Н. П. Флейшман, Р. Н. Швец, Г. И. Калита

ПРИМЕНЕНИЕ МЕТОДА ИНВАРИАНТНОГО ПОГРУЖЕНИЯ К ЧИСЛЕННОМУ РЕШЕНИЮ ДВУХТОЧЕЧНЫХ ГРАНИЧНЫХ ЗАДАЧ ТЕОРИИ ОБОЛОЧЕК

В данной статье некоторые известные результаты применения теории инвариантного погружения к решению граничных задач для скалярных дифференциальных уравнений [1] обобщаются на случай двухточечной граничной задачи для системы линейных дифференциальных уравнений общего вида с различной формой задания граничных условий. С этой целью на основе идей теории инвариантного погружения построен устойчивый одношаговый алгоритм решения граничных задач для системы линейных дифференциальных уравнений путем сведения их к эквивалентным задачам Коши, которые в вычислительном отношении выгодно отличаются от исходных. В качестве примера приведено решение осесимметричных краевых задач о напряженнодеформированном состоянии нодоидных и ундулоидных оболочек вращения.

Часто двухточечные одномерные граничные задачи теории упругостипредставляют в виде линейных систем дифференциальных уравнений, которые записываются в матрично-векторном виде:

$$W(t) = A(t) W(t) + F(t), \tag{1}$$

$$BW(0) = \alpha, DW(T) = \gamma.$$
⁽²⁾

Здесь W — неизвестный *n*-мерный вектор (n = 2m, m = 1, 2...); A — матрица размерности $n \times n$; F — *n*-мерный вектор; $B \neq D$ — матрицы размерности $m \times n$; α , γ — *m*-мерные векторы; точкой обозначено дифференцирование по t.

Заметим, что двухточечная система задания условий усложняет численное решение задачи (1) — (2), поскольку в каждой из этих точек в отдельности не содержится достаточной информации для полного определения вектора W(t). С вычислительной точки зрения это соответствует ситуации, когда непосредственное применение различных схем численного интегрирования, таких, как методы Рунге — Кутта, Адамса — Мултона и т. д., невозможно из-за отсутствия в начальной точке информации, необходимой для «запуска» алгоритма.

Построим одношаговый алгоритм решения двухточечной краевой задачи (1) — (2) путем сведения ее к задаче Коши с помощью метода инвариантного погружения. В качестве параметра погружения примем длину интервала T. Учитывая, что решение задачи (1) зависит от T, перепишем систему (1) — (2) следующим образом:

$$W(t, T) = A(t) W(t, T) + F(t),$$
 (1')

$$BW(0, T) = \alpha, DW(T, T) = \gamma.$$
^(2')

Рассмотрим, как изменяется решение задачи W(t, T) в фиксированной точке $t (0 \leq t \leq T)$ при изменении длины интервала T. Дифференцируя уравнения (1') - (2') по T, получаем

$$W_T(t, T) = A(t) W_T(t, T),$$
(3)

$$BW_T(0, T) = 0, \ DW_T(T, T) = -DW(T, T).$$
 (4)

По принципу суперпозиции для линейных систем решение задачи (3) — (4) можно представить в виде

$$W_T(t, T) = \sum_{k=1}^m W_T^k(t, T),$$
 (5)

где $W_T^k(t, T)$ — соответственно решения задач

$$W_T^k(t, T) = A(t) W_T^k(t, T),$$
 (6)

$$BW_T^k(0, T) = 0, \ DW_T^k(T, T) = -\delta_{ik} \sum_{j=1}^n d_{kj} W_j(T, T);$$
(7)

 d_{kj} — элементы матрицы D; δ_{ik} — символ Кронекера; $\dot{W}_{i}(T, T)$ — компоненты вектора $\dot{W}(T, T)$, $i = \overline{1, m}$; $k = \overline{1, m}$.

Для построения решения задачи (6) — (7) рассмотрим вспомогательную двухточечную граничную задачу

$$\dot{Z}^{i}(t, T) = A(t)Z^{i}(t, T),$$
 (8)

$$BZ^{t}(0, T) = 0, \ DZ^{t}(T, T) = I_{i},$$
(9)

где $Z^{l}(t, T) - n$ -мерный неизвестный вектор; $I_{i} - m$ -мерный вектор, все компоненты которого равны нулю, за исключением *i*-й компоненты, равной единице. Теперь на основании линейности задач (6) — (7) и (8) — (9) можно записать

$$W_T^k(t,T) = -\left\{\sum_{j=1}^n d_{kj} \dot{W}_j(T,T)\right\} Z^k(t,T).$$
(10)

Дифференцируя уравнения (8) и (9) по Т, получаем

$$Z_T^{l}(t, T) = A(t) Z_T^{l}(t, T),$$
(11)

$$BZ_T^i(0, T) = 0, \ DZ_T^i(T, T) = -DZ^i(T, T), \ i = \overline{1, m}.$$
 (12)

Решение задачи (11) — (12) запишем в виде

$$Z_T^{i}(t,T) = \sum_{k=1}^{m} v_t^k(t,T), \quad i = \overline{1,m},$$
(13)

где v_l^k (l, T) — соответственно решения задач

$$A_{i}^{k}(t, T) = A(t) v_{i}^{k}(t, T),$$
 (14)

$$Bv_{i}^{k}(0,T) = 0, \ Dv_{i}^{k}(T,T) = -\delta_{ik}\sum_{s=1}^{n} d_{ks}Z_{s}^{i}(T,T), \quad i = \overline{1, m}.$$
(15)

Аналогично соотношению (10) получаем

$$v_i^k(t, T) = -\left\{\sum_{j=1}^n d_{kj}Z_j(T, T)\right\} Z^k(t, T).$$
(16)

Подставляя выражения (10), (16) в (5) и (13) состветственно, находим

$$\mathcal{W}_{T}(t, T) = -\sum_{k=1}^{m} \left\{ \sum_{j=1}^{n} d_{kj} \mathcal{W}_{j}(T, T) \right\} Z^{k}(t, T),$$

$$\mathcal{Z}_{T}^{i}(t, T) = -\sum_{k=1}^{m} \left\{ \sum_{j=1}^{n} d_{kj} Z_{j}^{i}(T, T) \right\} Z^{k}(t, T).$$
(17)

В уравнения (17) входят неизвестные функции $W_i(T, T)$ и $Z_i(T, T)$ ($i = \frac{1}{1, n}$). Для их определения необходимо записать дополнительные уравнения. Для этого рассмотрим соотношения (1') и (8) при t = T. Получим

$$W(I, I) = A(I) W(I, I) + F(I), Z(I, I) = A(I) Z(I, I).$$
 (18)
Введем новые функции

$$r(T) = W(T, T), m^{i}(T) = Z^{i}(T, T), \quad i = \overline{1, m}.$$
 (19)

Дифференцируя их по T, а также учитывая равенства (18), для определения функций r(T), $m^i(T)$, а значит, и W(T, T), $Z^i(T, T)$ получаем урав-

нения

$$r'(T) = A(T)r(T) + F(T) - \sum_{k=1}^{m} \left\{ \sum_{j=1}^{n} d_{kj} W_j(T, T) \right\} m^k(T),$$

$$m^{i'}(T) = A(T) m^{i}(T) - \sum_{k=1}^{m} \left\{ \sum_{j=1}^{n} d_{kj} Z_j^i(T, T) \right\} m^k(T),$$
(20)

где

$$\dot{W}_{i}(T, T) = A(T)r(T) + F(T); \quad \dot{Z}^{l}(T, T) = A(T)m^{l}(T).$$
 (21)

Таким образом, двухточечная краевая задача (1) — (2) приведена к задачам Коши (20), (17) для векторов W(t, T), $Z^{t}(t, T) r(T)$, $m^{t}(T)$ с начальными условиями

$$Br(0) = \alpha, \ Bm'(0) = 0, \ Dr(0) = \gamma, \ Dm'(0) = I_{l}$$
(22)

для системы (20) и

$$W(t, t) = r(t), Z^{i}(t, t) = m^{i}(t), \quad i = \overline{1, m}$$
 (23)

для системы (17). Очевидно, что условием разрешимости, гарантирующим существование единственности решения задачи, является отличие от нуля определителя системы (22).

Вычислительный процесс решения задач Коши (20) — (22) и (17) — (23) состоит в следующем. Предположим, что необходимо получить решение задачи для множества точек $0 \leq t_0 < t_1 < ... < t_N \leq \tilde{T}$, где \tilde{T} — длина интервала интегрирования. В начале интегрируется система уравнений первого порядка (20) для r(T), $m^i(T)$ от T = 0 до $T = t_1$, затем система (17) для функций $W(t_0, T)$, $Z^i(t_0, T)$ с начальными условиями (23) при $t_0 = 0$, а далее система (20) от $T = t_1$ до $T = t_2$, где добавляется система (17) для функций $W(t_1, T)$, $Z^i(t_1, T)$, и т. д.

В отличие от классического подхода решение задачи осуществляется в один прямой ход. Кроме того, имеется возможность определения решения задачи в отдельных точках интервала $0 \ll t \ll \tilde{T}$, так как при решении одних и тех же уравнений (17) на каждом последующем этапе нет необходимости запоминать решения системы (20) на предыдущем, что также не требует увеличения необходимой памяти ЭВМ. В процессе интегрирования (20), (17) можно получить решение задачи для всех длин интервалов, меньших \tilde{T}

Т, что дает возможность провести анализ параметрической задачи.

Разработанный алгоритм решения линейной краевой задачи методом инвариантного погружения реализован в виде программы на языке ФОР-ТРАН. Она состоит из стандартных и нестандартных блоков. К стандартным относятся формирование правых частей систем (20), (17); управление вычислительным процессом решения задач Коши; само численное решение задач Коши (задачи Коши решаются с помощью процедуры Адамса — Мултона для систем, а для получения требуемых начальных «разгонных» значений применяется метод Рунге — Кутта). Нестандартную часть составляют подпрограммы вычисления элементов матрицы A(t), компонентов вектора F(t), а также блоки, в которых задаются или вычисляются матрицы B, Dи компоненты векторов α , γ . Для проверки разработанного алгоритма и составленной программы решалась краевая задача о равновесии однородного упругого стержня. Результаты вычислений точно совпали с решением, приведенным в работе [1]. По той же программе и разработанному алгоритму были решены следующие краевые задачи.

П р и м е р 1. Рассмотрим деформированное состояние нодоидной изотропной оболочки под действием равномерно распределенной нормальной нагрузки. Один край оболочки свободен, второй жестко защемлен (рис. 1). Задача сводится к решению одномерной краевой задачи для системы вось**м**и дифференциальных уравнений [4]

$$\frac{d\bar{N}(s)}{ds} = A(s)\,\bar{N}(s) + \bar{f}(s),\tag{24}$$

где \overline{N} — неизвестный вектор; $\overline{N} = \{N_x, N_z, \hat{S}, M_s, U_x, U_z, v, \vartheta_s\}; A(s)$ — заданная квадратная матрица порядка $n = 8; \overline{f}(s)$ — заданный вектор. Граничные условия задаются в виде

$$N_x = N_z = \hat{S} = M_s = 0$$
 при $s = s_0$,
 $U_x = U_z = v = \vartheta_s = 0$ при $s = s_N$.

Компоненты вектора \overline{N} (s) означают: N_z и N_x — осевое и радиальное усилия; \hat{S} — приведенное усилие; M_s — меридиональный изгибающий момент; U_z и U_x — осевое и радиальное перемещения; v — окружное перемещение; ϑ_s — угол поворота.

Уравнение дуги меридиана ундулоидной оболочки представляется в виде [3]

 $r - r V = (b^{1})^{2} \sin \tilde{\omega}$

$$y = (2\lambda - r_1) F(k^1, \tilde{\varphi}) + r_1 E(k^1, \tilde{\varphi});$$

$$r = \left\{ (2\lambda^2 + c) - 2\lambda \sqrt{\lambda^2 + c} \sin\left\{ \arcsin\left(\frac{-r_0 + (2\lambda^2 + c)}{2\lambda \sqrt{\lambda^2 + c}}\right) - \frac{s - s_0}{\lambda} \right) \right\}^{1/2},$$

где $k = (2\lambda - r_1)$ — модуль эллиптического интеграла; $k^1 = \sqrt{1 - k^2};$

 $F(k^1, \tilde{\varphi}), E(k^1, \tilde{\varphi}) - эллиптические интегралы I и II рода; <math>s - длина$ образующей; $\tilde{\varphi} = \arcsin(\sqrt{r_1^2 - y^2}/k^1r_1) -$ текущая координата; λ — параметр,

Таблица І

s	N _x	Nz	Ms	u _x	μ _z	ϑs
0,0 1,0420 3,1416 5,2360 7,3304 9,4248 11,5192 12,5664 15,7080 18,8496	0,0 0,5479 10 ⁻² 0,7889 10 ⁻¹ 0,1668 0,2148 0,2218 0,1986 6,1788 0,9978 10 ⁻¹ -0,5115 10 ⁻¹	0,0 0,1677 · 10-1 0,9956 · 10-1 0,1864 0,2647 0,3328 0,3893 0,4129 0,4629 0,4800	$\begin{array}{c} 0.0\\ -0.5623 \cdot 10^{-3}\\ -0.2844 \cdot 10^{-3}\\ 0.1498 \cdot 10^{-3}\\ 0.1887 \cdot 10^{-3}\\ 0.1179 \cdot 10^{-3}\\ 0.6973 \cdot 10^{-4}\\ 0.4933 \cdot 10^{-4}\\ 0.7788 \cdot 10^{-3}\\ -0.2436 \cdot 10^{-1} \end{array}$	0,2547 · 10 ¹ 0,3428 · 10 ¹ 0,8913 · 10 ³ 0,1638 · 10 ² 0,2268 · 10 ² 0,2735 · 10 ² 0,3077 · 10 ² 0,3209 · 10 ² 0,3631 · 10 ² 0,0	$\begin{array}{c} -0,2103\cdot10^{1}\\ -0,2523\cdot10^{4}\\ -0,06520\cdot10^{4}\\ -0,1244\cdot10^{2}\\ -0,1595\cdot10^{2}\\ -0,1652\cdot10^{2}\\ -0,1510\cdot10^{2}\\ -0,1389\cdot10^{3}\\ -0,9374\cdot10^{1}\\ 0,0 \end{array}$	0,5981 0,1612 · 10 ³ 0,4486 · 10 ⁴ 0,4173 · 10 ³ 0,2597 · 10 ³ 0,1433 · 10 ⁷ 0,7684 0,5517 0,6646 0,0

характеризующий кривую (0 < λ < r_1); r_1 — радиус цилиндрической части. Рассматриваемая оболочка вращения имеет максимальный объем при минимальной величине площади поверхности при наличии малого отверстия радиуса r_2 по оси оболочки и применяется при конструировании переходных баллонов. Вычисления проводились для следующих данных: $s_0 = 0$; $s_N = 18,849579$; $r_2 = 2$; $r_1 = 10$; $\lambda = 6$; $\nu = 0,3$; h = 0,15; $q_0 = 0,1$; E = 1. Результаты вычислений приведены в табл. 1.

Пример 2. Рассмотрим напряженное состояние ундулоидной оболочки ($s_0 = 0$; $s_N = 12,56636$; $r_2 = 2$, $r_1 = 10$; $\lambda = 4$; $\nu = 0,3$; h = 0,15; E = 1), находящейся в температурном поле

$$\theta = \theta_0 + \theta_1 s^2 / r_1^2,$$

(25)

Таблица 2 ..

\$	Ө, град	σ_s^+	σ_{Φ}^+	σ _s	$\sigma_{\overline{\phi}}$
0,0	200	-0,8000 · 10-2	0,1359.101	$-0,8000 \cdot 10^{-2}$	-0,1359.10-1
0,8975971	201,128	-0,8119.10-2	-0,1369.10-1	$-0,7968 \cdot 10^{-2}$	-0,1369·10 ⁻¹
1,79519	204,512	$-0,8232 \cdot 10^{-2}$	-0,1411.10-1	$-0,8149 \cdot 10^{-2}$	0,1406 · 10 ¹
2,692791	210,152	-0,8257 · 10 ⁻²	-0,1443.10-1	$-0,8617 \cdot 10^{-2}$	0,1442.10 ¹
3,590389	218,047	-0,8533·10 ⁻²	-0,1471.10-1	$-0,8969 \cdot 10^{-2}$	0,1478 • 10-1
4,487986	228,199	$-0,9063 \cdot 10^{-2}$	-0,1531.10-1	$-0,9219 \cdot 10^{-2}$	0,1540·10 ¹
5,385583	240,606	$-0,9635 \cdot 10^{-2}$	$-0,1621 \cdot 10^{-1}$	$-0,9618 \cdot 10^{-2}$	0,1629 · 10 ¹
6,28318	255,270	-0,1021.10-1	$-0,1728 \cdot 10^{-1}$	$-0,1021 \cdot 10^{-1}$	
7,180777	272,189	$-0,1082 \cdot 10^{-1}$	-0,1849·10 ⁻¹	0,1095 · 10 ¹	$-0,1854 \cdot 10^{-1}$
8,078374	291,364	0,1153.10-1	-0,1992·10 ⁻¹	-0,1178·10 ⁻¹	
8,975971	312,795	-0,1254·10 ⁻¹	$-0,2164 \cdot 10^{-1}$	-0,1249.10-1	
9,873569	336,482	-0,1423 · 10 ⁻¹	-0,2333 · 10-1	0,1272-10-1	0,2334 - 10 ⁻¹
10,77117	362,425	0,1651 · 10 ¹	-0,2361·10 ⁻¹	-0,1249·10 ⁻¹	0,2356 · 10 ¹
11,66876	390,624	-0,1668.10-1	$-0,2044 \cdot 10^{-1}$	-0,1453·10 ⁻¹	
12,56636 •	421,079	$-0,6896\cdot 10^{-2}$	-0,1684 • 10 ⁻¹	$-0,2679 \cdot 10^{-1}$	-0,1684.10-1

которое вызывает тепловые деформации [2]

 $\varepsilon_T = \varepsilon_0 + \varepsilon_1 s^2 / r_1^2$, $\varkappa_T = 0$, $\varepsilon_0 = \alpha_i \theta_0$, $\varepsilon_1 = \alpha_i \theta_1$,

где α_t — коэффициент линейного расширения. Результаты вычислений приведены в табл. 2, а графики распределения напряжений σ_s и σ_φ на внешней

поверхности ундулоидной оболочки при $\alpha_t = 14 \cdot 10^{-6}$ l/град, $\theta_0 = 200^\circ$, $\theta_1 = 140^\circ$ — на рис. 2.

Проведенные расчеты показали достаточно хорошую сходимость и устойчивость разработанного алгоритма, что свидетельствует об эффективности применения метода инвариантного погружения для практических целей,

в частности для расчета сложного вида оболочек вращения. Очевидно, что построенный алгоритм можно применять также к решению других одномерных осесимметричных задач теории упругости.

- 1. Касти Д., Калаба Р. Методы погружения в прикладной математике. М. : Мир, 1976. 223 с.
- 2. Коваленко А. Д. Термоупругость. Киев : Вища школа, 1975. 216 с.
- Черевацкий В. Б., Григорьев А. М. К исследованию нодоидных и ундулоидных оболочек. Исслед. по теории пластин и оболочек, 1970, вып. 6/7, с. 251—275.
- Численное решение задач статики ортотропных оболочек с переменными параметрами / Я. М. Григоренко, А. Т. Василенко, Е. И. Беспалова и др. – Киев : Наук. думка, 1975. – 183 с.

Институт прикладных проблем механики и математики АН УССР

Поступила в редколлегию 22.06.79