О СНЯТИИ ОСТАТОЧНЫХ СВАРОЧНЫХ НАПРЯЖЕНИЙ В Тонких пластинках с кольцевыми сварными швами с помощью индукционной термообработки

О. Н. Шаблий, Л. П. Беседина, М. С. Михалишин, Б. И. Чорный

Остаточные напряжения, возникающие после сварки или другого вида термообработки, могут иметь достаточно большой уровень, что часто приводит к разрушению конструкции [1, 2, 10]. Поэтому задача снятия остаточных напряжений технически актуальна. К наиболее распространенным методам снятия остаточных напряжений относятся термообработка деталей при достаточно высоких температурах, пластическое деформирование и локальный нагрев до невысоких температур [11].

В данной статье для исследования снятия остаточных напряжений, возникающих после сварки в элементах конструкции, используется метод дополнительного создания пластических деформаций. На основе теории малых упругопластических деформаций Генки — Ильюшина исследован вопрос о создании с помощью индукционного нагрева до невысоких температур зон пластического деформирования, приводящих к понижению уровня максимальных остаточных напряжений в тонкой пластинке с кольцевым сварным швом.

Аналитическая аппроксимация остаточных напряжений. Рассмотрим свободную от внешней силовой нагрузки тонкую кольцевую пластинку с радиусами внутреннего и внешнего контуров R_0 и R_3 соответственно и кольцевым сварным швом радиуса $R_{\rm ur}$ ($R_0 < R_{\rm ur} < R_3$), в которой имеются постоянные по толщине осесимметричные радиальные $\varepsilon_r^{(0)}$ и кольцевые $\varepsilon_{\theta}^{(0)}$ остаточные деформации, сосредоточенные в околошовной зоне. Отнесем пластинку к полярной системе координат $\rho = \frac{\varepsilon}{\kappa_0} \frac{r}{R_0}$, θ с началом в центре пластинки. Напряжения в пластинке — радиальное σ_r и кольцевое σ_{θ} — определяются через упругие деформации $\varepsilon_r^{(y)}$, $\varepsilon_{\theta}^{(y)}$, связанные с полными ε_r , ε_{θ} н остаточными $\varepsilon_r^{(0)}$, $\varepsilon_{\theta}^{(0)}$ деформациями следующими соотношениями:

$$\varepsilon_r^{(y)} = \varepsilon_r - \varepsilon_r^{(0)}, \quad \varepsilon_{\theta}^{(y)} = \varepsilon_{\theta} - \varepsilon_{\theta}^{(0)}, \tag{1}$$

по закону Гука [3]

$$\sigma_r = \frac{E}{1-\nu^2} \left(\varepsilon_r^{(y)} + \nu \varepsilon_{\theta}^{(y)} \right), \quad \sigma_{\theta} = \frac{E}{1-\nu^2} \left(\varepsilon_{\theta}^{(y)} + \nu \varepsilon_r^{(y)} \right), \tag{2}$$

и при отсутствии внешней силовой нагрузки удовлетворяют уравнению равновесия [3]

$$\frac{d\sigma_r}{d\rho} + \frac{\sigma_r - \sigma_{\theta}}{\rho} = 0.$$
(3)

Здесь Е — модуль упругости, v — коэффициент Пуассона.

С помощью геометрических соотношений [3]

$$\varepsilon_r = \frac{du}{d\rho}, \quad \varepsilon_0 = \frac{u}{\rho},$$
 (4)

где $u = \frac{u_0}{\rho}$, u_0 — радиальное перемещение, из уравнений (2) и (3) получаем следующее:

$$\frac{d^2 u}{d\rho^2} + \frac{1}{\rho} \frac{du}{d\rho} - \frac{u}{\rho^2} = \frac{d}{d\rho} \left(e_r^{(0)} + v \varepsilon_{\theta}^{(0)} \right) + \frac{1 - v}{\rho} \left(\varepsilon_r^{(0)} - \varepsilon_{\theta}^{(0)} \right).$$
(5)

Решая последнее и удовлетворяя условиям свободных краев

$$\sigma_{r}(1) = 0, \quad \sigma_{r}(\rho_{3}) = 0 \quad \left(\rho_{3} = \frac{R_{3}}{R_{0}}\right),$$
 (6)

66

записываем формулы для определения остаточных напряжений, вызванных остаточными деформациями $\varepsilon_r^{(0)}$, $\varepsilon_{\Theta}^{(0)}$:

$$\sigma_{r} = \frac{E}{2} \left[\int_{\rho_{3}}^{\rho} \frac{1}{\rho_{*}} \left(e_{r}^{(0)} - e_{\theta}^{(0)} \right) d\rho_{*} - \frac{1}{\rho^{2}} \int_{r}^{\rho} \rho_{*} \left(e_{r}^{(0)} + e_{\theta}^{(0)} \right) d\rho_{*} + \frac{1}{\rho^{2}} \int_{1}^{\rho_{3}} \frac{1}{\rho_{*}} \left(e_{r}^{(0)} - e_{\theta}^{(0)} \right) d\rho_{*} \right],$$

$$\sigma_{\theta} = \frac{E}{2} \left[\int_{\rho_{*}}^{\rho} \frac{1}{\rho_{*}} \left(e_{r}^{(0)} - e_{\theta}^{(0)} \right) d\rho_{*} + \frac{1}{\rho^{2}} \int_{1}^{\rho} \rho_{*} \left(e_{r}^{(0)} + e_{\theta}^{(0)} \right) d\rho_{*} - \frac{1}{\rho^{2}} \int_{1}^{\rho} \rho_{*} \left(e_{r}^{(0)} - e_{\theta}^{(0)} \right) d\rho_{*} - \frac{1}{\rho^{2}} \int_{1}^{\rho} \rho_{*} \left(e_{r}^{(0)} + e_{\theta}^{(0)} \right) d\rho_{*} - \frac{1}{\rho^{2}} \int_{1}^{\rho} \rho_{*} \left(e_{r}^{(0)} + e_{\theta}^{(0)} \right) d\rho_{*} - \frac{1}{\rho^{2}} \int_{1}^{\rho} \rho_{*} \left(e_{r}^{(0)} + e_{\theta}^{(0)} \right) d\rho_{*} - \frac{1}{\rho^{2}} \int_{1}^{\rho} \rho_{*} \left(e_{r}^{(0)} + e_{\theta}^{(0)} \right) d\rho_{*} - \frac{1}{\rho^{2}} \int_{1}^{\rho} \rho_{*} \left(e_{r}^{(0)} + e_{\theta}^{(0)} \right) d\rho_{*} - \frac{1}{\rho^{2}} \int_{1}^{\rho} \rho_{*} \left(e_{r}^{(0)} + e_{\theta}^{(0)} \right) d\rho_{*} - \frac{1}{\rho^{2}} \int_{1}^{\rho} \rho_{*} \left(e_{r}^{(0)} + e_{\theta}^{(0)} \right) d\rho_{*} - \frac{1}{\rho^{2}} \int_{1}^{\rho} \rho_{*} \left(e_{r}^{(0)} + e_{\theta}^{(0)} \right) d\rho_{*} - \frac{1}{\rho^{2}} \int_{1}^{\rho} \rho_{*} \left(e_{r}^{(0)} + e_{\theta}^{(0)} \right) d\rho_{*} - \frac{1}{\rho^{2}} \int_{1}^{\rho} \rho_{*} \left(e_{r}^{(0)} + e_{\theta}^{(0)} \right) d\rho_{*} - \frac{1}{\rho^{2}} \int_{0}^{\rho} \rho_{*} \left(e_{r}^{(0)} + e_{\theta}^{(0)} \right) d\rho_{*} - \frac{1}{\rho^{2}} \int_{0}^{\rho} \rho_{*} \left(e_{r}^{(0)} + e_{\theta}^{(0)} \right) d\rho_{*} - \frac{1}{\rho^{2}} \int_{0}^{\rho} \rho_{*} \left(e_{r}^{(0)} + e_{\theta}^{(0)} \right) d\rho_{*} - \frac{1}{\rho^{2}} \int_{0}^{\rho} \rho_{*} \left(e_{r}^{(0)} + e_{\theta}^{(0)} \right) d\rho_{*} - \frac{1}{\rho^{2}} \int_{0}^{\rho} \rho_{*} \left(e_{r}^{(0)} + e_{\theta}^{(0)} \right) d\rho_{*} + \frac{1}{\rho^{2}} \int_{0}^{\rho} \rho_{*} \left(e_{r}^{(0)} + e_{\theta}^{(0)} \right) d\rho_{*} \right) d\rho_{*}$$

Для аналитической аппроксимации экспериментально найденных остаточных напряжений были взяты непрерывные вместе с первой производной функции остаточных деформаций, представляющиеся в некоторой области $\rho_1 \leqslant \rho \leqslant \rho_2$ в виде

Константы A_0 , A_1 , B_0 , B_1 и ρ_1 , ρ_2 определяются из условия совпадения аналитически найденных подстановкой выражений (8) и (9) в (7) и интегрирования в указанных пределах напряжений с их экспериментальными значениями [7].

На рис. І сплошными линиями изображены определенные аналитически (формулы (7)) радиальные и кольцевые $\sigma_r^{(0)}$, $\sigma_{\theta}^{(0)} \left(\frac{\kappa z}{\mu \varkappa^2}\right)$ остаточные напряжения и соответствующие им полные деформации ε_r , ε_{θ} . На этом же рисунке пунктирными линиями представлены осевые $\varepsilon_r^{(0)}$ и кольцевые $\varepsilon_{\theta}^{(0)}$ остаточные деформации, а звездочками отмечены экспериментальные данные значений остаточных напряжений в пластинке.

Определение мощности джоулева тепла и температурного поля при нагреве пластинки кольцевым индуктором. Пусть рассматриваемая электропроводная пластинка нагревается коаксиальным с отверстием кольцевым индуктором радиуса $\rho_0 = \frac{r_0}{R_0}$, расположенным на расстояния $\eta = \frac{h}{R_0}$ от пластинки. При решении задачи об определении электромагнитного поля в данной пластинке примем, что параметр η намного меньше расстояния индуктора от отверстия $\rho_0 - 1$. В этом случае интенсивность падающей электромагнитной волны и, как следствие этого, интенсивность проникающей волны и джоулево тепло в области края отверстия будут значительно меньше, чем под индуктором, что дает возможность пренебречь влиянием края отверстия.

Используя закон затухания плоской волны в металле и считая, что параметр глубины процикновения $\delta_0 = \frac{\delta}{R_0}$ электромагнитного поля в пластинке намного меньше ее толщины $\gamma = \frac{d}{R_0}$, принимаем, как и в работе [8], что напряженность магнитного поля по толщине пластинки затухает по закону

$$\vec{H}(\rho,\xi,\tau) = \vec{H}(\rho) \exp\left(-\frac{\xi}{2\delta_0} + i\omega\tau\right).$$
(10)

Злесь $\xi = \frac{z}{R_0}$, $\delta = (2\sigma\mu\omega)^{-\frac{1}{2}}$, где σ — электропроволность, μ — магнитная проницаемость, ω — круговая частота.

Согласно работе [5], удельную мощность усредненного по времени джоулева тепла Q найдем из соотношения

$$Q(\rho, \xi) = \frac{\mu\omega}{2} |H_{\varsigma}(\rho)|^2 \exp\left(-\frac{\xi}{\delta_0}\right).$$
(11)

Касательная составляющая напряженности магнитного поля на гравице хорошо проводящих матерлалов с достаточной точностью может быть принята равной

$$H_{s}(\rho, 0, \tau) = 2H_{os}(\rho, 0, \tau).$$
(12)

Здесь H_{0s} (р, 0, τ) = H_0 (р) ехр ($i\omega\tau$) — касательная составляющая напряженности магнитного поля падающей волны на границе раздела вакуум — пластинка.

Согласно работе [9],

$$H_{0s}(\rho, \xi, \tau) = \frac{i_0}{2\pi} \frac{\xi + \eta}{\rho \sqrt{(\rho + \rho_0)^2 + (\xi + \eta)^2}} \times \left[\frac{\rho_0^2 + \rho^2 + (\xi + \eta)^2}{(\rho_0 - \rho)^2 + (\xi + \eta)^2} E(\rho^2) - K(\rho^2)^{\dagger} \exp(i\omega\tau) \right]$$
(13)

Здесь $p^2 = \frac{4\rho\rho_0}{(\rho + \rho_0)^2 + (\xi + \eta)^2}$; $K(p^2)$, $E(p^2)$ — полные эллиптические интегралы первого и второго рядов соответственно, j_0 — плотность тока в индукторе.

Сохраняя в разложениях эллиптических интегралов K, E в ряды первые члены, для $\rho + \rho_0 \gg \eta$ получаем, что усредненное по периоду колебаний электромагнитной волны выражение для $H_{0s}(\rho, \xi, \tau)$ на границе пластинки с достаточной точностью может быть записано в виде

$$H_{0}(\rho) = \frac{j_{0}\eta}{4[(\rho - \rho_{0})^{2} + \eta^{2}]}$$
(14)

Таким образом, из выражений (11), (12) с учетом (14) получаем

$$Q(\rho, \xi) = \frac{\mu \omega /_0^2}{8} \frac{\eta^2}{|(\rho - \rho_0)^2 + \eta^2|^2} \exp\left(-\frac{\xi}{\delta_0}\right).$$
(15)

При решении задачи об определении температурного поля примем, что параметры ρ_0 и п такие, при которых мощность джоулева тепла сосредоточена в окрестности $\rho = \rho_0$. В этом случае при определении температурного поля, ло крайней мере до некоторого момента времени $\tau \ll \tau_0$, в качестве исходной расчетной модели можно принять также пластинку без отверстия. При исследовании температурных полей в радиальном направлении влиянием перепада

температуры по толщине будем пренебрегать. Примем также, что основания пластинки теплоизолированы.

В рассматриваемой задаче профиль распределения мощности джоулева тепла в радиальном направлении практически совпадает с аналогичным профилем для случая нагрева бесконечным линейным индуктором [4]. Поскольку ширина основной зоны нагрева (окрестность $\rho = \rho_0$) мала по сравнению с ρ_0 , то искомое температурное поле будем находить исходя из решения соответствующей задачи теплопроводности для бесконечной пластинки, нагреваемой источниками тепла, создаваемыми бесконечным линейным индуктором. В этом случае температурное поле определяется из уравнения

$$\left(\frac{\partial^2}{\partial x^2} - \frac{1}{x} \frac{\partial}{\partial \tau}\right) T(x, \tau) = -\frac{A}{(x^2 + \eta^2)^2}$$
(16)

при нулевом начальном условии. Здесь $A = \sqrt{\frac{\mu\omega}{2\sigma}} \frac{j_0^2 \eta^2}{8\gamma \lambda} \left[1 - \exp\left(-\frac{\gamma}{\delta_0}\right) \right];$ $\lambda, \varkappa - \kappa o = \phi \phi$ ициенты тепло- и температуропроводности.

Применяя к уравнению (16) прямое и обратное косинус-преобразование Фурье и разлагая полученное решение в ряд по малым значениям τ , ограничиваясь при этом членами с первой степенью τ , получаем

$$T(x, \tau) = \frac{A \times \tau}{(x^2 + \eta^2)^2} .$$
 (17)

Заменяя в (17) x на $\rho - \rho_0$ и определяя A из условия T (ρ_0 , τ_0) = T_0 , получаем искомое приближенное решение для температурного поля в пластинке:

$$T(\rho, \tau) = T_0 \frac{\eta^4}{[(\rho - \rho_0)^2 + \eta^2]^2} \frac{\tau}{\tau_0}.$$
 (18)

Исследование вопроса о снятии остаточных сварочных напряжений. Ограничимся рассмотрением такой индукционной термообработки, при которой в пластинке в процессе нагрева до температурного поля

$$T(\rho, \tau_0) = T_0 \eta^4 \left[(\rho - \rho_0)^2 + \eta^2 \right]^{-2}$$
(19)

при $\tau = \tau_0$ имеет место одна зона упругопластического деформирования, а при $\tau > \tau_0$ пластинка переходит в режим разгрузки. Возникающие при термообработке остаточные напряжения в пластинке с заданными начальными остаточными напряжениями найдем, воспользовавшись теоремой о разгрузке [6] применительно к упругопластическому деформированию тела с начальными остаточными напряжениями, находящимися в пределах упругости. Остаточные напряжения после термообработки запишутся в виде

$$\bar{\sigma}_{i}^{(0)} = \sigma_{i}^{(0)} + \bar{\sigma}_{i}^{(0)} \quad (i = r, \theta).$$
(20)

Здесь $\sigma_i^{(0)}$ — начальные, $\bar{\sigma}_i^{(0)}$ — дополнительные остаточные напряжения, которые согласно теореме находятся по формуле

$$\tilde{\sigma}_{l}^{(0)} = \tilde{\sigma}_{l} - \tilde{\sigma}_{l}^{\bullet}, \tag{21}$$

где σ_i — компоненты напряжения в теле в момент начала разгрузки, являющиеся решением упругопластической задачи, $\tilde{\sigma}_i^*$ — компоненты напряжений в упругом теле в момент начала разгрузки. Предел текучести $\tilde{\sigma}_s$ материала в одномерном случае определяется следующим образом:

$$\tilde{\sigma}_s = \sigma_s - \sigma^{(0)}. \tag{22}$$

Решение задачи теории упругости для плоского напряженного состояния кольцевой пластинки при нулевых граничных условиях (6) имеет вид

$$\tilde{\sigma}_{r}^{\bullet} = \frac{E\alpha}{\rho^{3}} \left[\frac{\rho^{2} - 1}{\rho_{3}^{2} - 1} \int_{1}^{\rho_{3}} T\rho d\rho - \int_{1}^{\rho} T\rho d\rho \right], \qquad (23)$$

$$\widetilde{\sigma}_{\theta}^{*} = \frac{E\alpha}{\rho^{2}} \left[\frac{\rho^{2} + 1}{\rho_{3}^{2} - 1} \int_{1}^{1} T\rho d\rho + \int_{1}^{1} T\rho d\rho - \rho^{2} T(\rho) \right],$$

$$\widetilde{u}^{*} = \frac{\alpha}{\rho} \left[\frac{(1 - \nu)\rho^{2} + 1 + \nu}{\rho_{3}^{2} - 1} \int_{1}^{\rho} T\rho d\rho + (1 + \nu) \int_{1}^{\rho} T\rho d\rho \right].$$
(24)

При решении упругопластической задачи воспользуемся теорией малых упругопластических деформаций и условием идеальной пластичности Треска — Сен-Венана (ряс. 2).

Выбираем параметры индуктора так, чтобы в пластинке возникала одна зона упругопластического деформирования. Численный анализ показал, что наилучшее снятие остаточных напряжений в области максимальных растягивающих остаточных напряжений в пластинке достигается реализацией в этой области пластического состояния AB. Решение упругопластической за-

Решение упругопластической за-Рис. 2. Рис. 2. $\xi_1 \ll \rho \ll \xi_2$ ($1 < \xi_1 \ll \xi_2 < \frac{R_m}{R_0}$) пластического состояния *AB*, полученное с использованием нулевых граничных условий и непрерывности напряжений $\tilde{\sigma}_i$ и перемещений \tilde{u} , при $1 \ll \rho \ll \xi_1$, $\xi_2 \ll \rho \ll \rho_3$ имеет вид

$$\tilde{\sigma}_{r} = E \left[B_{k} \left(1 - \frac{\lambda}{\rho^{2}} \right) + \frac{\alpha}{\rho^{2}} \int_{\rho}^{\rho} T \rho d\rho \right],$$

$$\tilde{\sigma}_{\theta} = E \left[B_{k} \left(1 + \frac{\lambda}{\rho^{2}} \right) - \frac{\alpha}{\rho^{2}} \int_{\rho}^{\lambda} T \rho d\rho - \alpha T \right],$$

$$\tilde{u} = \rho B_{k} \left[1 - \nu + \frac{(1+\nu)\lambda}{\rho^{2}} \right] - \frac{\alpha(1+\nu)}{\rho} \int_{\rho}^{\lambda} T \rho d\rho \right],$$
(25)

где

$$k = 2, \ \lambda = 1 \quad \text{ДЛЯ} \quad 1 \leq \rho \leq \xi_1; \ k = 3, \ \lambda = \rho_3 \quad \text{ДЛЯ} \quad \xi_2 \leq \rho \leq \rho_3,$$
$$B_2 = \frac{\xi_1^2}{1 + \xi_1^2} \left[\frac{\bar{\sigma}_s(\rho)}{E} - \frac{\alpha}{\xi_1^2} \int_{1}^{\xi_1} T\rho d\rho + \alpha T(\xi_1) \right], \tag{26}$$

$$B_{s} = \frac{1}{\xi_{2}^{2} - \rho_{3}^{2}} \left\{ \frac{\xi_{2}}{E} \left[\xi_{1} \tilde{\sigma}_{r} \left(\xi_{1} \right) + \int_{\xi_{1}}^{\xi_{2}} \tilde{\sigma}_{s} d\rho \right] - \alpha \int_{\xi_{1}}^{\rho_{1}} T\rho d\rho \right\},$$
(27)

 $ilde{\sigma}_r$ (ξ_1) — эначение σ_r , взятое из зоны $1 \leqslant \rho \leqslant \xi_1$ для $\rho = \xi_1$; при $\xi_1 \leqslant \rho \leqslant \xi_8$

$$\tilde{\sigma}_{r} = \frac{1}{\rho} \left[\xi_{1} \bar{\sigma}_{r} (\xi_{1}) + \int_{\xi_{1}}^{b} \tilde{\sigma}_{s} d\rho \right], \quad \tilde{\sigma}_{\theta} = \tilde{\sigma}_{r}, \quad (28)$$

$$\tilde{\boldsymbol{\mu}} = e^{\boldsymbol{\rho}} \left[-\int_{\boldsymbol{\rho}}^{\xi_{4}} \boldsymbol{\psi}(\boldsymbol{\rho}) d\boldsymbol{\rho} \left[-\int_{\boldsymbol{\rho}}^{\xi_{4}} \boldsymbol{\psi}(\boldsymbol{\rho}) e^{-\int_{\boldsymbol{\rho}}^{\xi_{4}} \boldsymbol{\varphi}(\boldsymbol{\rho}) d\boldsymbol{\rho}} d\boldsymbol{\rho} + \tilde{\boldsymbol{\mu}}^{n}(\xi_{2}) \right],$$
(29)

70

 u^n (ξ_2) — значение *и*, взятое из зоны $\xi_2 \leqslant \rho \leqslant \rho_3$ для $\rho = \xi_2$. Здесь обозначено:

$$\varphi(\rho) = \frac{1}{\rho} \frac{\tilde{\sigma}_{\theta} - 2\tilde{\sigma}_{r}}{2\tilde{\sigma}_{\theta} - \tilde{\sigma}_{r}}, \quad \psi(\rho) = \left[\frac{1 - 2\nu}{E} (\tilde{\sigma}_{r} + \tilde{\sigma}_{\theta}) + 3\alpha T\right] \frac{\tilde{\sigma}_{\theta} - \tilde{\sigma}_{r}}{2\tilde{\sigma}_{\theta} - \tilde{\sigma}_{r}}.$$
 (30)

Для определения ξ_1 и ξ_2 из условий непрерывности $[\tilde{\sigma}_{\theta}]_{\xi_2} = 0, [\tilde{u}]_{\xi_1} = 0$ получаем следующие уравнения:

$$\frac{\tilde{\sigma}_s}{E} - B_s \left(1 + \frac{\rho_3^2}{\xi_2^2} \right) + \frac{\alpha}{\xi_2^2} \int_{\xi_2}^{\rho_s} T \rho d\rho + \alpha T \left(\xi_2 \right) = 0, \qquad (31)$$

$$\sum_{\substack{\ell=2\\ \xi_1}}^{\xi_2} \varphi(\rho) d\rho \left[\tilde{u}_n(\xi_2) - \int_{\xi_1}^{\xi_2} \psi(\rho) e^{-\int_{\rho}^{\xi_2} \varphi(\rho) d\rho} d\rho \right] =$$

$$= B_2 \xi_1 \left(1 - \nu + \frac{1 + \nu}{\xi_1^2} \right) + \frac{\alpha (1 + \nu)}{\xi_1} \int_{\xi_1}^{\xi_2} T\rho d\rho.$$
(32)

Система уравнений (31), (32) решалась на ЭВМ «Минск-32» с использованием метода направленного перебора, позволяющего определить все корни системы в заданном прямоугольнике. Значения определенных интегралов находились численным методом по формуле Симпсона.

Остаточные напряжения в пластинке после индукционной термообра-

20

1,6

42

Q8

ботки определялись по формуле (20). Вычисления проводились для кольцевой пластинки из материала AMr6 с характеристиками $\alpha = 24,7 \cdot 10^{-6} 1/^{\circ}$ С, $E = 6900 \ \kappa e/mm^2$, $\nu = 0,31$, $\sigma_s = 16 \ \kappa e/mm^2$ при $R_0 = 11 \ cm$, $R_3 = 11000 \ cm$, $R_{\rm nu} = 20,5 \, cm.$

На рис. З представлены вдоль радиальной координаты р температурные поля $T = 10^{-2}$ °C и добавочные остаточные напряжения $\sigma_{\rm P}^{(0)}$ для различных значений температуры под индуктором То и относительного радиуса индуктора ρ_0 при $\eta = 0,15$. Сплошные кривые построены для $\rho_0 = 1,4$, пунктир-ные — для $\rho_0 = 1,5$. Кривые I, II соответствуют $T_0 = 150$; 166°С, а кривые 1, 2, 3 — значениям $T_0 = 132$; 148; 164°С. Из графиков видно, что с увеличением То и уменьшением ро увеличивается эффект снятия наиболее опасных остаточных напряжений.

Графики изменения вдоль радиальной координаты р температурных по-

ρ

лей $T \sim 10^{-10}$ С и окончательных остаточных напряжений $\overline{\sigma}_{\ell}^{0}$, $\overline{\sigma}_{\theta}^{0}$ в пластин ке после индукционной термообработки при ро =1,35 для различных значений параметров п и То изображены на рис. 4. Причем сплошными линиями представлены величины, вычисленные для T₀ = 160°C, пунктирными — для $T_0 = 140^\circ$ C, а цифрами 1, 2, 3, обозначены графики, соответствующие η = 0,1; 0,2; 0,3. Из рисунка видно, что при одноразовой температурной обработке пластинки электроиндуктором до T₀ = 160° С начальные остаточные напряжения уменьшаются на 6-8%. Повторной термообработкой можно добиться дальнейшего снятия остаточных напряжений.

ЛИТЕРАТУРА

- 1. А р в о т т Д. Несколько типичных случаев, в которых вызванные сваркой остаточные напряжевия способствоваля, по-видимому, разрушению судовых конструкцяй. ИЛ. M., 1957.
- 2. Камию Ф. Влияние остаточных напряжений на работу конструкций. Остаточные напряжения в металлах и металлических конструкциях. ИЛ, М., 1957.

- Коваленко А. Д. Введение в термоупругость. «Наукова думка», К., 1965.
 Колодий Б. И., Чорный Б. И.— Прякладная механика, 1972, 8, 11.
 Ландау Л. Д., Лившиц Е. М. Электродянамика сплошных сред. Гостехнадат, М., 1957.
- 6. Москвитии В. В. Пластичность при переменных вагружениях. Изд-во Мос-
- 6. Москвития Б. Б. пластачность при переменных дахрумения. 1.2. се так ковского ун-та, М., 1965.
 7. Недосека А. Я., Казимиров А. А., Пархоменко И. В. Авто-матическая сварка, 1972, 8.
 8. Подстригач Я. С., Колодий Б. И. Прикладная механика, 1970, 6, 12.
 9. Смайт В. Электростатика и электродинамика. ИЛ, М., 1954.

- 10. Спрараген В. Остаточные напряжения, являющиеся результатом сварки. ИЛ, M., 1957.
- 11. Greene T. W., Holzbaur A. A. Controlled Low Temperature Stress Relieving, 11. 171-185, March 1946.

Львовский филиал математической физики Института математики АН УССР

Поступяла в редколлегию в сентябре 1974 г.

НЕИДЕАЛЬНЫЙ ТЕРМОМЕХАНИЧЕСКИЙ КОНТАКТ РАЗНОРОДНЫХ ПЛАСТИНОК

В. С. Попович

Рассмотрим систему двух тонких разнородных изотропных пластин, соединенных встык с помощью промежуточного слоя ширины 2h (рисунок). Толщина пластин и промежуточного слоя равна 2δ. Система, имеющая в начальный

5

момент времени $\tau = 0$ температуру t_0 , нагревается внешней средой, температура которой произвольная функция координат и времени. Величины, относящиеся к промежуточному слою, будем обозначать индексами «О», а величины, относящиеся к пластинкам, --- индексами «l» и «2». В предположении квадратичного распределения температуры по толшине пластинки

$$t_j = \left[1 + \frac{p_j^2}{2} \left(\frac{\delta^2}{3} - z^2\right)\right] T_j$$

для определения нестационарного температурного поля в системе имеем уравнения теплопроводности

$$p_j^2 T_j - x_j (T_j - t_e) = 0$$
 (1)