(1-2v™) 1+ v?) (1 -2v®)
o) 0 if T® <« T(sk) or T® = ‘Cgk), w < 0,
1 it 70 =0 wh s,
) _ . Ts o Ts (Rl (k) f2 1 (2 & (k2
w® =G skek+ij)(rs Gy’ —-19'G")O, T ZEZS" +) sz

(T — folk) (k) (k) (k) (k) (BT
Sg } ={311 S92 S33 Sa3° S31 312} )

0<k<N, (31)

_ LJk) (k) (k) (k)
Sk_{sl Sg 7 837 847 S5

where N is the number of families of reinforcing fibers; E® = E®* (®),

(k)

viE) = k) (®) denote Young’s modulus and Poisson’s ratio of the k-th

component of the composition (k=0 is a binder, k=1,2,...,N, denote

reinforcement of the k-th family); superscript « T » denotes the operation of
transposition. The remaining quantities in (31) have the same meaning after
dropping the index k. There is no summation over the repeated index ¢ in
equalities (31).

As noted in the Introduction, the solution of the considered problem is
supposed to be constructed using explicit numerical schemes [7, 10, 17],
therefore, the values of unknown functions will be calculated at discrete time
moments ¢t ., =t +A, n=0,12,..., where A=const>0 is the time step.

Thus, we assume that for t =t t,, the values of the following quantities

n-1?
are already known:
n-1

O(()= @(tn_l,r), O(r)=0(t,,r), m=n-1n, r={x,x,,x5}, (32)

where r is the location vector. We transform the second term on the right-
hand side of (29) using the trapezoid formula, which has according to [8] the
second order of accuracy relative to A:

n  n-1 n n-l

O-0 =A@+ 0)/2,

whence follows
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n n n-1/2

O=20- 0)/A, (33)
where
n-1/2  n-1 n-1
® =0+A0O/2. (34)
From equality (34), in view of assumptions (32), we obtain that the

n-1/2 n
quantities ©® and ® on the right-hand side of relation (33) are already

known at the current time ¢, .

Let us substitute the expression (33) into the right-hand side of equality
(29). Then, with regard to the notation similar to (32), for t =t, we have

n n n n

c's'k:Zkék—irpk, 0<k<N, (35)
where

n 9 n n-1/2 n

P EZ(G)— O )Bk, 0<k<N. (36)

Matrix equality (35) is the governing equation for the thermoelastoplastic
isotropic k-th material of the composition. Since the elements of the matrix
Z, and the column vector Bk depend on the solution of the problem (see (29),
(31)), then relation (35) with allowance for (36) is nonlinear. For its
linearization, as in [17], we use the method of variable parameters of elasticity

[14]. Then, at t=t, the 6x6 matrix Z, :(zi;c)) and the six-component
column vector p, = {pgk)}, 1,7 =1,2,...,6, according to (32), (34), and (36) will
be known in the governing equation (35) on the current iteration of this
method.

Linearized matrix equality (35) formally coincides with the Duhamel —
Neumann relations for an anisotropic medium [11, 16]. Using the initial
assumptions for the CM, similar to those adopted in [16, 17], and repeating the
reasoning from these works taking into account (35), at the moment of time

t, in the current iteration we obtain the following linearized matrix equality

characterizing the thermoelastoplastic state of the CM:

n nn n

6 =Be+p, n=012,..., (37)
Where

N N
B = (mOZO + mkzkEij*I, H=ol+) oE,,
k=1 k=1

N N
p =f - Bg, f5m0p0+2mk(pk+zkrk), gEkark,
k=1 k=1

N
wy=1-> o, 1,=D'¢, E =D/C, (38)
k=1

G, € are six-component column vectors of averaged stresses o, and strains

€ in the composition, similar in structure to (30); I is the unit 6 x 6 -matrix;
B, E, , C, are 6 x6-matrices; D;l, H™! are matrices inverse to 6 x 6-matri-
ces D, and H; p, f, g, r,, {, are six-component column vectors; o, are

densities of reinforcement with fibers of the k-th family. Elements of matri-
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ces C, =(cl), D, =(d{}’), and column vectors §, = {({"'} are calculated by

the formulas:

CY;) di] = qu g Zgzé Ze; ; Zng Ze] ,
¢ =0, ¢ = Zgj” -p), i=23,..,6, j=12..,6,
1<k<N, (39)
Gl =) = A5, g =alf = e, .
QY(? = Zqﬂ? = 26(1162)6(1161)7 N 296?) = %1 = 252161)611 ) R
gos = Qoo = (1705 + (15057,  1<k<N, (40)
E(lkl) = sin 0, cos @, é(lkz) = sin 0, sin @, , 6(11;) = cos 0,
(%) = —sin @ %) = cos O f(zlé) _
E(Skl) = —cos 0, cos ¢, Z(Bkz) = —cos 0, sin @, E(Bkg) =sin®,,
1<k<N. (41)

Matrix elements of 6x6-matrices G, = (gxc)) and Q, = (qxc)) not
written out in (40) are given in Tables (21.40) and (21.44) in [11]. The matrices
G, and Q, determine the transformations of the column vectors ¢, and g,
(see (30)) during the transition from the global rectangular coordinate system
x; to the local rectangular system xik) associated with the fibers of the k-th

family. In this case, the axis xik) is assumed to be directed along the

reinforcement and is specified by two angles of the spherical coordinate
system 0, and ¢, (Fig. 1). The direction cosines E(;;) between the axes xik)
and x;, 1,j=12,3, are determined by relations (41). (In equalities (38) and
(39), the superscript n is omitted.)

L3
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|

I (k)

x
0y | ?

|
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e S~
\\ 1
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Fig. 1

As in [16, 17], in deriving relations (37) and (38), additionally we obtain
the linearized matrix equalities
n non non n n o n n

o=H'¢e-H'g, ¢ =E_¢g+r, 1<k<N. (42)
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The first equality (42) at ¢ =t, at a given iteration expresses the strain
rates €, of the binder material through the rates € of averaged CM strains.
The second relation (42) determines the strain rates €, of reinforcement of
the k-th family through the strain rates €, of the binder.

According to formulas (31) and (38)—(41) at the time t,  in the current
iteration the matrices B, H™', E, and the column vectors p, g, r, in equa-
lities (37) and (42) are known. If the thermal effect is not taken into account

. n
(®=0), then from (34), (36), (38) and (39) we obtain that in (37) p=0 and
relation (37) is reduced to the governing equation for CM obtained in [17]] at
the assumption about the elastoplastic behavior of the components of the
composition. Consequently, relation (37) generalizes the structure equations

derived in [17]].
Suppose that at the current moment of time ¢, the iterative process has

n
converged with the required accuracy, ie. in relation (37), the strain rates €
of the CM are known. Then, using formulas (42), we successively determine

n
the rates of strains €, of the components of the composition, and from equa-

n
lities (35), the rates of stresses G, in the same materials. Using the central
finite differences in time on the three-point stencil, we get

n+l mn-1 n n+l n-1 n
ﬂ(ck—ckj:ok, ﬂ(ek—ekj:sk, 0<k<N, (43)
where the right-hand sides have already been calculated, and in the left-hand
n-1 n-1

sides the column vectors ¢, and g, are assumed to be already known from

the solution of the problem under consideration at the previous moment

t,_;in time. Therefore, from equalities (43), using an explicit scheme, we can
n+l n+l

determine the stresses ©, and strains €, in the k-th component of the

composition at the next moment ¢ ,, in time. After that, on the basis of

Hooke’s law, with regard to the correspondences (30) at t =t we can also

n+l-
calculate the elastic strains:

n+l 1 n+1 n+1 n+l n+1 1 n+1
(k) _ (k) (k) (k) (k) (k) (k) _ (k)
€ —W( i@ V05 TV Oy j’ i T g %u
1#j# L0 #1, 1,5, =1,2,3, 0<k<N, (44)
where there does not summation over repeated indices.
From relation (1) at the moment ¢, , of time we have
nJ;CI n;rcl nJlrcl n+kl n+l n 1;{ nJ;cl n+k1 nk
pgj) = sgj)—egj)—éiij a®(e -0)-3; 8(9 ), a® = @®+a®y/2,
1,7 =123, 0<k<N, (45)
where the right-hand sides are known from equalities (43), (44) and the
n+l

assumption that the temperature © is already determined from the heat
balance equation for CM using an explicit numerical scheme (see below), and
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n
the strain &} is known from the solution at the previous time moment t__:

n n-1 noon o op-l
s(ek) = sgc)+ a?e- 0).
According to the second relation (3) for determining the Odqvist

parameter x(k) at t=t we have the equality

n+1?
n+1 (2981 n thi1 n n+l n+1
k - (k) (k k k k k k k
2 = j /2p§j’p§j’ dt = 4+ j /2dp§j)dp§j’ ~ 1@+ {28 p ApH
0 ty
(46)
where
n+l1 n+l n
Apl =pl - pll, i,j=1,23, 0<k<N. (47)

On the right-hand side of expressions (47), the values of plastic strains
are already known (see (45)). Thus the last term in equality (46) is known.
Therefore, using formula (46) and, in view of (43)—(45) and (47), it is possible

n+l1
to calculate the value of the Odqvist parameter x(k) at t=t,,. From a
n+l
computational point of view, such a method for determining the value ¥ is

convenient because at the next moment in timet, , it is unnecessary to refine

the Odqvist parameter in the iterative procedure using the method of
variable elastic parameters.

At the modeling the dynamic thermoelastoplastic deformation of CM, it is
necessary to take into account the coupling of the mechanical and
thermophysical problems. Therefore, in addition to the defining mechanical
relations (37), it is necessary to use the Fourier law for the CM, which can be
written in matrix form as [15]:

q=-Ag, (48)
where
— T — T _
q—{ql,qZ,Q3} ’ g_{gl792’93} _grad®7
N N N L
A= (mOAO +Y ka;AkEij, H= (0)01 +y ka?cEkj :
k=1 k=1
E, = B;'C,, 1<k<N, (49)
q;, g; are components of the vector of heat flux and temperature gradient
0; A, = (kg;c)) is a symmetric 3x 3-matrix of effective coefficients of ther-

G

mal conductivity of CM; A, = ( i ) denotes the same for the k-th compo-

nent of the composition (in the case of an isotropic material kg?) =8,M,
,7=1,2,3, 0<k<N); I isa unit 3x3-matrix; L, = (é(i’;)) is the orthogonal

matrix of direction cosines Z(i’;.) (see (41)); B;l is the matrix inverse to the

3x 3-matrix B, ; H, E,, (_Jk are 3x 3-matrices, and the elements bg.“) and

Ei(jk) of both matrices B, and (_Ik are calculated by the formulas
(k) _ (k) _ (k) _ 9 (k) k) — plk) k) _ p(k)4(0)
by =1, by =0, b =Ny ey =Ly Cij = LimMhong»
i=23 =123, 0<k<N. (50)
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If the materials of the composition are thermally sensitive, then
7»2;“) =k§;€)(®), 0 <k < N. Therefore, according to (49), (50) the effective
coefficients of the CM in (48) depend on the temperature (A =A(9),
Mi; =4;(0), 1,5 =1,2,3).

Conclusion. The developed structural model, focused on the use of
explicit step-by-step schemes, makes possible numerically and analytically
modelling the behavior of thermoelastoplastically deformed CMs of a fibrous
structure within the framework of the theory of flow with isotropic
hardening, when the loading function is sensitive to changes of the
temperature in the composite material. The conditions for thermoelastic
deformation, unloading, neutral and active loading of the components of the
composition were obtained, with regard to the change of temperature over
time. In this case, it is taken into account that the thermophysical problem for
such a CM can be associated with a mechanical problem.

The work was carried out within the framework of a state assignment
(state registration No. 121030900260-6).
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MOMENOBAHHA TEPMONPYXHOMIACTUYHOIO AE®OPMYBAHHA APMOBAHUX MJTIACTUH.
|. CTPYKTYPHA MOJEIb APMOBAHOIO CEPEJOBULLA

Ha ocHosi aszopummy KPOKi8 3a 4acOM PO3POOAEHO UUCEADPHO-AHAAIMUYHY CMPYKMYP-
HY wMmo0eab MepMONPYHCHONAACMUYHO20 0efOPMYBAHHA KOMNOZUMHOZO MaAMepPiay,
nepexpecHo apmo8aH020 80A0KHAMU Y 008iabHUX HanpamKrax. Mamepiaiu KomMnoHenmia
KOMNO3UYLL € 130MPONHUMU, IXHE maacmuyne O0eOPMYBAHHA ONUCYEMDBCA MEOPIED
meuti 3 130MPONHUM 3MIYHEHHAM NPU 8PAXYBAHHT 3anreHcHocmi PYHKULT HasaHMaHceH-
Ha 810 memnepamypu. OMPUMaAHO YMO8U, WO BUHALAIOML MepmonpyrcHe Oedopmy-
8AHHA, PO3BAHMANCEHHS, HeUmpasbHe Ma AKMUBHE HABAHMANCEHHA MePMOUYMAUSUL
KOMNOHEeHMI8 Komno3uyii. Pozeasdaromuves 36’asani 3adaui mpo menaodisuuny ma
MEXAHTUHY N0BedTHKY apmosaHnHozo mamepiany. Hagedeno cmpyxkmypHri cnigsiOHOUEHH A,
HeoOX10HT Oas PO38’A3aHHS MmenaoPiduunoi ckaadoeoi 0ocaidxucyeanoi npodremu.
Pospobaena cmpyxmypHa modeab OPIEHMOBAHA HA 3ACMOCYBAHHA ABHUX UUCEALHUL
cxem THMezPY8aHHs K NPYHCHONAACMUYHOL, maK 1 menaoghisuuenol 3aday.

Katouoei caosa: apmysanHs 60A0KHAMU, CMPYKMYPHT MOOeai, MmMepmMonpyicHonaac-
MUYHICMD, MEPMOUYMAUBICMDb, MeoPis meuil, ePexmusnHi CcniseiOHOULEHHS,
NOKPOKOBUL AAZOPUMM, A8HL UUCCABHT CXeMU.
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