Пример 3. Эллиптическая трещина:
$$L(x, y) = \frac{x^2}{a^2} + \frac{y^2}{b^2} - 1$$
. Поэтому $A = -1$; $B = 0$; $C = a^{-2}$; $D = b^{-2}$;
 $y = -\frac{b^2 \cos \alpha}{\sqrt{b^2 \cos^2 \alpha + a^2 \sin^2 \alpha}}$; $x = \frac{a^2 \sin \alpha}{\sqrt{b^2 \cos^2 \alpha + a^2 \sin^2 \alpha}}$;
 $\Pi = \frac{4}{b^2 \cos^2 \alpha + a^2 \sin^2 \alpha}$.

При q = 0 имеем $\beta_1 = \gamma_2 = 0$. Определяя по формулам (11) ω_i (i = 1, 2, 3) и используя формулы (17), получаем

$$\begin{split} k_{1} &= \frac{N_{3}b\,\sqrt{\pi}}{E\,(k)\,\sqrt[4]{b^{2}\cos^{2}\alpha + a^{2}\sin^{2}\alpha}}; \quad k^{2} = \frac{a^{2} - b^{2}}{a^{2}}; \\ k_{2} &= \frac{k^{2}b\,\sqrt{\pi}}{\sqrt[4]{b^{2}\cos^{2}\alpha + a^{2}\sin^{2}\alpha}} \left(\frac{N_{1}\sin\alpha}{(k^{2} - \nu)\,E\,(k) + \nu k'^{2}F\,(k)} - \frac{N_{2}\cos\alpha}{(k^{2} + \nu k'^{2})\,E\,(k) - \nu k'^{2}F\,(k)}\right); \\ k_{3} &= \frac{(1 - \nu)\,k^{2}b\,\sqrt{\pi}}{\sqrt[4]{b^{2}\cos^{2}\alpha + a^{2}\sin^{2}\alpha}} \left(\frac{N_{1}\cos\alpha}{(k^{2} - \nu)\,E\,(k) + \nu k'^{2}F\,(k)} + \frac{N_{2}\sin\alpha}{(k^{2} + \nu k'^{2})\,E\,(k) - \nu k'^{2}F\,(k)}\right), \end{split}$$

где E (k) и F (k) — полные эллиптические интегралы.

- 1. Ворович И. И., Александров В. М., Бабешко В. А. Неклассические смешанные задачи
- теории упругости.— М.: Наука, 1974.— 455 с. 2. Кит Г. С., Хай М. В. Интегральные уравнения пространственных задач теплопровод-ности для тел с трещинами.— Докл. АН УССР. Сер. А, 1975, № 8, с. 704—707.
- Кит Г. С., Хай М. В. Интегральные уравнения пространственных задач термоупругости для тел с трещинами.— Докл. АН УССР. Сер. А, 1975, № 12, с. 1108—1112.
- 4. Панасюк В. В. Предельное равновесие хрупких тел с трещинами.— Киев : Наук. думка, 1968.— 246 c.
- Shah R. C., Kobayashi A. S. On the parabolic crack in an elastic solid.— Eng. Frac. Mech., 1968, 1; N 2, p. 309—325.

Институт прикладных проблем механики и математики АН УССР

Поступила в редколлегию 29.09.78

ľ

УДК 539.3

5.60

И. С. Костенко

К ОПРЕДЕЛЕНИЮ КОЭФФИЦИЕНТОВ ИНТЕНСИВНОСТИ УСИЛИЙ И МОМЕНТОВ В ОКРЕСТНОСТЯХ ВЕРШИН ТРЕЩИН В ЗАМКНУТОЙ ЦИЛИНДРИЧЕСКОЙ ОБОЛОЧКЕ

Рассмотрим замкнутую цилиндрическую оболочку с периодической системой параллельных прямолинейных трещин, центры которых расположены вдоль одной окружности: $\alpha = 0$ (α — отнесенная к радиусу оболочки координата). Предположим, что оболочка находится под действием внешней нагрузки, которая в идентичной оболочке без трещин вызывает осесимметричное напряженное состояние, а к противоположным берегам трещин приложены равные по величине и противоположно направленные усилия и моменты. Напряженно-деформированное состояние такой оболочки будет циклически симметричным, и в дальнейшем будем рассматривать цилиндрическую панель $|\beta| \leqslant \frac{\pi}{k}$ с трещиной $|\alpha| \leqslant \alpha_0$, $\beta = 0$ ($\alpha_0 = l/R$; l - cшатудлина трещины; β — отнесенная к R координата вдоль направля-ನಮಕ್ಕಾ).

Пое определении напряженного состояния такой оболочки будем исхо-2875 из уразнений общей моментной теории [1], записанных в комплексной ссоже [3]. Воспользовавшись, как и в случае технической теории оболочек [4], методом дисторсий с применением аппарата обобщенных функций, задачу об определении напряженного состояния в оболочке сведем к решению системы сингулярных интегральных уравнений:

$$\sum_{i=1}^{2} \int_{-1}^{1} F_{i}(u) \left\{ \frac{a_{ij}}{u-s} + k\alpha_{0} K_{ij} \left[\alpha_{0} \left(s-u \right) \right] \right\} du = 2\pi f_{i}(s), \quad |s| < 1 \quad (i = 1, 2)$$
rge

$$F_1(u) = \frac{d}{du} \varepsilon(u); \quad F_2(u) = -c \frac{d}{du} \varkappa(u);$$

$$\varepsilon(u) = \frac{1}{R} (v^+ - v^-); \quad \varkappa(u) = \theta_2^+ - \theta_2^-;$$

$$f_1(s) = -\frac{N_2^0}{Eh}; \quad f_2(s) = -\frac{M_2^0}{REhc};$$

 $a_{11} = 1; \quad a_{12} = a_{21} = -c(1-v); \quad a_{22} = 3 - 2v - v^2; \quad s = \alpha/\alpha_0.$ Ядра системы имеют вид

$$\begin{split} & K_{11}(z) = -\frac{1}{2} \operatorname{cth} \frac{kz}{2} + \frac{1}{kz} - \frac{1}{2} \operatorname{cth} \frac{kz}{2} \left(1 - \frac{kz}{\operatorname{sh} kz}\right) + \\ & + \left(1 - e^{-b|z|} \cos bz\right) \operatorname{sgn} z + K_{21}^{0}(z); \\ & K_{22}(z) = -\frac{a_{22}}{2} \operatorname{cth} \frac{kz}{2} + \frac{a_{22}}{kz} + \frac{a_{22}}{2} \operatorname{cth} \frac{kz}{2} \left(1 - \frac{kz}{\operatorname{sh} kz}\right) - \\ & - v^{2}(1 - e^{-b|z|} \cos bz) \operatorname{sgn} z + K_{22}^{0}(z); \\ & K_{12}(z) = K_{21}(z) = -\frac{a_{12}}{2} \operatorname{cth} \frac{kz}{2} + \frac{a_{12}}{kz} + \frac{a_{12}}{2} \operatorname{cth} \frac{kz}{2} \left(1 - \frac{kz}{\operatorname{sh} kz}\right) + \\ & + ve^{-b|z|} \sin bz - K_{12}^{0}(z); \\ & K_{11}^{0}(z) = c_{0} \left\{u_{1}(z) \left[\left(\frac{1}{2a^{2}} - 2\right)u_{2}(z) + \frac{1}{2a^{2}b^{2}} u_{3}(z)\right] - \\ & - \frac{1}{2a^{2}} \operatorname{sgn} z - e^{-|z|}(z - 2\operatorname{sgn} z)\right\} + S_{11}(z); \\ & S_{11}(z) = \sum_{n=m}^{\infty} \left\{\sum_{j=1}^{2} \omega_{1}(z) \left[B_{jn}^{(1)}\omega_{2}(z) + B_{jn}^{(2)}\omega_{3}(z)\right] - \omega_{4}(z) \left[knz - 2\operatorname{sgn} z\right]\right\}; \\ & K_{22}^{0}(z) = c_{0} \left\{u_{1}(z) \left[\left(\frac{2(b^{4} + w)}{a^{2}} - 4w\right)u_{2}(z) + \frac{v2b^{2}}{a^{2}} u_{3}(z)\right] - \frac{2(b^{4} + w)}{a^{2}} \operatorname{sgn} z + \\ & + 4we^{-|z|}\operatorname{sgn} z\right\} + \sum_{n=m}^{\infty} \left\{\sum_{j=1}^{2} \omega_{1}(z) \left[Q_{jn}^{(3)}\omega_{3}(z) + Q_{jn}^{(4)}\omega_{2}(z)\right] + 4w\omega_{4}(z)\operatorname{sgn} z\right\} - \\ & - w^{2}S_{11}(z); \\ & K_{12}^{0}(z) = c_{0} \left\{u_{1}(z) \left[u_{2}(z) - \frac{2b^{4} + w}{2a^{2}b^{2}} + \left(\frac{w}{2a^{2}} - 2v\right)u_{3}(z)\right] - \frac{2b^{4} + w}{2a^{2}b^{2}} \operatorname{sgn} z - \\ & - \frac{w^{2}S_{11}(z); \\ & K_{12}^{0}(z) = c_{0} \left\{u_{1}(z) \left[u_{2}(z) - \frac{2b^{4} + w}{2a^{2}b^{2}} + \left(\frac{w}{2a^{2}} - 2v\right)u_{3}(z)\right] - \frac{2b^{4} + w}{2a^{2}b^{2}} \operatorname{sgn} z - \\ & - \frac{w^{2}S_{11}(z); \\ & K_{12}^{0}(z) = c_{0} \left\{u_{1}(z) \left[u_{2}(z) - \frac{2b^{4} + w}{2a^{2}b^{2}} + \left(\frac{w}{2a^{2}} - 2v\right)u_{3}(z)\right] - \frac{2b^{4} + w}{2a^{2}b^{2}} \operatorname{sgn} z - \\ & - \frac{w^{2}S_{11}(z); \\ & K_{12}^{0}(z) = c_{0} \left\{u_{1}(z) \left[u_{2}(z) - \frac{2b^{4} + w}{2a^{2}b^{2}} + \left(\frac{w}{2a^{2}} - 2v\right)u_{3}(z)\right] - \frac{w}{2b^{2}}\omega_{4}(z)\operatorname{knz}\right\}, \\ ride c_{0} = 1 \operatorname{npu} k = 1; c_{0} = 0 \operatorname{npu} k > 1; m = 2 \operatorname{npu} k = 1; m = 1 \operatorname{npu} k > 1; \\ & u_{1}(z) = e^{-Va+h} \ln^{|z|}; \quad u_{2}(z) = \operatorname{sgn} z \cos\sqrt{a - 1} z; \quad u_{3}(z) = \operatorname{sin} \sqrt{a - 1} z; \\ & \omega_{1}(z) = e^{-knh} \ln^{|z|}; \quad \omega_{2}(z) = \operatorname{sgn} z \cos\sqrt{a - 1} z$$

$$\begin{aligned} Q_{jn}^{(2)} &= \left\{ (-1)^{j+1} \left[v N_{in}^{(1)} - P_{in}^{(2)} \right] - \frac{w}{2b^2} P_{in}^{(1)} \right\} / X_{in}; \\ Q_{in}^{(3)} &= \left\{ 2 \left(1 - v \right) \left[N_{in}^{(1)} - P_{in}^{(2)} \right] + (-1)^{j+1} \frac{2b^2}{k^2 n^2} P_{in}^{(1)} \right\} / X_{in}; \\ Q_{jn}^{(4)} &= \left\{ 2 \left(1 - v \right) \left[N_{in}^{(2)} - P_{in}^{(1)} \right] - (-1)^{j+1} \frac{2b^2}{k^2 n^2} P_{in}^{(2)} \right\} / X_{in}; \\ N_{in}^{(1)} &= l_{in} b_{in} \left(b_{in}^2 - 3a_{in}^2 \right) - a_{in} g_{in} \left(a_{in}^2 - 3b_{in}^2 \right); \\ N_{in}^{(2)} &= l_{in} a_{in} \left(3b_{in}^2 - a_{in}^2 \right) + b_{in} g_{jn} \left(3a_{in}^2 - b_{in}^2 \right); \\ P_{in}^{(1)} &= a_{in} l_{in} - b_{in} g_{jn}; \quad P_{in}^{(2)} &= l_{in} b_{in} + g_{in} a_{in}; \\ X_{in} &= g_{in}^2 + l_{in}^2; \quad l_{in} &= b_{in} r_{in} + a_{in} s_{in}; \\ g_{jn} &= a_{jn} r_{in} - b_{in} s_{in}; \quad r_{in} &= 1 + a_{in}^2 - b_{in}^2; \\ s_{jn} &= 2a_{jn} b_{jn} + (-1)^j \frac{b^2}{k^2 n^2}; \quad a_{in} &= \frac{1}{\sqrt{2}} \sqrt{R_{in} - H_{in}}; \\ b_{in} &= \frac{1}{\sqrt{2}} \sqrt{R_{in} + H_{in}}; \quad R_{in} &= \sqrt{H_{in}^2 + E_{in}^2}; \\ r_{in} &= (-1)^{j+1} 2s_{1n} + q_{1n}; \quad H_{in} &= (-1)^{j+1} q_{2n} + 1; \quad q_{1n} &= \frac{b}{kn} \sqrt{d_n + s_n}; \\ q_{2n} &= \frac{b}{kn} \sqrt{d_n - s_n}; \quad d_n &= \sqrt{1 + s_n^2}; \quad w = 1 - v; \quad s_n &= s_{1n} - \frac{1}{2b^2}; \end{aligned}$$

$$s_{1n} = \frac{b^2}{2k^2n^2}$$
; $a = \sqrt{1+b^4}$; $2b^2 = R/d$; $d = h/\sqrt{3(1-v^2)}$; $c = 1/2b^2$;

h — полутолщина оболочки; E — модуль Юнга; v — коэффициент Пуассона. Функции $K_{11}(z)$, $K_{12}(z)$, $K_{22}(z)$ непрерывны для всего множества действительных значений *s* и *u*. В предположении, что N_2^0 и M_2^0 постоянны, решение исходной системы представим в виде [2]

$$F_{t}(u) = -\frac{N_{2}^{0}}{Eh} \frac{\varphi^{(t)}(u)}{\sqrt{1-u^{2}}},$$

где

Ein

$$\varphi^{(i)}(u) = \sum_{j=1}^{n/2} A^{(i)}_{2j-1} T_{2j-1}(u); \quad A^{(i)}_{2j-1} = \frac{4}{n} \sum_{\nu=1}^{n/2} \varphi^{(i)}_{\nu} \cos(2j-1) \theta_{\nu};$$
$$\theta_{\nu} = \frac{2\nu - 1}{2n} \pi; \quad i = 1, 2.$$

Функции ф⁽ⁱ⁾ определяем из системы алгебраических уравнений

$$\sum_{\nu=1}^{n/2} \alpha_{m\nu} \varphi_{\nu}^{(1)} + \sum_{\nu=1}^{n/2} \beta_{m\nu} \varphi_{\nu}^{(2)} = 1;$$
$$\sum_{\nu=1}^{n/2} \beta_{m\nu} \varphi_{\nu}^{(1)} + \sum_{\nu=1}^{n/2} \overline{\alpha}_{m\nu} \varphi_{\nu}^{(2)} = k^* \quad (m = \overline{1, n/2}),$$

где

$$\begin{aligned} \alpha_{m\nu} &= \frac{1}{2n} \left\{ a_{11} \psi_{m\nu} + k \alpha_0 \left[K_{11} \left(z_1 \right) - K_{11} \left(z_2 \right) \right] \right\}; \\ \beta_{m\nu} &= \frac{1}{2n} \left\{ a_{12} \psi_{m\nu} + k \alpha_0 \left[K_{12} \left(z_1 \right) - K_{12} \left(z_2 \right) \right] \right\}; \\ \bar{\alpha}_{m\nu} &= \frac{1}{2n} \left\{ a_{22} \psi_{m\nu} + k \alpha_0 \left[K_{22} \left(z_1 \right) - K_{22} \left(z_2 \right) \right] \right\}; \end{aligned}$$

46

$$\psi_{m\nu} = \frac{1}{\sin \theta_m} \left\{ \operatorname{ctg} \frac{\theta_m \mp \theta_\nu}{2} + \operatorname{tg} \frac{\theta_m \mp \theta_\nu}{2} \right\};$$
$$z_i = \alpha_0 \left(\cos \theta_m + (-1)^i \cos \theta_\nu \right); \quad i = 1, 2; \quad k^* = \frac{2b^2}{R} \frac{M_2^0}{N_2^0}.$$

Знак «минус» берется, когда | *m* — *v* | нечетно, а «плюс» — когда оно четно. Для определения коэффициентов интенсивности усилий *N*₂ (*K*₁) и моментов *M*₂ (*K*₃) получаем формулы

На ЭВМ «Минск-32» был проведен численный анализ задачи при

R = 150 MM; h = 1,5 MM; v = 0,3; k = 1; 5; 9; 11.

На рис. 1, 2 показано изменение коэффициентов интенсивности $K_i^* = K_j/N_2^0$ (j = 1, 3) в зависимости от длины трещин и их количества. Кривые 1, 2, 3, 4 соответствуют значениям k = 1; 5; 9; 11. Как видно из графиков, при фиксированной длине трещин изменение коэффициентов интенсивности с увеличением числа трещин носит немонотонный характер.

- 1. Власов В. З. Избранные труды. М.: Изд-во АН СССР, 1962. Т. 1. 528 с.
- 2. Каландия А. И. Математические методы двумерной упругости. М. : Наука, 1973. 304 с.
- 3. Новожилов В. В. Теория тонких оболочек. Л.: Судпромгиз, 1962. 430 с.
- Осадчук В. А., Ярмошук И. С. Упругое равновесие замкнутой цилиндрической оболочки с системой периодически расположенных параллельных трещин. — В кн.: Физико-механические поля в деформируемых средах. Киев: Наук. думка, 1978, с. 51—58.

Институт прикладных проблем механики и математики АН УССР

Поступила в редколлегию 30.06.78

УДК 533.6.013.42

Я. С. Подстригач, А. П. Поддубняк, В. В. Пороховский

АНАЛИЗ ПЕРЕИЗЛУЧЕННОГО СИГНАЛА ОТ УПРУГОЙ СФЕРЫ ПРИ ВОЗДЕЙСТВИИ НАПРАВЛЕННОЙ СФЕРИЧЕСКОЙ ВОЛНЫ

Задача рассеяния сферической волны на упругой сфере в воде изучена в работе [8]. При этом полагалось, что источник генерирования звука излучает энергию в телесный угол 4л. Предположим, что в акустической среде