из соотношений (24), (25), следует пользоваться до того момента времени, при котором φ (τ) $\leqslant \theta_i$ и $\theta|_{z=0} \leqslant \theta_p$. Если при $\tau = \tau_{i,p-1}$ либо $\tau = \tau_{i-1,p}$ становится соответственно $\varphi > \theta_i$ либо $\theta|_{z=0} > \theta_p$, то A в (24) определяется из нового начального условия: $\varphi|_{\tau=\tau_{i,p-1}} = \varphi_{i,p-1}$ либо $\varphi|_{\tau=\tau_{i-1,p}} = \varphi_{i-1,p}$. Время $\tau_{i,p-1}$ определяется из формулы (24) при замене φ на θ_i , а $\tau_{i-1,p}$ — из формулы (23) при z = 0 и замене θ на θ_p .

На ЭВМ произведен расчет температурного поля пластинки, изготовленной из углеродистой стали 20, в различные моменты времени (таблица). При этом на первом и втором этапах в формулах (8) и (9) выбирали соответственно i = 1, 2 и i = 1, 2, 3, причем $c_1 = 32,827 \frac{q}{M^3}, c_2 = 62,294 \frac{q}{M^2}, c_3 = 47,619 \frac{q}{M^2}, \lambda_1 = 36,85 \frac{\text{ккал}}{\text{м} \cdot \text{q} \cdot \text{°C}}, \lambda_2 = 27,2142 \frac{\text{ккал}}{\text{м} \cdot \text{q} \cdot \text{°C}}, \lambda_3 = 26,1 \frac{\text{ккал}}{\text{м} \cdot \text{q} \cdot \text{°C}}, \alpha = 282,2 \frac{1}{\text{м}}, \theta_1 = 22110 \frac{\text{ккал}}{\text{м} \cdot \text{q}}, \theta_2 = 30000 \frac{\text{ккал}}{\text{м} \cdot \text{q}}, q = 15 \cdot 10^6 \frac{\text{ккал}}{\text{м}^2 \cdot \text{q}}, d = 0,004$ м. Начальная температура пластинки и температура внешней среды приняты равными 100 °C.

 Био М. Вариационные принципы в теории теплообмена.— М. : Энергия, 1975.— 209 с.
 Львовский университет
 Поступила в редколлегию 19.11.79

УДК 539.377

Л. П. Беседина

ОПТИМАЛЬНЫЕ ТЕМПЕРАТУРНЫЕ ПОЛЯ ЛОКАЛЬНОГО ПОДОГРЕВА КРУГОВОЙ ПЛАСТИНКИ ПРИ ТОЧЕЧНОЙ СВАРКЕ

Рассмотрим тонкую круговую пластинку радиуса R, нагреваемую в промежутке времени $0 \leq \tau \leq \tau_{H}$ неподвижным постоянным по толщине сварным источником тепла мощности q. В условиях конвективного теплообмена с внешней средой усредненное по толщине температурное поле определяется по формулам [4, 5]

$$T_{0}(\rho, \tau) = \frac{q}{4\pi\lambda\hbar} K_{0}(\rho, \omega) \quad \text{для} \quad 0 \leq \tau \leq \tau_{\text{H}},$$

$$T_{0}(\rho, \tau) = \frac{q}{4\pi\lambda\hbar} [K_{0}(\rho, \omega) - K_{0}(\rho, \omega - \omega_{\text{H}})] \quad \text{для} \quad \tau_{\text{H}} \leq \tau < \infty,$$
(1)

где

$$K_{0}(\rho, \omega) = \int_{0}^{\omega} e^{-\frac{\kappa R \rho}{2} \left(\xi + \frac{1}{\xi}\right)} \frac{d\xi}{\xi};$$

 $ω = \frac{2 \varkappa a \tau}{R \rho}$; $ω_{\mu} = \frac{2 \varkappa a \tau_{\mu}}{R \rho}$; $\varkappa = \frac{\alpha_0}{\lambda h}$; ρ , ϕ — полярная система координат ($\rho = \frac{r}{R}$, $r^2 = x^2 + y^2$); α_0 , a, λ — коэффициенты теплоотдачи, температуропроводности, теплопроводности соответственно; 2h — толщина пластинки; δ (ρ) — дельта-функция Дирака; S_+ (τ) — асимметричная единичная функция. Примем, что материал пластинки упругопластический. Температурную зависимость характеристик материала будем учитывать по следующей приближенной схеме:

$$\sigma_T(T) = \begin{cases} \sigma_T = \text{const} \quad \text{для} \quad T < T_*, \\ 0 \quad \text{для} \quad T \ge T_*. \end{cases}$$
(2)

Пусть высокоградиентное в окрестности сварного источника температурное поле (1) приводит к термопластическому деформированию области ρ_0 (τ) $\leqslant \rho \leqslant \rho_0^{\bullet}$ (τ). В процессе нагрева граница области $\rho = \rho_0$ (τ) определяется из уравнения изотермы

$$T_0(\rho_0, \tau) = T_*.$$
 (3)

Зону $0 \le \rho \le \rho_0$ (т) внутри изотермы (3) согласно принятой схеме (2) и работе [1] будем считать свободной от напряжений.

Напряженное состояние области ρ_0 (τ) $\leqslant \rho \leqslant 1$ пластинки, вызванное температурным полем T (ρ , τ), характеризуется радиальным σ , и кольцевым σ_{θ} напряжениями, которые находятся из системы уравнений

$$\frac{d\sigma_r}{d\rho} + \frac{\sigma_r - \sigma_{\theta}}{\rho} = 0,$$

$$\frac{d}{d\rho} (\sigma_{\theta} - \nu \sigma_r) + E\alpha \frac{dT}{d\rho} + (1 + \nu) \frac{\sigma_{\theta} - \sigma_r}{\rho} = 0.$$
(4)

При заданных на краю $\rho = 1$ радиальных усилиях σ_1 условия на краях области ρ_0 (τ) $\leqslant \rho \leqslant 1$ будут такими:

$$\sigma_r(\rho_0) = 0, \quad \sigma_r(1) = \sigma_1. \tag{5}$$

Здесь а — коэффициент линейного температурного расширения; v — коэффициент Пуассона. В этом случае напряжения в области ρ_0 (τ) $\leqslant \rho \leqslant 1$ определяются по формулам

$$\sigma_{r} = E \left[\frac{(\rho^{2} - \rho_{0}^{2})}{(1 - \rho_{0}^{2})\rho^{2}} \frac{\sigma_{1}}{E} + \frac{\alpha (\rho^{2} - \rho_{0}^{2})}{(1 - \rho_{0}^{2})\rho^{2}} \int_{\rho_{0}}^{1} \rho T d\rho - \frac{\alpha}{\rho^{2}} \int_{\rho_{0}}^{\rho} \xi T d\xi \right],$$

$$\sigma_{\theta} = E \left[\frac{(\rho^{2} + \rho_{0}^{2})}{(1 - \rho_{0}^{2})\rho^{2}} \frac{\sigma_{1}}{E} + \frac{\alpha (\rho^{2} - \rho_{0}^{2})}{(1 - \rho_{0}^{2})\rho^{2}} \int_{\rho_{0}}^{1} \rho T d\rho + \frac{\alpha}{\rho^{2}} \int_{\rho_{0}}^{\rho} \xi T d\xi - \alpha T \right].$$
(6)

Пусть радиальное напряжение σ, на краю пластинки ρ = 1 задано в виде

$$\sigma_{1} = \frac{(1 - \rho_{0}^{2})\rho_{*}^{2}}{\rho_{*}^{2} + \rho_{0}^{2}} \left[\sigma_{*} + E\alpha \left(T_{*} - \frac{1}{\rho_{*}^{2}} \int_{\rho_{0}}^{\rho_{*}} \rho T d\rho \right) \right] - E\alpha \int_{\rho_{0}}^{1} \rho T d\rho, \qquad (7)$$

где

$$\sigma_* = \sigma_{\theta} (\rho_*), \quad T_* = T (\rho_*) \qquad (\rho_0 (\tau) \leqslant \rho_* < 1). \tag{8}$$

Тогда формулы (6) принимают вид

$$\sigma_{r} = \frac{(\rho^{2} - \rho_{0}^{2})\rho_{\star}^{2}}{(\rho_{\star}^{2} + \rho_{0}^{2})\rho^{2}} \left[\sigma_{\star} + E\alpha \left(T_{\star} - \frac{1}{\rho_{\star}^{2}}\int_{\rho_{0}}^{\rho_{\star}}\rho Td\rho\right)\right] - \frac{E\alpha}{\rho^{2}}\int_{\rho_{0}}^{\rho}\xi Td\xi,$$

$$\sigma_{\theta} = \frac{(\rho^{2} + \rho_{0}^{2})\rho_{\star}^{2}}{(\rho_{\star}^{2} + \rho_{0}^{2})\rho^{2}} \left[\sigma_{\star} + E\alpha \left(T_{\star} - \frac{1}{\rho_{\star}^{2}}\int_{\rho_{0}}^{\rho_{\star}}\rho Td\rho\right)\right] + \frac{E\alpha}{\rho^{2}}\int_{\rho_{0}}^{\rho}\xi Td\xi - E\alpha T.$$
(9)

Определим такое дополнительное к T_0 (ρ , τ) температурное поле T_1 (ρ , τ) подогрева области ρ_* (τ) $\leqslant \rho \leqslant 1$ пластинки, для которого суммарное температурное поле

$$T(\rho, \tau) = T_0(\rho, \tau) + T_1(\rho, \tau)$$
(10)

при заданных ограничениях на температуру $T(\rho, \tau)$ и напряжения обеспечивает условия, оптимально близкие к условиям упругого деформирования. В качестве критерия оптимизации возьмем функционал энергии формоизменения, который с учетом тепловой деформации в перпендикулярном к плоскости пластинки направлении записывается для области $\rho_*(\tau) \leq \rho \leq 1$ в

виде

$$U[\sigma, \sigma_0] =$$

$$= \frac{4\pi h}{3E(1+\nu)} \int_{\rho_*}^{1} \left[(1+\nu+\nu^2) \left(\sigma_r^2 + \sigma_\theta^2 \right) - (1+4\nu+\nu^2) \sigma_r \sigma_\theta \right] \rho d\rho.$$
(11)

С учетом формул (9) функционал (11) представляется заданным на множестве функций температурных полей Τ (ρ, τ).

Ставится вариационная задача о минимизации функционала (11) на множестве допустимых функций температурных полей $T(\rho, \tau)$, обеспечивающих условия стационарности следующих функционалов:

$$U_{ij}[T] \equiv \int_{\rho_{\bullet}}^{\rho_{j}} \rho^{i} T\left(\rho, \tau\right) d\rho = A_{ij}(\tau), \qquad i = \overline{k_{ij}, k_{j} + n_{j}}; \quad j = \overline{1, m} \quad (12)$$

при условиях, что радиальное о, и кольцевое ов напряжения могут изменяться в заданных пределах:

$$\sigma_r^{(1)} \leqslant \sigma_r \leqslant \sigma_r^{(2)}, \quad \sigma_{\theta}^{(1)} \leqslant \sigma_{\theta} \leqslant \sigma_{\theta}^{(2)}, \tag{13}$$

а функция T (р, т) положительна и ограничена значением kT в области $\rho_{**} \leqslant \rho \leqslant 1$ ($\rho_{*} < \rho_{**}, k < 1$). С учетом сформулированных ограничений функции 7 (ρ , τ), σ , (ρ , τ),

 σ_{θ} (ρ , τ) представим в виде

$$\sigma_{r}(\rho, \tau) = \frac{\sigma_{r}^{(2)} - \sigma_{r}^{(1)}}{2} \left[\sin \varphi_{1}(\rho, \tau) + \frac{\sigma_{r}^{(2)} + \sigma_{r}^{(1)}}{\sigma_{r}^{(2)} - \sigma_{r}^{(1)}} \right],$$

$$\sigma_{\theta}(\rho, \tau) = \frac{\sigma_{\theta}^{(2)} - \sigma_{\theta}^{(1)}}{2} \left[\sin \varphi_{2}(\rho, \tau) + \frac{\sigma_{\theta}^{(2)} + \sigma_{\theta}^{(1)}}{\sigma_{\theta}^{(2)} - \sigma_{\theta}^{(1)}} \right];$$
(14)

$$T(\rho, \tau) = \frac{kT_*}{2} [1 + \sin \varphi_3(\rho, \tau)] [S_-(\rho - \rho_{\bullet \bullet}) - S_+(\rho - 1)], \quad (15)$$

где φ_i (ρ , τ) — неизвестные функции.

Таким образом, решение задачи сводится к нахождению экстремалей функционала [2, 3]

$$U^{*} = \frac{4\pi Eh}{3(1+\nu)} \int_{\rho_{*}}^{1} \left\{ \rho \left[(1+\nu+\nu^{2}) \left(\sigma_{r}^{2}+\sigma_{\theta}^{2}\right) - (1+4\nu+\nu^{2}) \sigma_{r}\sigma_{\theta} \right] + \right. \\ \left. + \sum_{l=1}^{m} \sum_{l=k_{j}}^{k_{l}+n_{j}} \left[\tau_{l}(\tau) \rho^{t} \alpha T\left(\rho,\tau\right) \left[S_{-}\left(\rho-\rho_{*}\right) - S_{+}\left(\rho-\rho_{j}\right) \right] + \right. \\ \left. + \lambda_{1}\left(\rho,\tau\right) \left[\sigma_{r} - \frac{\sigma_{r}^{(2)} - \sigma_{r}^{(1)}}{2} \left(\sin \varphi_{1}\left(\rho,\tau\right) + \frac{\sigma_{r}^{(2)} + \sigma_{r}^{(1)}}{\sigma_{r}^{(2)} - \sigma_{r}^{(1)}} \right) \right] + \right. \\ \left. + \lambda_{2}\left(\rho,\tau\right) \left[\sigma_{\theta} - \frac{\sigma_{\theta}^{(2)} - \sigma_{\theta}^{(1)}}{2} \left(\sin \varphi_{2}\left(\rho,\tau\right) + \frac{\sigma_{\theta}^{(2)} + \sigma_{\theta}^{(1)}}{\sigma_{\theta}^{(2)} - \sigma_{\theta}^{(1)}} \right) \right] + \right. \\ \left. + \lambda_{3}\left(\rho,\tau\right) \left[\alpha T - \alpha \frac{kT_{*}}{2} \left(1 + \sin \varphi_{3}\left(\rho,\tau\right) \right) \left(S_{-}\left(\rho-\rho_{**}\right) - S_{+}\left(\rho-1\right) \right) \right] \right\} d\rho$$

$$(16)$$

на множестве функций T (ρ , τ), φ_i (ρ , τ), которые удовлетворяют уравнениям (9), (14), (15).

Из необходимого условия экстремума приходим к системе уравнений Эйлера

$$T(\rho, \tau) - a \int_{\rho_{*}}^{1} \rho T d\rho - b - \sum_{i=1}^{m} \sum_{i=k_{j}}^{k_{j}+n_{j}} \lambda_{ij}(\tau) \rho^{i-1} \left[S_{-}(\rho - \rho_{*}) - S_{+}(\rho - \rho_{j}) \right] +$$

где

$$a = \frac{3(1+\nu)^2}{2(1+\nu+\nu^2)\alpha};$$

$$b = \frac{1}{4(1+\nu+\nu^2)} \left[3(1+\nu)^2\rho_1^2 + (1-\nu)^2\right] \left(\frac{\sigma_*}{\alpha E} - T_*\right).$$
(18)

Рассмотрим случай, когда температура, радиальные и кольцевые сжимающие напряжения не превышают допустимых, т. е. необходимо учитывать только ограничения на величину растягивающих кольцевых напряжений $\sigma_{\theta}\leqslant\sigma_{\theta}^{(2)}$ ($\lambda_{1}=0,\,\lambda_{3}=0$). При m=1 получаем

$$T(\rho, \tau) = \left\{ B_{0}(\tau) + \sum_{i=k_{1}}^{k_{1}+n_{1}} \lambda_{i1}(\tau) \rho^{i-1} \left[S_{-}(\rho - \rho_{0}) - S_{+}(\rho - \rho_{1}) \right] \right\} \left[S_{-}(\rho - \rho_{0}) - S_{+}(\rho - \rho_{1}) \right] + \left\{ \frac{1}{(1+\nu)\alpha} \left[\frac{B_{1}(\tau)}{\rho} + (1+\nu) B_{2}(\tau) \right] - \frac{1-\nu}{E\alpha} \sigma_{0}^{(2)} \right\} S_{+}(\rho - \rho_{1}^{*}).$$
(19)

Здесь B_i (т), λ_{i1} (т) — параметры, которые при заданном допустимом напряжении σ_θ⁽²⁾ определяются из условий локального нагрева и сопряжения температурного поля и напряжений $\sigma_{,}$ для областей $\rho_{0} \leq \rho \leq \rho_{1}^{*}$, где $\sigma_{\theta} < \sigma_{\theta}^{(2)}$, и $\rho_{1}^{*} < \rho \leq 1$, где $\sigma_{\theta} = \sigma_{\theta}^{(2)}$ в сечении $\rho = \rho_{1}^{*}$. Численные исследования оптимальных суммарных температурных по-лей и напряжений в пластинке из M-40 (E = 7100 кг/мм², $\alpha = 24,2 \times 10^{-10}$

 \times 10⁻⁶ l/град, $v = 0,3; T_* = 343^{\circ}$ C) в процессе сварки выполнены для

момента времени $\tau = \tau_{\rm H}$ теплонасыщения. На рис. 1 представлены профили оптимальных суммарных температурных полей (19), соответствующих $\rho_1^* =$ = 1, условиям локального нагрева $T(\rho_0) = T_*, T(\rho_1) = T_{**}, T(1) = T_{**}$ при $T_{**} = 100^{\circ}$ С для $k_1 = 0, n_1 = 1$ (сплошные) и $k_1 = 1, n_1 = 1$ (штриховые линии). Цифрами 1, 2, 3 обозначены графики, соответствующие $\sigma_0 =$ = -15; -10; -5 кг/мм². Из этого рисунка видно, что радиальные усилия σ_1 на краю пластинки $\rho = 1$ зависят от величины кольцевого напряжения

 σ_0 в сечении $\rho = \rho_0$ и уменьшаются с увеличением последнего по абсолютной величине.

На рис. 2 кривыми 1 изображены оптимальные температурные поля (19) и напряжения для $\rho_1^* = 1$, $\sigma_0 = 0$, $k_1 =$ = 1, $n_1 = 1$ и условий локального нагрева $T(\rho_0) = T_*; T(\rho_1) = T_{**}, T(1) =$ $= T_{**},$ соответствующие $\rho_1 = 0,6$ (сплошные) и $\rho_1 = 0,3$ (штриховые линии). На этом же рисунке приведены соответствующие оптимальные температурные поля (19) и напряжения при

ограничении на кольцевое напряжение $\sigma_{\theta} \leqslant \sigma_{\theta}^{(2)}$ для $\sigma_{\theta}^{(2)} = 25$ кг/мм² (кривые 2) для $\rho_1 = 0,6$, $\rho_1^* = 0,4$ (сплошные) и $\rho_1 = 0,3$, $\rho_1^* = 0,2$ (штриховые линии).

На рис. З представлены графики изменения параметра ρ_1 , характеризующего границу области $\rho_1 \ll \rho \ll 1$ ограничений кольцевых растягивающих напряжений в зависимости от величины ограничений $\sigma_{\theta}^{(2)}$ для оптимальных температурных полей (19) при $k_1 = 1$, $n_1 = 1$ и $\rho_1 = 0,3$ (сплошные), $\rho_1 = 0,45$ (штриховые) и $\rho_1 = 0,6$ (штрихпунктирные линии). На этом же рисунке соответствующими линиями представлены графики температур $T(\rho_1)$, которые достигаются в сечении ρ_1 .

- 1. Винокуров В. А. Сварочные деформации и напряжения.— М. : Машиностроение, 1968.— 236 с.
- 2. Гельфанд И. М., Фомин С. В. Вариационное исчисление. М. : Физматгиз, 1961. 228 с.
- 3. Григолюк Э. И., Подстригач Я. С., Бурак Я. И. Оптимизация нагрева оболочек и пластин. Киев : Наук. думка, 1979. 364 с.
- 4. Подстригач Я. С., Коляно Ю. М. Неустановившиеся температурные поля и напряжения в тонких пластинах.— Киев : Наук. думка, 1972.— 308 с.
- 5. Рыкалин Н. Н. Тепловые основы сварки. М. ; Л. : Изд-во АН СССР, 1947. 271 с.

Институт прикладных проблем механики и математики АН УССР

УДК 539.4.014: 621.785.2: 621.791.052

Я. П. Романчук, Н. И. Полищук

ОПТИМАЛЬНЫЙ ЛОКАЛЬНЫЙ ПОДОГРЕВ ПЛАСТИНКИ ДВИЖУЩИМСЯ ТЕМПЕРАТУРНЫМ ПОЛЕМ

Рассмотрим отнесенную к декартовой системе координат x^*oy^* свободную на краях тонкую прямоугольную пластинку длины *l*, ширины *m* и толщины *2h*. Пластинка находится под воздействием стационарного в подвижной системе координат *хоу* ($x = x^* - v\tau$, $y = y^*$) температурного поля

$$T_{0}(x) = \frac{q}{4\pi\lambda h} e^{-\frac{vx}{2a}} K_{0}\left(x \sqrt{\frac{v^{2}}{4a^{2}} + \frac{b}{a}}\right), \qquad (1)$$

Поступила в редколлегию 20.09.79