УДК 539.377

Ю. М. Коляно, Е. П. Хомякевич

НЕКОТОРЫЕ ТЕОРЕМЫ ОБОБЩЕННОЙ ВЗАИМОСВЯЗАННОЙ ЗАДАЧИ ТЕРМОУПРУГОСТИ АНИЗОТРОПНЫХ ТЕЛ

Теорема взаимности. Рассмотрим две системы величин: первая содержит массовые силы X_t , поверхностные нагрузки p_t , источники тепла w и поверхностный нагрев h, вызываемые в анизотропном теле перемещения u_t , и температуру t; вторую систему соответствующих величин отметим штрихами.

Уравнение первой части теоремы взаимности, как известно [2], имеет

вид

$$\int_{S} (\overline{X_{i}u_{i}} - \overline{X_{i}u_{i}}) dV + \int_{S} (\overline{p_{i}u_{i}} - \overline{p_{i}u_{i}}) dS + \beta_{ij} \int_{\Omega} (\overline{e_{ij}t} - \overline{e_{ij}t'}) dV = 0, \quad (1)$$

где $\beta_{ij} = c_{ijkl}\alpha_{ki}$; c_{ijkl} — упругие постоянные; α_{kl} — коэффициенты теплового расширения; e_{ij} — компоненты деформации; Ω — область интегрирования; S — поверхность, ограничивающая эту область.

Для получения второй части теоремы взаимности рассмотрим уравне-

ние теплопроводности

$$\lambda_{ij}t_{,ij}-clt-t_0\beta_{ij}le_{ij}=-lw, \qquad (2)$$

$$h_{ij}t_{,ij} - clt' - t_0\beta_{ij}l\dot{e}_{ij} = -lw', \qquad (3)$$

где λ_{ij} — коэффициенты теплопроводности; c — объемная теплоемкость; l=1+ + τ_r $\frac{\partial}{\partial \tau}$, τ_r — время релаксации теплового потока [1]; τ — время; t_0 — температура тела в недеформированном состоянии.

Применяя к уравнениям (2), (3) преобразование Лапласа при однород-

ных начальных условиях, получаем

$$\lambda_{ij} \bar{t}_{,ij} = t_0 \beta_{ij} (p + \tau_i p^2) \bar{e}_{ij} + c (p + \tau_i p^2) \bar{t} - (1 + \tau_i p) \bar{w},$$

$$\lambda_{ij} \bar{t}_{,ij} = t_0 \beta_{ij} (p + \tau_i p^2) \bar{e}_{ij} + c (p + \tau_i p^2) \bar{t}' - (1 + \tau_i p) \bar{w}'.$$
(4)

Умножив первое уравнение системы (4) на t' второе на t, вычтем результаты и проинтегрируем по объему Ω . В результате получим

$$\lambda_{ij} \int_{S} (\bar{t}_{,ij}\bar{h}' - \bar{t}'_{,i}\bar{h}) n_{j}dS - \beta_{ij}t_{0} (p + \tau_{,p})^{2} \int_{\Omega} (\bar{e}_{ij}\bar{t}' - \bar{e}'_{ij}\bar{t}) dV +$$

$$+ (1 + \tau_{,p}) \int_{\Omega} (\overline{w}\bar{t}' - \overline{w}'\bar{t}) dV = 0$$

$$(5)$$

при краевых условиях

$$\bar{t}(x, \tau) = \bar{h}(x, \tau), \ \bar{t}'(x, \tau) = \bar{h}'(x, \tau), \ x \in S, \ \tau > 0.$$

Сравнивая уравнения (1) и (5) и применяя обратное преобразование Лапласа, получаем уравнение, выражающее обобщенную теорему взаимности анизотропных тел:

$$t_0 \int_{S} dS \int_{0}^{\tau} \left[p_{I}(x, \tau - \tau_0) l_0 \frac{\partial u_{I}(x, \tau_0)}{\partial \tau_0} - p_{I}(x, \tau - \tau_0) l_0 \frac{\partial u_{I}(x, \tau_0)}{\partial \tau_0} \right] d\tau_0 +$$

$$+ t_{0} \int_{\Omega} dV \int_{0}^{\tau} \left[X_{i}(x, \tau - \tau_{0}) l_{0} \frac{\partial u_{i}'(x, \tau_{0})}{\partial \tau_{0}} - X_{i}'(x, \tau - \tau_{0}) l_{0} \frac{\partial u_{i}(x, \tau_{0})}{\partial \tau_{0}} \right] d\tau_{0} =$$

$$= \int_{\Omega} dV \int_{0}^{\tau} \left[w(x, \tau - \tau_{0}) l_{0}t'(x, \tau_{0}) - w'(x, \tau - \tau_{0}) l_{0}t(x, \tau_{0}) \right] d\tau_{0} +$$

$$+ \lambda_{ij} \int_{S} dS \int_{0}^{\tau} \left[h'(x, \tau - \tau_{0}) t_{in}(x, \tau_{0}) - h(x, \tau - \tau_{0}) t_{in}(x, \tau_{0}) \right] d\tau_{0}.$$
 (6)

Теоремы Сомилиано и Грина. Используя обобщенную теорему взаимности, докажем теоремы Сомилиано и Грина для анизотропных тел, дающие возможность выражать перемещения u_i и температуру t внутри тела через распределения перемещений u_i , нагрузки p_i , температуры t и производной от температуры t, на поверхности тела.

Определим перемещения u_i (x, τ) , $x \in \Omega$, $\tau > 0$. Для этого выберем силу $X_i = \delta$ $(x - \xi)$ δ (τ) δ_{ij} , приложенную в точке (ξ) по направлению оси x_j , которая действует на неограниченную среду, причем w' = 0. Вызывающие этой силой перемещения и температуру обозначим через $u_i = U_i^{(t)}(x, \xi, \tau)$ и $t' = T^{(t)}(x, \xi, \tau)$ и определим их из дифференциальных уравнений

$$C_{ijkl}U_{k,lj}^{(j)}(x, \xi, \tau) + \delta(x - \xi)\delta(\tau)\delta_{ij} = \rho U_{i}^{(j)} + \beta_{lj}T_{i}^{(j)}(x, \xi, \tau), \tag{7}$$

$$\lambda_{ij}T_{ij}^{(j)}(x, \xi, \tau) = t_0\beta_{ij}le'_{ij} + clT^{(j)}$$
 (8)

при однородных начальных условиях

$$U_{i}^{(f)}(x, \xi, 0) = 0, \ \dot{U}_{i}^{(f)}(x, \xi, 0) = 0, \ T^{(f)}(x, \xi, 0) = 0, \ T^{(f)}(x, \xi, 0) = 0,$$

$$x \in \Omega, \ \tau = 0,$$
(9)

где $e'_{lj} = \frac{1}{2} (U^{(l)}_{l,j} + U^{(l)}_{l,l})$, $\delta(\tau)$ — дельта-функция Дирака, δ_{ll} — символ Кронекера.

Подставляя $X_i' = \delta (x - \xi) \delta (\tau) \delta_{ij}, w' = 0$ и найденные из уравнений (7), (8) перемещения и температуру в уравнение взаимности (6), получаем

$$\begin{split} \dot{u}_{i}\left(\xi,\ \tau\right) + \tau_{i}\dot{u}_{i}\left(\xi,\ \tau\right) &= \int_{0}^{\tau}d\tau_{0} \int_{\Omega}X_{i}\left(x,\ \tau - \tau_{0}\right)l_{0}\frac{\partial U_{0}^{(f)}\left(x,\ \xi,\ \tau_{0}\right)}{\partial\tau_{0}}\ dV - \\ &- \frac{1}{t_{0}}\int_{0}^{\tau}d\tau_{0}\int_{\Omega}w\left(x,\ \tau - \tau_{0}\right)l_{0}T^{(f)}\left(x,\ \xi,\ \tau_{0}\right)dV + \end{split}$$

$$+\int_{0}^{\tau} d\tau_{0} \int_{S} \left[p_{i}(x, \tau - \tau_{0}) l_{0} \frac{\partial U_{i}^{(f)}(x, \xi, \tau_{0})}{\partial \tau_{0}} - u_{i}(x, \tau - \tau_{0}) l_{0} \frac{\partial p_{i}^{(f)}(x, \xi, \tau_{0})}{\partial \tau_{0}} \right] dS -$$

$$-\frac{\lambda_{lf}}{t_0}\int_{0}^{\tau}d\tau\int_{S}\left[t_{,n}\left(x,\ \tau_{0}\right)T^{(f)}\left(x,\ \xi,\ \tau-\tau_{0}\right)-h\left(x,\ \tau_{0}\right)T^{(f)}_{,n}\left(x,\ \xi,\ \tau-\tau_{0}\right)\right]dS,\ (10)$$

где $p_t^{(j)} = \sigma_{tk}^{(j)} n_k$, $\sigma_{tk}^{(j)}$ — напряжения на поверхности S, вызванные силой X_t . Для определения температуры t (x, τ) , $x \in \Omega$, $\tau > 0$, выберем источник тепла в виде $w' = \delta$ $(x - \xi)$ δ (τ) , который действует в точке (ξ) . Вызванные этим источником перемещения и температуру обозначим через \tilde{U}_t (x, ξ, τ) и \tilde{T} (x, ξ, τ) , которые определим из уравнений

$$c_{likl}\tilde{U}_{k,lj}(x, \xi, \tau) = p\ddot{\tilde{U}}_{l}(x, \xi, \tau) + \beta_{ij}\tilde{T}_{.l}(x, \xi, \tau), \quad k, j, l = 1, 2, 3,$$
 (11)

$$\lambda_{ii}\tilde{T}_{,ii}(x, \xi, \tau) = \beta_{ii}t_0lei_l + cl\tilde{T}(x, \xi, \tau) - \delta(x - \xi)\left[\delta(\tau) + \tau_c\delta(\tau)\right], \quad (12)$$

при начальных условиях

$$\hat{U}_{i}(x, \xi, 0) = 0, \hat{u}_{i}(x, \xi, 0) = 0, \tilde{T}(x, \xi, 0) = 0, \hat{T}(x, \xi, 0) = 0, x, \xi \in \Omega, \tau > 0,$$
 (13)

$$\text{где } \hat{e}'_{ij} = \frac{1}{2} (\tilde{U}_{i,j} + \tilde{U}_{j,i}).$$

Подставляя $w' = \delta(x - \xi) \delta(\tau)$, $X'_t = 0$ и найденные из уравнений (11) и (12) перемещения и температуру в уравнение взаимности (6), находим

$$t(\xi, \tau) + \tau_{i}t(\xi, \tau) = \int_{0}^{\tau} d\tau_{0} \int_{\Omega} w(x, \tau_{0}) t \tilde{T}(x, \xi, \tau - \tau_{0}) dV -$$

$$-t_{0} \int_{0}^{\tau} d\tau_{0} \int_{\Omega} X_{i}(x, \tau - \tau_{0}) t_{0} \frac{\partial \tilde{U}_{i}(x, \xi, \tau_{0})}{\partial \tau_{0}} dV -$$

$$-t_{0} \int_{0}^{\tau} d\tau_{0} \int_{S} \left[p_{i}(x, \tau - \tau_{0}) t_{0} \frac{\partial \tilde{U}_{i}(x, \xi, \tau_{0})}{\partial \tau_{0}} - u_{i}(x, \tau - \tau_{0}) t_{0} \frac{\partial p_{i}^{(w)}(x, \xi, \tau_{0})}{\partial \tau_{0}} \right] dS +$$

$$+ \lambda_{ij} \int_{0}^{\tau} d\tau_{0} \int_{S} \left[t_{in}(x, \tau - \tau_{0}) \tilde{T}(x, \xi, \tau_{0}) - h(x, \tau - \tau_{0}) \tilde{T}_{in}(x, \xi, \tau_{0}) \right] dS, \quad (14)$$

где $p_i^{(w)} = \sigma_{ij}^{(w)} n_j$, $\sigma_{ij}^{(w)}$ — напряжение в точках $x \in S$, вызванные тепловым источником w'; $l_0 = 1 + \tau_r^{(0)} \frac{\partial}{\partial \tau_0}$. Формулы (10) и (14) являются обобщением формул Сомилиано на обобщенные взаимосвязанные динамические задачи термоупругости.

Если функции Грина относятся к ограниченной среде, то уравнения (10) и (14) упрощаются. Пусть w' = 0. Допустим, что в точке $\xi \in \Omega$ приложена сила $X_i = \delta$ ($x - \xi$) δ (τ) δ_{ij} , вызывающая перемещения $U_i^{(j)}$ и температуру $T^{(j)}$. Эти величины удовлетворяют уравнениям (7), (8) с начальными условиями (9) и краевым условиям

$$U_{t}^{(f)}(x, \xi, \tau) = 0, T^{(f)}(x, \xi, \tau) = 0, T^{(f)}(x, \xi, \tau) = 0, \xi \in \Omega, \tau > 0.$$
 (15)

Аналогично при $X_i=0$ перемещения \tilde{U}_i и температура \tilde{T} , возникающие от действия источника тепла $w'=\delta$ $(x-\xi)$ δ (τ) , удовлетворяют уравнениям (11), (12), начальным условиям (13) и краевым условиям

$$\tilde{U}_{t}(x, \xi, \tau) = 0, \, \tilde{T}(x, \xi, \tau) = 0, \, \tilde{T}(x, \xi, \tau) = 0, \, x \in S, \, \xi \in \Omega, \, \tau > 0.$$
 (16)

Считаем, что величины $U_i^{(j)}$, $T^{(j)}$, \tilde{U}_i и \tilde{T} определены. Тогда уравнения (10) и (14) запишутся так:

$$\dot{u}_{I}(\xi, \tau) + \tau_{I}\ddot{u}_{I}(\xi, \tau) = \int_{0}^{\tau} d\tau_{0} \int_{\Omega} X_{I}(x, \tau - \tau_{0}) l_{0} \frac{\partial U_{I}^{(I)}(x, \xi, \tau_{0})}{\partial \tau_{0}} dV - \frac{1}{t_{0}} \int_{0}^{\tau} d\tau_{0} \int_{\Omega} w(x, \tau - \tau_{0}) l_{0} T^{(I)}(x, \xi, \tau_{0}) dV - \frac{1}{t_{0}} \int_{0}^{\tau} d\tau_{0} \int_{S} u_{I}(x, \tau - \tau_{0}) l_{0} \frac{\partial \rho_{I}^{(I)}(x, \xi, \tau_{0})}{\partial \tau_{0}} dS + \frac{\lambda_{II}}{t_{0}} \int_{0}^{\tau} d\tau_{0} \int_{S} h(x, \tau_{0}) T_{I}^{(I)}(x, \xi, \tau - \tau_{0}) dS, \tag{17}$$

$$t(\xi, \tau) + \tau_{r} \dot{t}(\xi, \tau) = \int_{0}^{\tau} d\tau_{0} \int_{\Omega} w(x, \tau_{0}) l \tilde{T}(x, \xi, \tau - \tau_{0}) dV -$$

$$-t_{0} \int_{0}^{\tau} d\tau_{0} \int_{\Omega} X_{l}(x, \tau - \tau_{0}) l_{0} \frac{\partial \tilde{U}_{l}(x, \xi, \tau_{0})}{\partial \tau_{0}} dV +$$

$$+t_{0} \int_{0}^{\tau} d\tau_{0} \int_{S} u_{l}(x, \tau - \tau_{0}) l_{0} \frac{\partial \rho_{l}^{(w)}(x, \xi, \tau_{0})}{\partial \tau_{0}} dS -$$

$$-\lambda_{i,l} \int_{0}^{\tau} d\tau_{0} \int_{S} h(x, \tau - \tau_{0}) \tilde{T}_{,n}(x, \xi, \tau_{0}) dS.$$
(18)

Формулы (17), (18) дают возможность определить перемещения и температуру внутри тела, если на поверхности его заданы перемещения и температура, и являются обобщением теоремы Грина на обобщенные взаимосвя-

занные динамические задачи термоупругости анизотропных тел.

Метод Майзеля. Предположим, что тело Ω , ограниченное поверхностью S, подвергается действию массовых сил и источников тепла. Найдем перемещения и температуру внутри тел, если на части поверхности S_1 заданы перемещения u_i и нормальный градиент температуры h, а на части S_2 — поверхностные силы p_i и температура T_0 , причем $S=S_1+S_2$. Для решения этой задачи используем доказанную выше теорему взаимности. Определим температуру t внутри тела. Для этого допустим, что в точке

Определим температуру t внутри тела: Для этого допустим, что в точке $\xi \in \Omega$ действует тепловой источник $w' = \delta (x - \xi) \delta (\tau)$, $X'_t = 0$. Возникающие при этом перемещения \tilde{U}_t и температура T определяются из уравнений

(11), (12) с краевыми условиями

$$\tilde{U}_{i} = 0, \, \tilde{T}_{,n} = 0 \text{ ha } S_{1}, \, p_{i} = 0, \, \tilde{T} = 0 \text{ ha } S_{2},$$
 (19)
 $\tilde{U}_{i}(x,\xi,0)=0, \, \tilde{U}_{i}(x,\xi,0)=0, \, \tilde{T}(x,\xi,0)=0, \, \tilde{T}(x,\xi,0)=0.$ (20)

Подставляя $w'=\delta$ $(x-\xi)$ δ (τ) , $X_l=0$ и найденные $\tilde{U_l}$ и \tilde{T} в уравнение взаимности, приходим к уравнению

$$t(\xi, \tau) + \tau_{i}\dot{t}(\xi, \tau) = \int_{\Omega} dV \int_{0}^{\xi} w(x, \tau_{0}) l\tilde{T}(x, \xi, \tau - \tau_{0}) d\tau_{0} - t_{0} \int_{\Omega} dV \int_{0}^{\xi} X_{i}(x, \tau - \tau_{0}) l_{0} \frac{\partial \tilde{U}_{i}(x, \xi, \tau_{0})}{\partial \tau_{0}} d\tau_{0} + \lambda_{ij} \int_{S_{i}} dS \int_{0}^{\xi} \tilde{T}(x, \xi, \tau - \tau_{0}) T_{0}(x, \tau_{0}) d\tau_{0} - \lambda_{ij} \int_{S_{i}} dS \int_{0}^{\xi} T_{0}(x, \tau_{0}) \tilde{T}_{,n}(x, \xi, \tau - \tau_{0}) d\tau_{0} - \lambda_{ij} \int_{S_{i}} dS \int_{0}^{\xi} p_{i}(x, \tau - \tau_{0}) l_{0} \frac{\partial \tilde{U}_{i}(x, \xi, \tau_{0})}{\partial \tau_{0}} d\tau_{0} + \lambda_{ij} \int_{S_{i}} dS \int_{0}^{\xi} p_{i}(x, \xi, \tau - \tau_{0}) l_{0} \frac{\partial \tilde{U}_{i}(x, \xi, \tau_{0})}{\partial \tau_{0}} d\tau_{0} + \lambda_{ij} \int_{S_{i}} dS \int_{0}^{\xi} p_{i}(x, \xi, \tau - \tau_{0}) l_{0} \frac{\partial \tilde{U}_{i}(x, \xi, \tau_{0})}{\partial \tau_{0}} d\tau_{0}.$$

$$(21)$$

Определим теперь перемещения ui. Пусть w'=0 в точке $\xi \in \Omega$, а массовая сила $X_{ij}=\delta$ $(x-\xi)$ δ (τ) δ_{ij} и направлена по оси x_j . Возникающие при этом перемещения и температуру обозначим соответственно через U_i^{\wp} ,

т и определим из уравнений (7), (8) при краевых условиях -- --

$$U_i^{(j)} = 0$$
, $T_n^{(j)} = 0$ на S_1 , $p_i^{(j)} = \sigma_{ij}^{(j)} n_j = 0$, $T^{(j)} = 0$ на S_2 , $U_i^{(j)}(x, \xi, 0) = 0$, $U_i^{(j)}(x, \xi, 0) = 0$, $T^{(j)}(x, \xi, 0) = 0$. (22)

Учитывая, что $X_i = \delta (x - \xi) \delta (\tau) \delta_{ij}$, w' = 0, и найденные величины $U_i^{(j)}$ и $T^{(j)}$, из уравнения взаимности приходим к уравнению

$$u_{i}(\xi, \tau) + \tau_{i}u_{i}(\xi, \tau) = \int_{\Omega} dV \int_{0}^{\tau} X_{i}(x, \tau - \tau_{0}) l_{0} \frac{\partial U_{i}^{(f)}(x, \xi, \tau_{0})}{\partial \tau_{0}} d\tau_{0} - \frac{1}{t_{0}} \int_{\Omega} dV \int_{0}^{\tau} w(x, \tau - \tau_{0}) l_{0} T^{(f)}(x, \xi, \tau_{0}) d\tau_{0} + \frac{1}{t_{0}} \int_{0}^{\tau} p_{i}(x, \tau - \tau_{0}) l_{0} \frac{\partial U_{i}^{(f)}(x, \xi, \tau_{0})}{\partial \tau_{0}} d\tau_{0} - \int_{S_{i}} dS \int_{0}^{\tau} p_{i}^{(f)}(x, \tau - \tau_{0}) \times \frac{1}{t_{0}} \frac{\partial u_{i}(x, \tau_{0})}{\partial \tau_{0}} d\tau_{0} + \lambda_{if} \int_{S_{2}} dS \int_{0}^{\tau} T_{0}(x, \tau - \tau_{0}) T_{in}^{(f)}(x, \xi, \tau_{0}) d\tau_{0} - \frac{1}{t_{0}} \int_{S_{i}} dS \int_{0}^{\tau} T^{(f)}(x, \xi, \tau - \tau_{0}) T_{in}^{(f)}(x, \tau, \tau, \tau_{0}) d\tau_{0} - \frac{1}{t_{0}} \int_{S_{i}} dS \int_{0}^{\tau} T^{(f)}(x, \xi, \tau - \tau_{0}) T_{in}^{(f)}(x, \tau, \tau, \tau_{0}) d\tau_{0}, \qquad i, j = 1, 2, 3,$$

$$(23)$$

где $t_n = T_0$ на S_1 , которое вместе с уравнением (21) представляет уравнение Майзеля для обобщенных динамических задач термоупругости.

ЛИТЕРАТУРА

Лыков А. В. Теория теплопроводности. М., «Высш. школа», 1967.
 Новацкий В. Динамические задачи термоупругости. М., «Мир», 1970.

Львовский филиал математической физики Института математики АН УССР

Поступила в редколлегию 8.IX 1974 г.

УДК 539.3

С. В. Грицай, Р. Н. Швец

ДИФРАКЦИЯ УПРУГИХ ВОЛН ИЗГИБА НА ДВУХ КРУГОВЫХ ШАЙБАХ, ВПАЯННЫХ В ТРАНСВЕРСАЛЬНО-ИЗОТРОПНУЮ ПЛАСТИНКУ

Постановка задачи и ее решение. Рассмотрим бесконечную тонкую трансверсально-изотропную пластинку с впаянными двумя жесткими круговыми шайбами радиуса R, центры которых размещены по оси x на расстоянии δ . В центре каждой шайбы поместим начало полярной системы координат r_k , θ_k (k=1,2). В рамках теории типа Тимошенко задача об установившихся колебаниях пластинки сводится к решению трех уравнений Гельмгольца $\{1,5\}$.

$$\Delta \tilde{w}_1 + \alpha^2 \tilde{w}_1 = 0; \quad \Delta \tilde{w}_2 - \beta^2 \tilde{w}_2 = 0;$$

$$\Delta \Phi - \gamma^2 \Phi = 0,$$
(1)

где

$$\alpha^2$$
, $\beta^2 = \frac{\omega_1}{2} \sqrt{\omega_1^2 (1 + c_0^2)^2 + 4c_0^2 (\frac{1}{b} - \omega_1^2)} \pm \frac{\omega_1^2}{2} (1 + c_0^2)$;