осевых ($\sigma_1^{(+)}$ на внешней поверхности) и кольцевых ($\sigma_2^{(-)}$ на внутренней поверхности) напряжений, соответствующих оптимальным температурным полям (9), (11); штриховые линии соответствуют случаю, когда наряду с указанными ограничениями на температуру задана равная нулю в месте сочленения ее производная. Из графиков видно, что температурные напряжения достигают максимальной величины в зоне высоких температур и имеют один и тот же порядок.

Исследования показали, что для рассматриваемого случая локального нагрева составной оболочки, изготовленной из одинакового материала, применительно к режимам локального отжига предпочтительными являются оптимальные температурные поля с максимальным значением температуры в месте сопряжения оболочек.

ЛИТЕРАТУРА

1. Бурак Я.И., Зозуляк Ю.Д.— Прикладная механика, 1970, **6**, 12. 2. Григолюк Э.И., Бурак Я.И., Подстригач Я.С.— ПМТФ, 1968, 4. 3. Чернина В.С. Статика тонкостенных оболочек вращения. «Наука», М., 1968.

Львовский филиал математической физики Института математики АН УССР Поступила в редколлегию в октябре 1973 г.

ВЛИЯНИЕ УСЛОВИЙ ЗАКРЕПЛЕНИЯ НА ОПТИМАЛЬНЫЙ НАГРЕВ Неоднородной цилиндрической оболочки

Л. П. Беседина, Я. П. Романчук

При выборе оптимальных режимов локальной термообработки цилиндрической оболочки возникает задача определения таких температурных полей, которые при заданных условиях локального нагрева обеспечивают низкий уровень температурных напряжений.

Постановка и решение такого класса задач для случая однородных цилиндрических оболочек рассмотрены ранее в работах [1, 3], а для бесконечной неоднородной цилиндрической оболочки — в работе [4]. В качестве критерия оптимальности принималось условие минимума функционала упругой энергии оболочки.

Ниже в такой же постановке рассмотрено решение вариационной задачи о нахождении экстремальных температурных полей в неоднородной цилиндрической оболочке радиуса R и длины 2L при различных условиях закрепления граничных сечений. Неоднородность материала оболочки будем характеризовать изменяющимися вдоль осевой координаты модулем упругости E = E(x) и коэффициентом линейного температурного расширения $\alpha =$ $= \alpha(x)$, а значение коэффициента Пуассона ν примем постоянным.

Система уравнений равновесия, записанных относительно компонент перемещений, приводится [5] к разрешающему уравнению

$$\frac{d^2}{dx^2} \left(E - \frac{d^2 \omega_0}{dx^2} \right) + 4E \left(\omega_0 - \varepsilon_t \right) + \frac{4h^2 a^2}{3(1-\nu)R} - \frac{d^2}{dx^2} \left(E \varkappa_t \right) + \frac{2\nu}{h} N_0 = 0, \quad (1)$$

где $w_0 = \frac{w}{R}$; $w - функция прогибов; <math>x = \frac{az}{R}$; z - осевая координата; $l = \frac{aL}{R}$; $a = \sqrt[4]{\frac{3(1-v^2)R^2}{4h^2}}$; 2h -толщина оболочки; $\varepsilon_t = \alpha T_1$; $\varkappa_t = \frac{\alpha}{h}T_2$; T_1 , $T_2 -$ интегральные характеристики температуры; N_0 - осевое усилие, определяемое по формуле

$$V_{0} = -\frac{h}{\nu l} \left\{ \int_{-l}^{l} E(w_{0} - \varepsilon_{l}) dx + \left[\frac{1}{4} \frac{d}{dx} \left(E - \frac{d^{2}w_{0}}{dx^{2}} \right) + \frac{h^{2}a^{2}}{3(1-\nu)R} \frac{d}{dx} (E\varkappa_{l}) \right]_{-l}^{l} \right\}.$$
(2)

Упругая энергия оболочки представляется функционалом

$$K(w_{0}, \varepsilon_{t}, \varkappa_{t}) = \frac{2\pi R^{2}h}{a} \int_{-l}^{l} \left\{ E\left[\left(w_{0} - \varepsilon_{t}\right)^{2} + \frac{1}{4} \left(\frac{d^{2}w_{0}}{dx^{2}}\right)^{2} + \frac{2h^{2}\varkappa_{t}}{3(1-\nu)} \left(\varkappa_{t} + \frac{a^{2}}{R} \frac{d^{2}w_{0}}{dx^{2}}\right) \right] + \frac{1-\nu^{2}}{4Eh^{2}} N_{0}^{2} \right\} dx.$$
(3)

Условия закрепления краев представим следующим образом:

$$N_{1} \equiv N_{0} = \frac{h}{l(1-v^{2})} \frac{a}{R} \int_{-l}^{l} E\left(A_{1} \frac{du}{dx} + \frac{R}{a}A_{2}\right) dx,$$

$$Q_{1}(\pm l) = -\frac{2h^{3}a^{3}}{3(1-v^{2})R^{2}} E(\pm l) \left[B_{1}^{\pm}w_{0}(\pm l) + B_{2}^{\pm}\right],$$

$$M_{1}(\pm l) = -\frac{2h^{3}a^{2}}{3(1-v^{2})R} E(\pm l) \left[C_{1}^{\pm} \frac{dw_{0}}{dx}(\pm l) + C_{2}^{\pm}\right],$$
(4)

причем знак «+» соответствует x = l, а знак «--» - x = -l. В зависимости от значений постоянных A_i , B_i^{\pm} , C_i^{\pm} получим известные условия свободных, жесткозащемленных, шарнирно-опертых, жесткозаделанных и упругозаделанных краев цилиндрической оболочки.

Искомые семейства температурных полей, обеспечивающих низкий уровень температурных напряжений, определим из условия минимума функционала (3), заданного на множестве функций w_0 , ε_t , \varkappa_t , удовлетворяющих разрешающему уравнению (1), граничным условиям (4) и дополнительным ограничениям на допустимые функции в фиксированных сечениях $x = x_f$ следующего вида:

$$w_0(x_i) = w_{0i}, \quad \frac{dw_0}{dx}(x_i) = w_{1i}, \quad M_1(x_i) = M_{0i}, \quad Q_1(x_i) = Q_{0i}, \quad (5)$$

Здесь w_{0j} , w_{1j} , M_{0j} , Q_{0j} — некоторые постоянные, Φ_i — заданные ограничения на характеристики температурной деформации.

Предполагается, что участки, на которых заданы ограничения (6), не пересекаются. Отметим, что условия (5) в фиксированных сечениях задаются на величины, которые по физическому смыслу должны быть непрерывными в процессе деформирования.

Из необходимого условия экстремума [6] функционала (3) с учетом [2] и соотношений (1), (4) — (6) получим следующие уравнения Эйлера:

$$\frac{d^{2}}{dx^{2}} \left\{ \frac{E}{E_{0}} \frac{d^{2}}{dx^{2}} \left[\varepsilon_{t} - \frac{1}{4} \frac{E_{0}}{E} \sum_{i=1}^{n} \lambda_{i} \frac{\partial \Phi_{i}}{\partial \varepsilon_{t}} \left(\vartheta \left(x - x_{i1} \right) - \vartheta \left(x - x_{i2} \right) \right) \right] + \frac{4h^{2}a^{2}E}{3(1 - v)E_{0}R} x_{t} \right\} - \sum_{i=1}^{n} \lambda_{i} \frac{d\Phi_{i}}{\partial \varepsilon_{t}} \left[\vartheta \left(x - x_{i1} \right) - \vartheta \left(x - x_{i2} \right) \right] - \frac{2A_{1}E}{E_{0}l(1 - v)(1 - A_{1})(1 - v - A_{1})} \left\{ v \left(1 - A_{1} \right) \int_{-l}^{l} \left[w_{0} - \varepsilon_{t} + \frac{1}{4} \frac{E_{0}}{E} \sum_{i=1}^{n} \lambda_{i} \frac{\partial \Phi_{i}}{\partial \varepsilon_{t}} \left(\vartheta \left(x - x_{i1} \right) - \vartheta \left(x - x_{i2} \right) \right) \right] + \frac{A_{1}}{2l} \int_{-l}^{l} \left[\frac{1}{E} \int_{-l}^{l} E \left(vw_{0} - \frac{-(1 + v)\varepsilon_{t}}{dx^{2}} dx - A_{2} \right] = \sum_{j=1}^{m} \left[\lambda_{0j} + \lambda_{1j} \frac{d}{dx} + \lambda_{2j} \frac{d^{2}}{dx^{2}} E + \frac{\lambda_{3j} \frac{d^{2}}{dx^{2}} \left(E \frac{d}{dx} \right) \right] \delta(x - x_{l}), \quad (7)$$

103

$$\begin{aligned} \frac{d^{2}e_{t}}{dx^{2}} + \frac{2R}{a^{2}} \varkappa_{t} &= \frac{1}{4} \frac{d^{3}}{dx^{2}} \left\{ \frac{E_{0}}{E} \sum_{i=1}^{n} \lambda_{i} \frac{\partial \Phi_{i}}{\partial e_{t}} \left[\vartheta \left(x - x_{t1} \right) - \vartheta \left(x - x_{t2} \right) \right] \right\} + \\ &+ \frac{3\left(1 - v \right) E_{0}R}{4h^{2}a^{2}E} \sum_{i=1}^{n} \lambda_{i} \frac{\partial \Phi_{i}}{\partial \varkappa_{t}} \left[\vartheta \left(x - x_{i1} \right) - \vartheta \left(x - x_{i2} \right) \right] + \\ &+ \sum_{j=1}^{m} \left[\lambda_{2j} \delta \left(x - x_{j} \right) + \lambda_{3j} \frac{d}{dx} \left(x - x_{j} \right) \right], \\ \lambda - \frac{1}{2l} \int_{-l}^{l} \lambda dx &= w_{0} - e_{t} - \frac{1}{2\lambda l \left(1 - A_{1} \right)} \int_{l}^{l} \left\{ \frac{A_{1}}{2El} \int_{-l}^{l} E \left[vw_{0} - e_{t} \left(1 + v \right) \right] dx + \\ &+ v \left(1 - A_{1} \right) \left[w_{0} - e_{t} + \frac{1}{4} \frac{E_{0}}{E} \sum_{i=1}^{n} \lambda_{i} \frac{\partial \Phi_{i}}{\partial e_{t}} \left(\vartheta \left(x - x_{i1} \right) - \vartheta \left(x - x_{i2} \right) \right) \right] \right\} dx + \\ &+ \frac{A_{1}}{2Evl \left(1 - A_{1} \right)} \int_{-l}^{l} E \left[vw_{0} - \left(1 + v \right) e_{t} \right] dx + \\ &+ \frac{1}{4} \frac{E_{0}}{E} \sum_{i=1}^{n} \lambda_{i} \frac{\partial \Phi_{l}}{\partial e_{t}} \left[\vartheta \left(x - x_{i1} \right) - \vartheta \left(x - x_{i2} \right) \right] \right\} dx + \\ &+ \frac{1}{4} \frac{E_{0}}{E} \sum_{i=1}^{n} \lambda_{i} \frac{\partial \Phi_{l}}{\partial e_{t}} \left[\vartheta \left(x - x_{i1} \right) - \vartheta \left(x - x_{i2} \right) \right], \\ \lambda_{0} &= \frac{1 - v}{vl \left(1 - v - A_{1} \right)} \int_{-l}^{l} \left\{ \frac{A_{1}}{2El} \int_{-l}^{l} E \left[vw_{0} - \left(1 + v \right) e_{t} \right] dx + \\ &+ v \left(1 - A_{1} \right) \left[w_{0} - e_{t} + \frac{1}{4} \frac{E_{0}}{E} \sum_{i=1}^{n} \lambda_{i} \frac{\partial \Phi_{l}}{\partial e_{t}} \left[\vartheta \left(x - x_{i1} \right) - \vartheta \left(x - x_{i2} \right) \right], \\ \lambda_{0} &= \frac{1 - v}{vl \left(1 - v - A_{1} \right)} \int_{-l}^{l} \left\{ \frac{A_{1}}{2El} \int_{-l}^{l} E \left[vw_{0} - \left(1 + v \right) e_{t} \right] dx + \\ &+ v \left(1 - A_{1} \right) \left[w_{0} - e_{t} + \frac{1}{4} \frac{E_{0}}{E} \sum_{i=1}^{n} \lambda_{i} \frac{\partial \Phi_{l}}{\partial e_{t}} \left(\vartheta \left(x - x_{i1} \right) - \\ &- \vartheta \left(x - x_{i2} \right) \right) \right] - \frac{A_{2}}{2l} \right\} dx$$

и соответствующее вариационное соотношение на граничные значения искомых функций. В случае постоянного по толщине температурного поля, полагая ограничение (6) (n = 1) равным

$$\Phi_1 \equiv \varkappa_t = 0, \tag{8}$$

с учетом граничных условий (4) получим дополнительные экстремальные граничные условия:

$$\left(E\frac{d^2\varepsilon_t}{dx^2}\right)(\pm l) = 0, \quad \frac{d}{dx}\left(E\frac{d^2\varepsilon_t}{dx^2}\right)(\pm l) = 0 \tag{9}$$

для свободной оболочки;

$$(E\varepsilon_t)(\pm l) = 0, \quad \frac{d}{dx}(E\varepsilon_t) = 0$$
 (10)

для жесткозащемленной оболочки;

$$\varepsilon_t(\pm l) - \frac{\nu}{2l} \int_{-l}^{l} \varepsilon_t dx + \frac{1}{2E(\pm l) l} \int_{-l}^{l} E(1+\nu) \varepsilon_t dx, \quad \frac{d^2 \varepsilon_t}{dx^2} (\pm l) = 0 \quad (11)$$

для шарнирно-опертой оболочки;

$$\varepsilon_t(\pm l) - \frac{v}{2l} \int_{-l}^{l} \varepsilon_t dx + \frac{1}{2E(\pm l)l} \int_{-l}^{l} E(1+v) \varepsilon_t dx, \quad \frac{d\varepsilon_t}{dx} (\pm l) = 0 \quad (12)$$

для жесткозаделанной оболочки;

$$\varepsilon_{t}(\pm l) - \frac{v}{2l} \int_{-l}^{l} \varepsilon_{t} dx + \frac{1}{2E(\pm l)l} \int_{-l}^{l} E(1+v) \varepsilon_{t} dx,$$

$$C_{1}^{\pm} \left[\frac{dw_{0}}{dx} (\pm l) - \frac{d\varepsilon_{t}}{dx} (\pm l) \right] + \frac{d^{2}\varepsilon_{t}}{dx^{2}} (\pm l) = 0$$
(13)

ля упругозаделанной оболочки.

Система уравнений Эйлера (7) вместе с разрешающим уравнением (1), граничными условиями (4), экстремальными условиями (9) — (13) составляет полную систему уравнений для определения ε_t , прогибов ω_0 , множителей Лагранжа λ_0 , λ_{ii} , $\lambda(x)$, $\lambda_i(x)$.

Интегрируя первое уравнение (7) с учетом выражения (8), для свободной и жесткозащемленной оболочек получаем семейство экстремальных температурных полей:

$$\alpha T = \frac{1}{2} \sum_{i=1}^{m} \left[\int_{0}^{x-x_{i}} (x-\xi-x_{i}) \left(\lambda_{0i} |\xi| + a_{3}\xi + \lambda_{1i} \operatorname{sgn} \xi + a_{2}\right) \frac{E_{0}d\xi}{E(\xi+x_{i})} + \left(\lambda_{2i} (x-x_{i}) + \lambda_{3i}\right) \operatorname{sgn} (x-x_{i}) \right] + a_{0} + a_{1}x.$$
(14)

В качестве примера рассмотрим задачу о локальном нагреве составной кусочно-однородной цилиндрической оболочки. Пусть материал оболочки в областях — $l_1 \leq x < 0$, $0 < x \leq l_2 \left(l = \frac{aL}{R}\right)$ имеет постоянные, но разные модули упругости E_0 , E_1 и коэффициенты температурного расширения α_0 , α_1 соответственно. Выделим из решения (14) семейства экстремальных температурных полей, которые соответствуют дополнительным ограничениям (5), налагаемым в сечении x = 0 (j = 1). Тогда

$$T = \frac{1}{12\alpha_0} \left[-\lambda_{02} x^3 - 3\lambda_{12} x^2 - 6\lambda_{22} x - 6\lambda_{32} + 12 \left(a_0 + a_1 x + a_2 x^2 + a_3 x^3 \right) \right]$$

для $-l_1 \leqslant x \leqslant 0$, (15)

$$T = \frac{1}{12c\alpha_0} \left[k \left(\lambda_{02} x^3 + 3\lambda_{12} x^2 \right) + 6\lambda_{22} x + 6\lambda_{32} + 12 \left(a_0 + a_1 x + ka_2 x^2 + ka_3 x^3 \right) \right]$$
для $0 < x \leq l_2$,

где $k = \frac{E_0}{E_1}$, $c = \frac{\alpha_0}{\alpha_1}$.

Приведем экстремальные температурные поля для свободной и жесткозащемленной оболочек при следующих ограничениях на температурное поле.

1. Свободная оболочка:

a)
$$\frac{1}{2}[T(+0) + T(-0)] = T_0, \quad \frac{dT}{dx}(\pm 0) = 0, \quad \lambda_{32} = 0.$$

Учитывая соотношения (9), получаем температурное поле

$$T = \frac{2T_0}{1+c} \left[c \vartheta \left(-x \right) + \vartheta \left(x \right) \right], \tag{16}$$

которое не вызывает напряжений в рассматриваемой оболочке;

5)
$$\frac{1}{2}[T(+0) + T(-0)] = T_0, \quad T(-l_1) = T(l_2) = 0, \quad \lambda_{32} = 0.$$

В этом случае

$$T = \frac{2T_0}{1+c} \left[c \left(1 + \frac{x}{l_1} \right) \vartheta \left(-x \right) + \left(1 - \frac{x}{l_2} \right) \vartheta \left(x \right) \right]. \tag{17}$$

Поля (16), (17) в сечении x = 0 имеют одинаковый скачок, который зависит только от соотношения коэффициентов температурного расширения и обращается в нуль при c = 1 ($\alpha_0 = \alpha_1$);

B)
$$\frac{1}{2}[T(+0) + T(-0)] = T_0, \quad T(-l_1) = T(l_2) = T_1, \quad \frac{dT}{dx}(-0) = 0.$$

Используя условия (9), будем иметь

$$T = T_1 \vartheta(-x) + T_0 \left[2 \left(-1 + \frac{T_1}{T_0} \right) \frac{x}{l_2} + \left(2 - \frac{T_1}{T_0} \right) \right] \vartheta(x); \quad (18)$$

105

г) условия $T(\pm 0) = T_0, T(-l_1) = T(l_2) = 0$ дадут следующее экстремальное температурное поле:

$$T = T_0 \left[\left(1 + \frac{x}{l_1} \right) \vartheta \left(-x \right) + \left(1 - \frac{x}{l_2} \right) \vartheta \left(x \right) \right].$$
(19)

2. Жесткозащемленная оболочка:

a)
$$\frac{1}{2}[T(+0) + T(-0)] = T_0, \quad \frac{dT}{dx}(\pm 0) = 0, \quad \lambda_{32} = 0$$

Удовлетворяя условиям (10), получаем

$$T = \frac{2cT_0}{1+c} \left(1 - 3 \frac{x^3}{l_1^2} - 2 \frac{x^3}{l_1^3} \right) \text{ для } - l_1 \leqslant x < 0,$$

$$T = \frac{2T_0}{1+c} \left(1 - 3 \frac{x^2}{l_2^2} + 2 \frac{x^3}{l_2^3} \right) \text{ для } 0 < x \leqslant l_2;$$
6) $T (\pm 0) = T_0, \quad \frac{dT}{dx} (\pm 0) = 0.$
(20)

В этом случае экстремальное температурное поле запишется в виде

$$T = T_0 \left(1 - 3 - \frac{x^2}{l_1^2} - 2 - \frac{x^3}{l_1^3} \right) \text{ для } - l_1 \leqslant x < 0,$$

$$T = T_0 \left(1 - 3 - \frac{x^2}{l_2^2} + 2 - \frac{x^3}{l_2^3} \right) \text{ для } 0 < x \leqslant l_2.$$
(21)

На рис. 1 представлены профили оптимальных температурных полей (17) (сплошная линия, c = 0,7), (18) (пунктирная линия) и (19) (штрихпунктирная линия) для свободной кусочно-однородной цилиндрической оболочки.

На рис. 2 изображены профили оптимальных температурных полей (20) (сплошная линия, с =0,7) и (21) (пунктирная линия) в случае жесткого защемления краев оболочки. При вычислениях принималось $l_1 = 0,8;$ $l_2 = 1,0.$

ЛИТЕРАТУРА

- Беседина Л. П., Бурак Я. И. ФХММ, 1969, 5.
 Гельфанд М. М., Шилов Г. Е. Обобщенные функции и действия над ними. Физматгиз, М., 1959.
- 3. Григолюк Э.И., Бурак Я.И., Подстригач Я. С.— ДАН СССР, 1967, 174, 3.
- 1. Подстригач Я.С., Бурак Я.И., Беседина Л.П.— ФХММ, 1971, 2.
 5. Підстригач Я.С., Ярема С.Я. Температурні напруження в оболонках. Вид-во АН УРСР, К., 1961.
 6. Эльсгольц Л.Э. Дифференциальные уравнения и вариационное исчисление.
- «Наука», М., 1969.

. Тьвовский филиал математической физики Института математики АН УССР

Поступила в редколлегию в октябре 1973 г.