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3D DYNAMIC ANALYSIS OF LAYERED ELASTIC SHELLS

Three-dimensional dynamic problem for a layered orthotropic elastic shell with
free upper face is considered. The interfaces between the layers are assumed to be
in perfect contact and the displacements on one of the interfaces are prescribed. A
long-wave asymptotic solution is constructed and the thickness resonances are
determined. The obtained results can be applied in evaluation of certain parameters
of earthquakes.
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Introduction. Mathematical modeling of thin elastic multi-layered solids
with various boundary conditions on the faces is of significant importance for
many applications. Among the latter we mention the theories related to earth-
quake prediction [19, 22, 25], relying on the data of displacements measured
at certain points of the region under investigation. It is emphasized that resto-
ration of associated dynamic parameters of the stress-strain state using the
measured discrete data and taking into account possible curvature of the
layers is of crucial importance for seismological theories.

Problems of mechanics of multi-layered elastic plates and shells with
non-classical boundary conditions, ie. conditions imposed not only on the
stress tensor component, have been studied in various publications, see e.g. a
monograph [6], as well as journal papers including both analyses of free [1, 7,
8] and forced vibrations [2, 9, 14]. We also mention important contributions to
the study of free vibrations of single-layer plates and shells in the case where
one or both faces is fixed [15, 17, 20, 23, 26]. The associated long-wave high-
frequency motions, investigated in these papers, have also been thoroughly
studied in the case of classical boundary conditions (formulated in terms of
stresses), see [3, 5, 21].

The current paper is devoted to the further developing results obtained
in the above-mentioned works. The approach relies on the asymptotic method,
widely used in statics and dynamics of thin-walled elastic structures, see e.g.
[4, 16], as well as recent monographs [10, 25], and publications [11-13, 18, 24]
to name a few, accounting for the effects of pre-stress, nonlocality, high cont-
rast, and also in contact problems for coated solids.

The asymptotic technique employed in this paper starts with a scaling
typical for non-classical face boundary conditions. 3D dynamic problems for
two- and three-layered elastic orthotropic shells with a traction-free upper
face are considered. In addition, it is assumed that the displacements are
prescribed on one of the contact surfaces between the layers; in particular, for
a two-layered shell they are imposed on the contact surface between the first
and second layers, whereas for a three-layered shell both situations are
considered, namely when the displacements are given on the contact surface
between the first and second layers, and between second and third layers.
The layers are supposed to be in perfect contact. Within the current
consideration, it is also assumed that the wave length exceeds substantially
the thickness, thus providing a natural geometrical small parameter. The
frequency range covers the thickness resonances. The parameters of the
stress-strain state are expanded into asymptotic series. The iterative formulae
for the coefficients of these series are derived. It is remarked that in the case
of the excitation frequency coinciding with one of the thickness resonant
frequencies, further investigation is required, according to the procedure
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presented in [15] etc. Explicit asymptotic results for the displacements are
obtained, which could be useful for estimates of certain parameters of

earthquakes.

1. Forced vibrations of a two-layered elastic shell. Consider a two-
layered elastic orthotropic shell (Fig. 1), occupying the domain D = {a,B,y;

o,peD,,0<vy<h +h,}, where D, is the face surface of the first layer, a,

B are lines of curvature of the surface D,, y is

rectangular axis directed downward to the surface
D,. The non-trivial solutions are sought for the

problem of elastodynamics in the given triorthogonal
coordinate system. The shell is under non-classical h,
boundary conditions (which will be formulated h
below). In order to reduce the length of algebraic
computations, the analysis below is presented in

terms of the components t,; of non-symmetric stress

tensor, see [4, 25].
The formulation of the problem includes:
— equations of motion
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— constitutive relations for an orthotropic elastic solid:
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where k_, IcB denote geodesic curvatures, A, B are coefficients of the first

quadratic form, R,, R, are main curvature radii of surface D,, p'’ are mass

volume densities of the layers, agljc) are elastic constants, agi) = ag), and j is

number of the layer.
Let the upper face y = 0 be traction-free:

,(0,8,0,6) =0, 7y (a,$,0,6)=0, 7 (,B,0,8)=0, (3)

and assume that on the contact surface between the first and second layers
the prescribed displacements are given by:

U'(a,B,hy,t) = UM (0, B, by, t) = U' (o, B)exp(iQt), (U, V, W), (4)

where Q is a given excitation frequency of forced vibrations. Perfect contact
between the layers is assumed:

T(Ixy((x"ﬁv hlit) = T(IXI«/((X"Bv hlit)7 (T(xyvrﬁyvtw)i (5)

U'(a, B, hy,t) = UN(a, B by, t), (U, V,W). (6)

If the displacements were prescribed on the traction-free surface, then in
addition to conditions (3) the equation

U'(a,B,0,t) = U (o, pexp(iQt), (U, V, W),
should hold, ie. at y =0 there would be six conditions, whereas in classical

elasticity there are usually only three conditions. Also, at y = h;, conditions

(5), (6) should hold, as well as three more conditions (4), so once again we
have non-classical boundary conditions. As demonstrated in [7], the solution of
the formulated boundary value problem always exists, moreover, it coincides
with the solution of some problem with classical boundary conditions.

Let us introduce the scaling

a=RE P=Rn y=eRC=hC,

U=Ru, V=Rv, W=Rw, 10 =pi7, 6 p?=pp?,

where R is a typical linear size of the shell, total thickness h =h, +h, (e.g.
the least of the radii of curvature and associated with linear sizes of surface
D,, h< R), p and p are typical values of elastic moduli and density, re-

spectively, and
e=h/R

as a small geometrical parameter.
The solutions are sought for in the form:

Q) = QL (EnQexp Q) (o,B,7), mk =123, j=LII, (M)
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where Q;’g denotes any of the stress or displacement components. As a result,

we arrive at a singularly perturbed system with respect to Qfﬁc with a small

parameter €. The stresses and displacements are now represented in
asymptotic form as

W EM ) =T 00E ), mk=123 s=0,.,N, j=LII,
(u?(Em,0), vV, 8), w?(En,0) =
=& (u(E,n,6), 0"V (E,n,0), wP(En,0)). (8)

As follows from (8), there is a significant distinction from the conventio-
nal classical problem, related to relative orders, in particular, all stress compo-
nents are asymptotically of the same order, and so are all displacements,
therefore the traditional assumptions of plate and shell theory are invalid.

Substituting (8) into the dimensionless forms of the governing equations
(1), (2), we arrive at a system of the equations for determining the unknown

coefficients of expansion Q;{’;) in the form
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In view of (9), stress tensor components may be expressed in terms of
w59 09 (0.9

as
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According to (9), displacement components satisfy the following equations:
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Solutions of (13) are given by
u(g,m,€) = CP (&, ) sin g "C + CF (€, m) cos TMC + al (g m, ©),
(w,v,w; 1,3,5; 2,4,6), j=LII, (14)

where
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with 29 59 %) peing particular solutions of equations (13).
Satisfying the conditions (3)—(6), we obtain algebraic systems with re-

spect to the unknowns CEj’S), 1=1,...,6, j=LII, that have finite solutions
provided
cos x(l’“)Q1 #0, ( =h/h, (u,v,w). (15)

Solving these systems, we get the displacements
— for the first layer:
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— for the second layer:
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The stress tensor components may now be calculated by (11).

In particular, the resulting two-term approximation for the displacements
may be presented as
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It should be noted that the relation cosx(l’“)c1 =0, (u,v,w), in (195)
coincides with the resonances for a single-layered elastic shell in the case of
classical boundary conditions, see e.g. [2], ie. when the upper surface is free
and the time-harmonic displacement is prescribed at the lower face. The same
conditions are associated with thickness resonances, and moreover, it is known
that in the vicinity of these resonances the asymptotic solution degenerates,
requiring a special treatment, see [5, 16].

2. Forced vibrations of a three-layered elastic shell with prescribed
displacements on the contact surface between the first and second layers.
Consider a three-layered elastic orthotropic shell occupying the domain
D ={a,B,y; 0, € Dy, 0 <y <h; +h,+hy}, where as above D, is the upper

surface of the first layer, and o, B are lines of curvature of the surface D,.

The governing equations of elastodynamics are given by (1), (2), where now
j = LILIII. The boundary and contact conditions are as follows: the upper
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face y =0 is traction-free (3), and the layers are assumed to be in perfect
contact:

((X,Bhl,t)—T ((X‘Bhlit)v (T(xyvrﬁyvtw)i
U'(a, B, hy,t) = U0, B, by, t), (U, V, W), (19)
oy (0B Ry + Ry t) = T (0, B Ry + Py, 1), (T2 Tp,0 Ty )

U™ (0, B,y + by, t) = UM (0, By +hy, 1), (U, V, W), (20)
with time-harmonic displacement field (4) prescribed at the contact surface
between the first and second layers.

The solution procedure is pretty similar to that presented in the previous
Section 1. Satisfying the conditions (3), (4), (19), (20), the resulting
displacements ™ (¢, n,¢) and w"™¥ (¢ n,C) for the first and second layers

coincide with (16) and (17), respectively, whereas the displacements for the
third layer are

IIIs)(é n,C) = - 1 - ( us)(é TI)MH (MLu) |
55x cosy ¢,

XCOSXHIu (C C’2)_ us)(é n)d;IIX (IL,u) x

x sin M) (¢~ CQ)j £ a9, n,0),

. . Aj h, +h
(u7vi w; ag57ai47_<)7 C_az =1 ! ’ (21)
Al h

where

M9 (&, n) = —al WWBEI (&, ) + &b, (B;“'”(a, -
(w9 (g, n)) TL8) cos M (E, — &y) +

+ @M sin Mg, - Cz)( agsy " -
B (g™ /eos xMC, +

By (&, my " tg x“’“)clj :
T (&,M) = dysdss B (€,m) + g5 (B;“%n) -
Bé“’”(é,n)j (T sin M0, - ¢,) +
all cos (¢, - &) k™) -

B (™ feos MG, + B (& te x“’“)clj :

B (gm) = u" (g, &) - a (g, §,),
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and
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12
The solutions will be finite provided there is no resonance, i.e.

cos x"¢, # 0, ¢, =h,/h, (u, v, w). (22)

The two-term resulting displacements for the first and second layers coincide
with (18), whereas for the third layer

U(III)(g’n’ C) — |:(RM£u’0)(§,T]) T hMiu’U(i,n)j a;gx(lll,u) >
< cos M0 (E — () - (RTI‘“*“(&, n) + RTD(E, n)) x
Xa;l;x(n,u) sin ML) (¢ _C2)} / ( a;5X(II,u) cos X(I,u)glj +

—(I11,1 . A
+ hu( )(Fv’nig)? (u7 U, W, ag57ai47AT)' (23)

12

The stresses may be calculated using (11). Note that the conditions (22)
predictably coincide with (15) for a two-layered shell, and the resonant
conditions involve only the parameters of the first layer, whereas the overall
stress-strain state is obviously affected by the parameters of all three layers.

3. Forced vibrations of a three-layered elastic shell with prescribed
displacements on the interface of the second and third layers. Consider now
the situation when for the same three-layered orthotropic elastic shell

D ={a,B,y; 0, € Dy, 0 <y <h; +h, +hy}, the displacements are imposed on
the contact surface between the second and third layers :

U™ (0, B, hy + Ry, t) = U™ (0, B, by + hy, t) = U (o, B) exp(iQ)
U, V,W). (24)

As before, conditions (19), (20) of perfect contact between the layers are
supposed, and the upper face y =0 is traction-free, i.e. conditions (3) hold.

Satisfying the boundary conditions (3), (24), (19), (20), we get the
solutions for displacements
for the first layer:

1 -
U(I’S)(F;,n, ¢) = A_( a;5 (X(H’u)B;lf’s)(F;,n) N
u3
+ X(H’u)Biu’S)(é,n) cos x(ll,u)(cl _ Qz) _
~ a5 By Y (6 sing (G, ~ §y)) cos 1+

+ o ag B (g ) cos (G, - ) siny (- Gy +
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+ @B (&, )™ sin ™, - ¢,) cos x(E - ql)j +

+a(EM, 0,  (u,0,w), (25)

where

e m) = u e, ) - En Gy, (uv,w).

for the second layer:

w0 =

(d§5x("'“)B§T’S)(é, n)cos x "¢, cos MG - ¢,) -
u3

—al B g,y ™™ sin Mg, siny ™ - C)) -
— @l (-BM9 g, myx ™™ + @k, B0 (g,m)) cos x Mg, +

+ B9 &)y " sin x“'“)qu siny ™™ (C - ¢,) +

_ . A
+u™ e, 0),  (u,v,w; afs,aly, ), (26)
Ay
and for the third layer:
dll
III ,8) (é, n, C) W(Pl(u,s)(&” n) sin x(lll,u)(q _ QZ) +
u3

+ Qe cos M I(C € ) + TG0,

) cAd
(u,U,w; ag57ai477) ) (27)
A12

where

QU9 (&, 1) = Gl (1w (Béﬁ"”(é,n) - B;“’S’(a,n)j x
X (6;5)((1’“) cos X(I’u)f;l cos X(H’u)((;l -G, +
A sin g, sin M - ) )
B9 () = agzang 1" cos MG, ( d35 B (&,m) —
— g By (g,m)cos y M (G, - ¢y) +
B E ™ siny™MOE, - ¢+
+ gty @y ( 9 (g, my ™ -

= siny"C (BE (€ ™ +
+ By (g, my ™ cos y (G, - Gy +
By € mysing ™M(C, - ) ).
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The non-resonant condition allowing the finite solution is given by
Az = 6;5)((11’“) cos x"¢, cos yM(E, - &y) +
+ 6;15%(1’“) sin x(l’“)CI sin X(H’“)(Cl -G,)#0,
i gl A
(u7 v, W, a’557 a4457) . (28)
12
Once again, the stresses may now be calculated from (11).

It is worth noting that formulae (28) in fact coincides with the
corresponding non-resonant conditions for a two-layered orthotropic shell
within the conventional formulation, see [1], ie. when the upper face is free,
and the excitation in the form of associated displacements is applied at the
lower face (provided the layers are in perfect contact).

Once again, we observe that relations (28) imply that the parameters of
the first two layers are only involved in the resonant conditions, whereas the
overall stress-strain state includes the parameters of all three layers. Thus, as
expected, the resonant conditions involve only the parameters of the layers
above the contact surface at which the displacements were prescribed.

Once the stresses and strains are determined, the potential energy of the
deformation can be determined by a well-known formula

1
E = 5 j (O ppr t+ Cyylyy T 0228, + 048, + 0,8, + Gyzayz) dv, (29)
v
whereas the relation
logE =11.8+1.5M (30)

gives estimate for the magnitude M of the anticipated earthquake, see [19]
for more details.

Conclusion. In this paper, the asymptotic solutions of 3D dynamic
problems for multi-layered orthotropic elastic shells with a traction-free
upper face and prescribed displacements on one of the contact inter-layer
surfaces have been obtained in assumption of perfect contact between the
layers. The solutions for displacements and stresses have been derived in the
form of asymptotic series along the small geometrical parameter, which is a
natural feature of thin shells.

The results may be applied to estimate the possibility of delamination, as
well as to calculate the deformation energy required for seismological
applications [19].

The developed methodology may be extended to transient vibrations.
Another potential development is related to analysis of shells of finite size, in
which accounting for static and, in general, dynamic boundary layers would
be required, for more details see [4]. The proposed technique may also be
implemented for the case of non-perfect contact between the layers, as well
as a shell laminate containing more layers. Finally, we not a less trivial
generalisation for layered shells with layers of variable thickness.
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TPUBUMIPHUA OUHAMIYHUA AHAMNI3 LLAPYBATUX MPYXXHUX OBONOHOK

Poszzaanymo mpusumipti OuHamiuHt 3a0ayi 048 WAPY8amMur oOPMOMPONHUL NPYHCHUX
00010HOK 13 BINBHOMN BEPIHBOI NOBePXHer 1 3a0aHUMU TNepemiueHHAMU HA 00HIL 13
mexc modiny wapie 3a yYymosu ideaavHozo kKoumaxmy. Ilo6ydosano 00820x8UAbOBUIL
ACUMNMOMUYHUL PO36’A30K 1 6UHAUEHO Pe30HaHCU moswuru. Ompumani pesyassmamu
MOKHCYMb 3HAUMU NnoOanvble 3aCMOCYB8AHHA MPU OYIHYL NEeSHUX NaAPAMempis 3emie-
mpycis.

Kawouoei caosa: npysxcna 3-D OJunamika, wapysama 000A0HKA, ACUMNMOMUUHUL

memoo0.
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