ЛИТЕРАТУРА

- 1. Брызгалин Г. М. К расчету на ползучесть пластинок из стеклопластиков. ЖПМТФ,
- 1963, № 4, с. 132—136.
 Пелех Б. Л. Теория оболочек с конечной сдвиговой жесткостью. К., «Наук. думка», 1973. 248 с.
- 3. Пелех Б. Л., Лазько В. А. Об особенностях разрушения в зонах вырезов деталей из податливых на сдвиг армированных материалов. — В кн.: Тезисы докладов III Всесоюзной конференции по композиционным материалам. М., 1974, с. 47-48.
- 4. Пелех Б. Л., Лазько В. А. Некоторые особенности расчета прочности слабо сопротивляющихся сдвигу трансверсально-изотропных пластинок, ослабленных отверстиями.- Проблемы прочности, 1975, № 2, с. 62-64.
- 5. Работнов Ю. Н. Равновесие упругой среды с последействием.— ПММ, 1948, 12, № 1, c. 53-62.
- 6. Савин Г. Н. Концентрация напряжений около отверстий. М. .- Л., Гостехиздат, 1951. 496 c.
- 7. Савин Г. Н. Распределение напряжений около отверстий. К., «Наук. думка», 1968. 887 c.
- 8. Томашевский В. Т., Туник А. Л. Экспериментальное определение модуля межслойного сдвига при ползучести стеклопластика, изготовленного намоткой — Механика полимеров, 1969, № 2, с. 370—372.

Львовский филиал математической физики Института математики АН УССР

Поступила в редколлегию 17.1Х 1974 г.

УДК 539.377

В. Н. Гнатыкив

ТЕРМОУПРУГОЕ ВЗАИМОДЕЙСТВИЕ СЛОЯ С НЕСКВОЗНЫМ СТЕРЖНЕВЫМ ВКЛЮЧЕНИЕМ

Рассмотрим слой толщиной 26, сопряженный с круглым стержнем радиуса R и длиной l_0 , как показано на рис. 1. Температура поверхности $z = -\delta$ слоя предполагается заданной функцией времени, а поверхность $z = +\delta$ слоя и поверхности стержня (кроме поверхности контакта) предполагаются

теплоизолированными. Между стержнем и слоем осуществляется идеальный тепловой контакт. Предполагается, что теплофизические характеристики стержня существенно отличаются от характеристик слоя, а механические характеристики являются одинаковыми. Такие задачи встречаются при изготовлении цветных кинескопов.

Для решения поставленной задачи теплопроводности и соответствующей квазистатической задачи термоупругости предлагается следующая расчетная модель. Выделив в стержне слой (цилиндр

конечной длины) толщиной 2h, будем считать, что между стержнем длиной l и слоем толщиной 28 осуществляется неидеальный тепловой контакт. В этом случае краевая задача теплопроводности формулируется следующим образом. Нестационарное температурное поле определяем из уравнений теплопроводности [1, 4]: для пластинки

$$\frac{\partial^2 t}{\partial r^2} + \frac{1}{r} \frac{\partial t}{\partial r} + \frac{\partial^2 t}{\partial z^2} = \frac{1}{a} \frac{\partial t}{\partial \tau}, \qquad (1)$$

для стержня

$$\frac{\partial^2 t_0}{\partial z^2} = \frac{1}{a_0} \frac{\partial t_0}{a_0 \partial \tau}$$
(2)

74

при граничных условиях

$$t \left|_{z=-\delta} = t_{c}(\tau), \quad \lambda \frac{\partial t}{\partial z} \right|_{z=\delta} = -q(\tau) S(R-r),$$

$$\frac{\partial t_{c}}{\partial z} \left|_{z=\delta} = \frac{t_{0}-t}{R^{*}}, \quad \lambda_{0} \frac{\partial t_{0}}{\partial z} \right|_{z=\delta} = q(\tau), \quad \frac{\partial t_{0}}{\partial z} \left|_{z=\delta+l} = 0$$
(3)

 $\lambda_0 \frac{\partial z}{\partial z}\Big|_{z=\delta} = \frac{\partial z}{R^*}, \quad \lambda_0 \frac{\partial z}{\partial z}\Big|_{z=\delta} =$

и начальных условиях

.

$$t|_{\tau=0} = 0, \quad t_0|_{\tau=0} = 0,$$
 (4)

где a, a_0 — коэффициенты температуропроводности; λ, λ_0 — коэффициенты теплопроводности; t, t_0 — температура пластинки и стержня соответственно; $R^* = \frac{2h}{\lambda_0}$ — контактное сопротивление; $q(\tau)$ — тепловой поток, подлежащий определению из условия неидеального контакта [1]; S(R-r) — симметричная единичная функция.

Используя интегральные преобразования Фурье по τ и Ханкеля по r [2], общее решение задачи (1), (3) находим в виде

$$t(r, z, \tau) = P_{\text{RC. } 2}$$

$$= \frac{1}{(2\pi)^{\frac{3}{2}}} \int_{-\infty}^{+\infty} \tilde{t}_c e^{-\sqrt{\frac{\alpha}{2a}}(\delta+z)-i\alpha z} \frac{\cos\left[\sqrt{\frac{\alpha}{2a}}(\delta-z)+\frac{\pi}{4}\right]}{\cos\left(\sqrt{\frac{\alpha}{2a}}\delta+\frac{\pi}{4}\right)} d\alpha - \frac{R}{\lambda} \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \left[\tilde{q}(\alpha) e^{-i\alpha \tau} \int_{0}^{\infty} MI_0(pr) dp\right] d\alpha, \quad (5)$$

где

-

$$\tilde{t}_{c}(\alpha) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} t_{c}(\tau) e^{i\alpha\tau} d\tau;$$

$$M = e^{-\gamma_{1}(\delta-z)} \frac{\sin\gamma_{2}(\delta+z) I_{1}(pr)}{\gamma_{1}\sin2\gamma_{2}\delta+\gamma_{2}\cos2\gamma_{2}\delta};$$
(6)

$$\gamma_1 = -\frac{1}{2a} \sqrt{2a^2 p^2 + 2a \sqrt{a^2 p^4 + \alpha^2}}; \quad \gamma_2 = \frac{\alpha}{\sqrt{2a^2 p^2 + 2a \sqrt{a^2 p^4 + \alpha^2}}}; \quad (7)$$

$$= \frac{q(\alpha) =}{\frac{1}{2\pi R^* \sin\left(\delta \sqrt{\frac{2\alpha}{a}} - \frac{\pi}{4}\right)}}$$

$$= \frac{1 + \frac{1}{\lambda_0 R^*} \sqrt{\frac{a_0}{\alpha} \left(1 - \operatorname{ctg} \sqrt{\frac{\alpha}{2a}} l\right) - \frac{1/\overline{8}}{\lambda R^*} \int_{0}^{\infty} \frac{\sin 2\gamma_2 \delta l_1^2(pR)}{\gamma_1 \sin 2\gamma_2 \delta + \gamma_2 \cos 2\gamma_2 \delta} \frac{dp}{p}}$$

Температура внешней среды при откачке цветного кинескопа (рис. 2) изменяется по закону

$$t_{c} = t_{*} + \{k_{1}\tau S_{-}(\tau_{1} - \tau) + (k_{2}\tau + \theta - t_{*}) [S_{-}(\tau_{2} - \tau) - S_{-}(\tau_{1} - \tau)] + t_{2} [S_{-}(\tau_{3} - \tau) - S_{-}(\tau_{2} - \tau)] + (k_{3}\tau + \theta_{1} - t_{*}) [S_{-}(\tau_{4} - \tau) - S_{-}(\tau_{3} - \tau)] + (k_{4}\tau + \theta_{2} - t_{*}) [S_{-}(\tau_{5} - \tau) - S_{-}(\tau_{4} - \tau)]\} S_{+}(\tau).$$
(8)

75

Трансформата Фурье функции (8) имеет вид

$$\begin{split} \tilde{t}_{c}(\alpha) &= \sqrt{2\pi} t_{*}\delta(\alpha) + \frac{1}{\sqrt{2\pi}} \left\{ \left[(k_{1}-k_{2}) \left(\frac{\tau_{1}}{i\alpha} + \frac{1}{\alpha^{2}} \right) + \frac{\theta-t_{*}}{i\alpha} \right] e^{i\alpha\tau_{*}} - \frac{k_{1}}{i\alpha} + \left[k_{2} \left(\frac{\tau_{2}}{i\alpha} + \frac{1}{\alpha^{2}} \right) + \frac{\theta-t_{*}-t_{2}}{i\alpha} \right] e^{i\alpha\tau_{2}} - \left[k_{3} \left(\frac{\tau_{3}}{i\alpha} + \frac{1}{\alpha^{2}} \right) + \frac{\theta_{1}-t_{*}-t_{2}}{i\alpha} \right] e^{i\alpha\tau_{*}} + \left[(k_{3}-k_{4}) \left(\frac{\tau_{4}}{i\alpha} + \frac{1}{\alpha^{2}} \right) + \frac{\theta_{1}-\theta_{2}}{i\alpha} \right] e^{i\alpha\tau^{*}} + \left[k_{4} \left(\frac{\tau_{5}}{i\alpha} + \frac{1}{\alpha^{2}} \right) + \frac{\theta_{2}-t_{*}}{i\alpha} \right] e^{i\alpha\tau_{*}} \right\} . \end{split}$$

$$(9)$$

Для определения квазистатических температурных напряжений в системе, вызываемых температурным полем (5), используем известные [3] формулы

$$\sigma_{rr} = -2G\left(\frac{\partial^2 \Phi}{\partial z^2} + \frac{1}{r}, \frac{\partial \Phi}{\partial r}\right), \quad \sigma_{\varphi\varphi} = -2G\left(\frac{\partial^2 \Phi}{\partial z^2} + \frac{\partial^2 \Phi}{\partial r^2}\right),$$

$$\sigma_{zz} = -2G\left(\frac{\partial^2 \Phi}{\partial r^2} + \frac{1}{r}, \frac{\partial \Phi}{\partial r}\right), \quad \sigma_{rz} = 2G\left(\frac{\partial^2 \Phi}{\partial r \partial z}, \frac{\partial^2 \Phi}{\partial r \partial z}\right),$$
(10)

где функция Ф удовлетворяет уравнению

$$\Delta \Phi = \alpha_t \frac{1+\nu}{1-\nu} t. \tag{11}$$

Опуская промежуточные выкладки, напряжения в системе находим в виде

$$\begin{split} \sigma_{rr} &= -2 \frac{G\alpha_{t}}{i \frac{2\pi}{2\pi}} \frac{1+\nu}{1-\nu} \int_{-\infty}^{+\infty} \left\{ \frac{1}{2\pi} \tilde{t}_{c} e^{-\sqrt{\frac{\alpha}{2a}}(\delta+z)} \frac{\cos\left[\sqrt{\frac{\alpha}{2a}}(\delta+z) + \frac{\pi}{4}\right]}{\cos\left(\sqrt{\frac{\alpha}{2a}}\delta + \frac{\pi}{4}\right)} - \frac{R\tilde{q}\left(\alpha\right)}{\lambda} \int_{0}^{\infty} MI_{0}\left(pr\right) dp - i \frac{a}{\lambda} \tilde{q}\left(\alpha\right) \int_{0}^{\infty} Mp^{2} \left[I_{0}\left(pr\right) - \frac{I_{1}\left(pr\right)}{pr}\right] dp \right\} e^{-i\alpha\tau} d\alpha, \\ \sigma_{q\varphi} &= \\ &= -2 \frac{G\alpha_{t}}{\sqrt{2\pi}} \frac{1+\nu}{1-\nu} \int_{-\infty}^{+\infty} \left\{ \frac{1}{2\pi} \tilde{t}_{c} e^{-i\sqrt{\frac{\alpha}{2a}}(\delta+z)} - \frac{\cos\left[\sqrt{\frac{\alpha}{2a}}(\delta-z) + \frac{\pi}{4}\right]}{\cos\left(\sqrt{\frac{\alpha}{2a}}\delta + \frac{\pi}{4}\right)} - \frac{R}{\lambda} \tilde{q}\left(\alpha\right) \int_{0}^{\infty} MI_{0}\left(pr\right) dp - i \frac{a}{r\alpha} - \frac{R}{\lambda} \tilde{q}\left(\alpha\right) \int_{0}^{\infty} MI_{1}\left(pr\right) pdp \right\} e^{-i\alpha\tau} d\alpha, \\ \sigma_{zz} &= -2 \frac{G\alpha_{t}}{\sqrt{2\pi}} \frac{1+\nu}{1-\nu} \int_{-\infty}^{+\infty} \left\{ \frac{1}{2\pi} \tilde{t}_{c} e^{-i\sqrt{\frac{\alpha}{2a}}(\delta+z)} - \frac{\cos\left[\sqrt{\frac{\alpha}{2a}}(\delta-z) + \frac{\pi}{4}\right]}{\cos\left(\sqrt{\frac{\alpha}{2a}}\delta + \frac{\pi}{4}\right)} - \frac{R}{\lambda} \tilde{q}\left(\alpha\right) \int_{0}^{\infty} MI_{0}\left(pr\right) dp + i \frac{a}{r\alpha} - \frac{R}{\lambda} \tilde{q}\left(\alpha\right) \int_{0}^{\infty} MI_{1}\left(pr\right) pdp \right\} e^{-i\alpha\tau} d\alpha, \\ \sigma_{zz} &= -2 \frac{G\alpha_{t}}{\sqrt{2\pi}} \frac{1+\nu}{1-\nu} \int_{-\infty}^{+\infty} \left\{ \frac{1}{2\pi} \tilde{t}_{c} e^{-i\sqrt{\frac{\alpha}{2a}}(\delta+z)} \frac{\cos\left[\sqrt{\frac{\alpha}{2a}}(\delta-z) + \frac{\pi}{4}\right]}{\cos\left(\sqrt{\frac{\alpha}{2a}}\delta + \frac{\pi}{4}\right)} - \frac{R}{\lambda} \tilde{q}\left(\alpha\right) \int_{0}^{\infty} MI_{0}\left(pr\right) dp + i \frac{1}{2\pi} \tilde{t}_{c} e^{-\sqrt{\frac{\alpha}{2a}}\left(\delta+z\right)} \frac{\sin\left[\sqrt{\frac{\alpha}{2a}}\left(\delta+z\right) + \frac{\pi}{4}\right]}{\cos\left(\sqrt{\frac{\alpha}{2a}}\delta + \frac{\pi}{4}\right)} + i \frac{a}{\lambda} \frac{R}{\alpha} \tilde{q}\left(\alpha\right) \int_{0}^{\infty} M\left[\gamma_{1}^{2} + 2\gamma_{1}\gamma_{2}\operatorname{ctg}\gamma_{2}\left(\delta + z\right) - \gamma_{2}^{2}\right] I_{0}\left(pr\right) dp \right\} e^{-i\alpha\tau} d\alpha, \\ \sigma_{rz} &= 2G \frac{\alpha_{t}}{\sqrt{2\pi}} \frac{1+\nu}{1-\nu} \frac{aR}{\lambda} i \int_{-\infty}^{+\infty} \left\{ \frac{\tilde{q}\left(\alpha\right)}{\alpha} \int_{0}^{\infty} M\left[\gamma_{1}^{2} + \gamma_{2}\operatorname{ctg}\gamma_{2}\left(\delta + z\right) - \gamma_{2}^{2}\right] I_{0}\left(pr\right) dp \right\} e^{-i\alpha\tau} d\alpha, \\ \sigma_{rz} &= 2G \frac{\alpha_{t}}{\sqrt{2\pi}} \frac{1+\nu}{1-\nu} \frac{aR}{\lambda} i \int_{-\infty}^{+\infty} \left\{ \frac{\tilde{q}\left(\alpha\right)}{\alpha} \int_{0}^{\infty} M\left[\gamma_{1}^{2} + \gamma_{2}\operatorname{ctg}\gamma_{2}\left(\delta + z\right) - \gamma_{2}^{2}\right] I_{0}\left(pr\right) dp \right\} e^{-i\alpha\tau} d\alpha, \\ \times dp \right\} e^{-i\alpha\tau} d\alpha. \end{split}$$

76

ЛИТЕРАТУРА

- 1. Боли Б., Уэйнер Дж. Теория температурных напряжений. М., «Мир», 1964. 517 с. 2. Градитейн И. С., Рыжик И. М. Таблицы интегралов, сумм, рядов и произведений. М., Физматгиз, 1963. 1100 с.
- 3. Новацкий В. Вопросы термоупругости. М., Изд-во АН СССР, 1962. 361 с.
- 4. Подстригач Я. С., Коляно Ю. М. Неустановившиеся температурные поля и напряжения в тонких пластинках. К., «Наук. думка», 1972. 307 с.

Львовский лесотехнический институт

Поступила в редколлегию 25.ХІІ 1974 г.

УДК 539.3

Б. В. Нерубайло, Л. П. Никитина, И. И. Федик

ТЕРМОУПРУГОЕ НАПРЯЖЕННОЕ СОСТОЯНИЕ ДЛИННОЙ ЦИЛИНДРИЧЕСКОЙ ОБОЛОЧКИ ПРИ ЛОКАЛЬНОМ РАСПРЕДЕЛЕНИИ ТЕМПЕРАТУРЫ

Рассмотрим бесконечно длинную круговую цилиндрическую оболочку при известном неравномерном локализованном распределении температуры. Температурная задача в такой постановке может быть сведена к решению системы трех уравнений в частных производных относительно перемещений

$$l_{11}u + l_{12}v + l_{13}w = (1 + \nu) \alpha_t R \frac{\partial l^*}{\partial \alpha} ,$$

$$l_{21}u + l_{22}v + l_{23}w = (1 + \nu) \alpha_t R \frac{\partial t^*}{\partial \beta} - \frac{1 + \nu}{6} \alpha_t h \frac{\partial t^{**}}{\partial \beta} ,$$

$$l_{31}u + l_{32}v + l_{33}w = -(1 + \nu) \alpha_t R t^* - \frac{1 + \nu}{6} \alpha_t h \nabla^2 t^{**} ,$$
(1)

где l₁₁, ..., l₃₃ — линейные дифференциальные операторы, зависящие от выбора исходных уравнений теории оболочек; α_t — коэффициент линейно-го температурного расширения; t_2 (α , β), t_1 (α , β) — температура внутрен-ней и наружной поверхностей оболочки. Остальные обозначения взяты из работы [1]. Разделяем напряженно-деформированное состояние от дей-ствия температурного поля $t^*(\alpha, \beta)$ и $t^{**}(\alpha, \beta)$, применяя для этого одну и две звездочки: $t^* = \frac{1}{2}(t_2 + t_1), t^{**} = \frac{1}{2}(t_2 - t_1).$

Для решения поставленной задачи удобно перейти от системы уравнений (1) к разрешающим уравнениям относительно функций $\Phi^*(\alpha, \beta)$, Φ** (α, β) [2]. Это можно сделать, если связать перемещения и функции Φ* (α, β), Φ** (α, β) следующими соотношениями:

$$\frac{1-\nu}{2} u^{*}(\alpha, \beta) = \left(\frac{\partial}{\partial \alpha} a_{11} + \frac{\partial}{\partial \beta} a_{21} - a_{31}\right) \Phi^{*}(\alpha, \beta),$$

$$\frac{1-\nu}{2} v^{*}(\alpha, \beta) = \left(\frac{\partial}{\partial \alpha} a_{12} + \frac{\partial}{\partial \beta} a_{22} - a_{32}\right) \Phi^{*}(\alpha, \beta),$$

$$\frac{1-\nu}{2} w^{*}(\alpha, \beta) = \left(\frac{\partial}{\partial \alpha} a_{13} + \frac{\partial}{\partial \beta} a_{23} - a_{33}\right) \Phi^{*}(\alpha, \beta);$$

$$\frac{1-\nu}{2} u^{**}(\alpha, \beta) = \left(\frac{\partial}{\partial \beta} a_{21} + \nabla^{2} a_{31}\right) \Phi^{**}(\alpha, \beta),$$

$$\frac{1-\nu}{2} v^{**}(\alpha, \beta) = \left(\frac{\partial}{\partial \beta} a_{22} + \nabla^{2} a_{32}\right) \Phi^{**}(\alpha, \beta),$$

$$(3)$$

$$\frac{1-\nu}{2} w^{**}(\alpha, \beta) = \left(\frac{\partial}{\partial \beta} a_{23} + \nabla^{2} a_{33}\right) \Phi^{**}(\alpha, \beta).$$

Здесь a₁₁, ..., a₃₃ — алгебраические дополнения, составленные из дифференциальных операторов системы (1).