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ON A SEMITOPOLOGICAL EXTENDED BICYCLIC
SEMIGROUP WITH ADJOINED ZERO

In the paper it is shown that every Hausdorff locally compact semigroup topology
on the extended bicyclic semigroup with adjoined zero Cg is discrete, but on Cg
there exist ¢ many different Hausdorff locally compact shift-continuous
topologies. Also, it is constructed on Cg the unique minimal shift-continuous
topology and the unique minimal inverse semigroup topology.
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Introduction and preliminaries. We follow the terminology of [13, 14, 17,
31]. In this paper all spaces are assumed to be Hausdorff. By Z, N, and N
we denote the sets of all integers, non-negative integers and positive integers,
respectively.

A semigroup is a non-empty set with a binary associative operation.
A semigroup S is called inverse if every a € S possesses an unique inverse in

S, ie. if there exists a unique element a™ € S such that

a-al-a=a and al a-at=at.

A map that associates to any element of an inverse semigroup its inverse is
called the inversion.

For a semigroup S, by E(S) we denote the subset of all idempotents in
S . If E(S) is closed under multiplication, then we shall refer to E(S) as the
band of S. The semigroup operation on S determines the following partial
order = on E(S): e=<f if and only if ef = fe = e. This order is called the

natural partial order on E(S). A semilattice is a commutative semigroup of

idempotents. A semilattice E is called linearly ordered or a chain if its natural
partial order is a linear order. A maximal chain of a semilattice E is a chain
which is not properly contained in any other chain of E.

The Axiom of Choice implies the existence of maximal chains in every
partially ordered set. According to [30, Definition I1.5.12], a chain L is called
an o-chain if L is order-isomorphic to {0,-1,-2,-3,...} with the usual order

< or, equivalently, if L is isomorphic to (No,max).

The bicyclic semigroup (or the bicyclic monoid) C(p,q) is the semigroup
with the identity 1 that is generated by two elements p and q subjected
only to the condition pg =1. The bicyclic monoid C(p,q) is a combinatorial

bisimple F -inverse semigroup (see [28]) and it plays an important role in the
algebraic theory of semigroups and in the theory of topological semigroups.
For example, the well-known Andersen’s result [2] states that a (0-)simple
semigroup is completely (0-)simple if and only if it does not contain the
bicyclic semigroup. The bicyclic semigroup cannot be embedded into stable
semigroups [27].

A (semi)topological semigroup is a topological space with a (separately)
continuous semigroup operation. An inverse topological semigroup with the
continuous inversion is called a topological inverse semigroup. A topology T on
a semigroup S is called:
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e shift-continuous if (S,1) is a semitopological semigroup;

e semigroup if (S,1) is a topological semigroup;

e inverse semigroup if (S,1) is a topological inverse semigroup.

The bicyclic semigroup admits only the discrete semigroup topology and
if a topological semigroup S contains it as a dense subsemigroup, then C(p,q)

is an open subset of S [16]. Bertman and West in [12] extended this result for
the case of Hausdorff semitopological semigroups. Stable and I -compact to-
pological semigroups do not contain the bicyclic semigroup [3, 25]. The prob-
lem of embedding of the bicyclic monoid into compact-like topological semi-
groups was studied in [4, 5, 10, 24]. Also, in the paper [18] it was proved that
the discrete topology is the unique topology on the extended bicyclic semi-
group C, such that the semigroup operation on C, is separately continuous.

A unexpected dichotomy for the bicyclic monoid with adjoined zero =
= C(p,q) U {0} was found in [20]: every Hausdorff locally compact semitopolo-

gical bicyclic semigroup with adjoined zero C° is either compact or discrete.
The above dichotomy was extended by Bardyla in [7] to locally compact
A -polycyclic semitopological monoids, and in [8] to locally compact
semitopological graph inverse semigroups and also by the authors in [21] to
locally compact semitopological interassociates of the bicyclic monoid with an
adjoined zero, and in [19] to locally compact semitopological 0-bisimple inverse
o -semigroups with compact maximal subgroups. The lattice of all weak shift-

continuous topologies on C° is described in [9].
On the Cartesian product C, = Z xZ we define the semigroup operation
as follows:

(a-b+c,d), b<e,
(a,b)(c,d) =1 (a,d), b=c, (1)
(a,d+b-c), b>c,
for a,b,c,d € Z. The set C, with the operation defined above is called the
extended bicyclic semigroup [33].

In [18] the algebraic properties of C, were described. It was proved there
that every non-trivial congruence € on the semigroup C, is a group congru-
ence, and moreover, the quotient semigroup C,/€ is isomorphic to a cyclic
group. It was shown that the semigroup C, as a Hausdorff semitopological
semigroup admits only the discrete topology and also the closure clT(CZ) of
the semigroup C, in a topological semigroup T was studied there.

In [22] we proved that the group Aut(CZ) of automorphisms of the ex-
tended bicyclic semigroup C, is isomorphic to the additive group of integers.

By CZ0 we denote the extended bicyclic semigroup C, with adjoined zero

0.
In this paper we show that every Hausdorff locally compact semigroup

topology on the semigroup Cg is discrete, but on Cg there exist ¢ many
different Hausdorff locally compact shift-continuous topologies. Also, we
construct on Cg the unique minimal shift-continuous topology and the unique
minimal inverse semigroup topology.

1. Locally compact shift-continuous topologies on the extended bicyclic
semigroup. We need the following simple statement:
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Proposition 1 [18, Proposition 2.1 (viii)]. For every integer n the set
Cyln]={(a,b):a=2nAb2=n}
is an inverse subsemigroup of C, that is isomorphic to the bicyclic semigroup
C(p,q) by the map

a-n, b-n

h: Czn] - C(p,q), (a,b) > q*"p

Proposition 1 implies the following

Corollary 1. For every integer n the set Cy[n] = Cy[n] U {0} is an inverse
subsemigroup of CZO that is isomorphic to the bicyclic monoid C° with
adjoined zero by the map h : CZO[n] - (a,b) > q* ™" ™ and 0 0.

Lemma 1. Let 1 be a non-discrete Hausdorff shift-continuous topology on
Cg . Then Cg[n] is a non-discrete subsemigroup of (Cg,r) for any integer n .

P r oo f First we observe that by Theorem 1 from [18] all non-zero
elements of the semigroup CZ0 are isolated points in (CZO,T).

Suppose to the contrary that there exist a non-discrete Hausdorff shift-
continuous topology t on CZ0 and an integer m such that CZO[n] is a discrete
subsemigroup of (CZO,r). Fix an arbitrary open neighbourhood U(0) of zero 0
in (Cy,t) such that U(0)( Cy[n]={0}. Then the separate continuity of the
semigroup operation in (CZO,T) implies that there exists an open
neighbourhood ~ V(0) c U(0) of zero 0 in (Cy,t) such that
(n,n)-V(@0) - (n,n) cUO). Our assumption implies that every open
neighbourhood W(0) c U(0) of zero 0 in (Cg,r) contains infinitely many
points (x,y) such that x <n or y <n. Then for any non-zero (x,y) € V(0)
by formula (1) we have that

(n+x-ym), y<ux,
(nvn_x-"_y)’ yzx,

(n,n)-(x,y)-(n,n) =(m,n-x+y)-(n,n) = {
and hence (n,n)-V(0)-(n,n)(C;[n]# < which contradicts the assumption
U(0)N Cy [n] = {0}. The obtained contradiction implies the statement of the
lemma. L4

For an arbitrary non-zero element (a,b) € Cg we denote

T (a,b) = {(x,y) € Cy : (a,b) = (x,y)}
where = is the natural partial order on CZO. It is obvious that

Tj (a,b)={(x,y)eCy:a-b=x-y, x<a in (Z,S)}.

Lemma 2. Let (a,b),(c,d),(e, f) € C; be such that (a,b)-(c,d) = (e, f). Then
the following statements hold:

(@) of b<c then (x,y) (c,d)= (e, f) for any (x,y) eTj (a,b), and more-
over, there exists a minimal element ((Al,lA)) <(a,b) in CZ0 such that

(&, IA)) (c,d) = (e, f). Also, there exist no other elements (x,y)e C,
with the property (x,y)-(c,d) = (e, f);
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(1) if b>c then (a,b)-(x,y) = (e, f) for any (x,y) ET5 (c,d), and more-
over, there exists a minimal element (é,&)j(c,d) in C, such that

(a,b)-(é,cAl) =(e,f). Also, there exist no other elements (x,y) € C; with
the property (a,b)-(x,y) = (e, f).

Pr oo f (i) Since b<c, the semigroup operation of C, implies that
(b,b)-(c,d) =(c,d). Also, if (a,b) <(x,y), then Lemma 1.4.6(5) from [28]
implies that

(x,y) - (b,b) = (x,) - (a,b)" - (a,b) = (a,b),

and hence we have that
(x,y) - (c,d) = (x,y) - ((b,b) - (c,d)) =
= ((x,y) - (b,b)) - (¢, d) = (a,b) - (¢, d) = (e, f).
We put (d,l;) =(a—-b+c,c). Then (d,l;) <(a,b) and formula (1) implies that

the element (d,l;) is required.
The last statement follows from Proposition 2.1 of [18] and formula (1).
The proof of statement (i7) is similar. ¢
Lemma 3. Let 1t be a non-discrete Hausdorff shift-continuous topology on

CZO. Then the natural partial order < 1is closed on (CZO,r) and Tj (a,b) is an
open-and-closed subset of (CZO,r) for any non-zero element (a,b) of CZ0 .

P r oo f By Theorem 1 of [18] all non-zero elements of the semigroup
Cy are isolated points in (Cy,t). Since 0 < (a,b) for any (a,b) € C, the above
implies the first statement of the lemma.

The definition of the natural partial order < on Cg and the separate

continuity of the semigroup operation on (Cg,r) imply the second statement,
because

T @b ={(xy el (a,a)- (xy) =(ab)}. ¢

Proposition 2. Let the semigroup CZO admits a mon-discrete Hausdorff

locally compact shift-continuous topology t. Then the following statements
hold:
() for any open meighbourhood U(0) of zero there exists a compact-and-

open neighbourhood V(0)  U(0) of 0 in (Cy,1);

(i7) the set Tj (a,b)NU0) is finite for any compact-and-open neighbo-
urhood V(0) c U(0) of the zero 0 in (CZO,T) and any non-zero element
(a,b) of Cg;

(197) for any open meighbourhood U(0) of zero in (CZO,T) and any integer
n the set U(0)\ Cg[n] is finite.

P r oo f Statement (i) follows from Theorem 1 of [18] and the local

compactness of the space (Cp,1).
Statement (i7) follows from Lemma 3 and Theorem 1 of [18].
(797). It is obvious that CZO[n] = (n,n)-Cg -(n,n) for any integer mn. This

implies that Cp[n] is a closed subset of (Cj,1) because Cg[n] is a retract of
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the space (Cy,1), and hence by Corollary 3.3.10 from [17] it is locally compact.
Since the topology 7t is non-discrete, Lemma 1 and Theorem 1 from [20]
implies that CZO[n] is a compact subspace of (CZO,T). Finally, we apply
Theorem 1 from [18]. ¢

Next we shall construct an example of a non-discrete Hausdorff locally
compact shift-continuous topology on the semigroup Cg that is neither
compact nor discrete.

Example 1. Let {x,},.n and {y,},.n be two increasing sequences of

positive integers with the following properties: x;,y, >1 and

x, +1<x 2<y, +1<y,

n+1?

for any n € N.
We denote

x; -1 y; -1
4, =T 00U U T 0,-HU [ T2 -4,0

i=1 i=1

and
xn+171 yn+171
= J TLa,,-), 4= U T
i=x 7=Yn

for any positive integer n.
Next, we put D=A4,U|J(A¢UA]). For finitely many
ieN
(ay,by),...,(a;,b,) € C;, we denote

PN (DU, (a;,b)U..U T, (b))

Ulay by, g by) =

We define a topology T}y"} on the semigroup CZO in the following way:

1°) all non-zero elements of C0 are isolated points;

2°) the family B° {y ] {U (@b e g bye) - (a;,b)),...,(a,b,)eCy, k e N} is
the base of the topology r{y"i at zero 0.

Proposition 3.
(i) the set Tﬁ (a,b)\ D is finite for any (a,b) € C; .

(i) D is a compact subset of the space (Cy, E’c"})

(777) the space (CZO, ifc"}) is locally compact and Hausdorff.

Proof (i The statement is trivial for (a,b) e D. Assume that
(a,b) ¢ D and consider the following cases.

(@) If a=b,then T_ (a,b)\ D ={{1,1),...,(a,a)}.
(b) Suppose that a <b. Then either there exists a positive integer 7 >1
such that y, <b-a <y,,; or b-a <y,. In the first case we have that

T (@W\D={(-i+1-b+a,~i+1),..,(ab)} =
=U{(k-b+a,k): k=-i+1,...,b}.
In the second case we have that b > 0 and hence

32



T (@b)\D={1-b+al),...,(ab)}=
=U{(k-b+ak):k=1...,b}.

(¢) Suppose that a > b. Then either there exists a positive integer j >1
such that x; <a-b<x;,; or a—-b<ux.In the first case we have that

T (@b)\D={(-j+1,—j+1-a+b),... (ab)}=

=U{k-a+bk):k=—-j+1,...,a}.
In the second case we have that a > 0 and hence
T (@b)\D={11-a+b),...,(a,b)}=
=U{k,k—a+b):k=1,...,a}.
Statement (z) is proved. Statement (iz) follows from ().

Since all non-zero elements of CZO are isolated points in (CZO, ifc"})

statement (ii7) follows from (717). ¢

For any non-zero element (a,b) of Cg we denote

8™ = {(x,y) € G5 1y 2 b} U{0},
S'Z ={(x,y) e C; 1 x> a} U{0}.

It is obvious that (a,b)Cg =5S% and CZO(a,b)zSQT for any non-zero
(a,b) € Cy .
Theorem 1. (Cy, E’c"}) is a semitopological semigroup.

P r o o f. By the definition of the topology ng"i it is sufficient to prove

that the left and right shifts of CZ0 are continuous at zero 0.

Fix any non-zero element (a,b) e CZO and any basic open neighbourhood

: 0 {yn}
Ulay by s(a by, ©OF z€T0 0 in (Cpyt T })
The definition of the topology r{y"i implies that there exist finitely many
non-zero elements (e, f,),...,(e,,, f,,) of the semigroup CZO with e;,...,e, 2a
such that

ms‘a SN (T2 (e, F)U.U TS (e, )

Since (a,b)CZ0 :S‘a, by Lemma 2 (i7) there exist minimal elements

(E‘l,c’il),...,(ém,gl ) in C, such that

(ayb) (C17 ) (epfl ) (a7b)'(cm7dm)=(em7fm)
Then the last equalities imply that
(a,b)- U<61,&1) ..... Goay S Ylapb (b

Similarly, there exist finitely many non-zero elements (el,fl),...,(ep,fp)
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of the semigroup Cg with fl,...,fp > b such that
) NS =8\ (T (e, £)U...UT. (e,. 1))

Since CZO(a,b):SbT, by Lemma 2 (Z) there exist minimal elements

(81,811),...,(8p,81p) in C, such that

(Clidl)'(avb):(elifl)v cey (Cpidp)'(aib):(epvfp)'
Then the last equalities imply that U(El,cil) ..... (ép,&p)(a’b) c U(al'bl) _____ (b ) ?
which completes the proof of the separate continuity of the semigroup
operation in (Cg,r%c"]i). ¢

If in Example 1 we put x; =y, for any 7 e N and denote T, } = T%Cni’

,,,,,,,,,,

Theorem 1 imply the following corollary:
Corollary 2. (CQ’T}Z"D is a Hausdorff locally compact semitopological

semigroup with continuous inversion.
Theorem 1 implies that on the semigroup CZ0 there exist ¢ many
Hausdorff locally compact shift-continuous topologies. But Lemma 1 implies

the following counterpart of Corollary 1 from [20]:
Corollary 3. Every Hausdorff locally compact semigroup topology on the

semigroup Cg is discrete.

2. Minimal shift-continuous and inverse semigroup topologies on Cg.
The concept of a minimal topological group was introduced independently in
the early 1970’s by Doitchinov [15] and Stephenson [32]. Both authors were
motivated by the theory of minimal topological spaces, which was well
understood at that time (cf. [11]). More than 20 years earlier Nachbin [29] had
studied minimality in the context of division rings, and Banaschewski [6]
investigated minimality in the more general setting of topological algebras.
The concept of a minimal topological semigroup was introduced in [23].

Definition 1 [23]. A Hausdorff semitopological (respectively, topological,
topological inverse) semigroup (S,t) is said to be minimal if no Hausdorff
shift-continuous (respectively, semigroup, semigroup inverse) topology on S
is strictly contained in t. If (S,t) is minimal semitopological (respectively,
topological, topological inverse) semigroup, then t is called minimal shift-
continuous (respectively, semigroup, semigroup inverse) topology.

It is obvious that every Hausdorff compact shift-continuous (respectively,
semigroup, semigroup inverse) topology on a semigroup S is a minimal shift-
continuous (respectively, semigroup, semigroup inverse) topology on S. But
an infinite semigroup of matrix units admits a unique compact shift-
continuous topology and non-compact minimal semigroup and inverse
semigroup topologies [23]. Similar results were obtained in [9] for the bicyclic

monoid with adjoined zero c.
Example 2. For finitely many (a,,b,),...,(a;,b;) € C; we denote

4
U(al,bl) ,,,,, (b)) — Cg \(Tj (a;, b U...U Tj (a.,by,)) -
We define a topology Tf:m on the semigroup CZ0 in the following way:

1°) all non-zero elements of CZ0 are isolated points;
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2°) the family B ={Ul 1) (o 7 (@000 (@h) € Gk e N} s
sh

the base of the topology t at zero 0.

We observe that by Lemma 3 the space (CO h ) is Hausdorff, 0-dimen-

Z> “min
sional and scattered, and hence it is regular. Since the base ﬁosh is coun-
Tmin
table, by the Urysohn Metrization Theorem (see [26, p. 123, Theorem 16]) the

0 _sh
space (Cz,T5.

fectly normal

) is metrizable and hence by Corollary 4.1.13 from [17] it is per-

ey 0 _sh . Lo . . . .
Proposition 4. (C;,t0. ) is a minimal semitopological semigroup with
CONtINUOUS INVETSION.

sh
min

P r o o f. The definition of the topology 1t implies that it is sufficient

to prove that the left and right shifts of CZ0 are continuous at zero 0.
Fix any non-zero element (a,b) € Cg and any basic open neighbourhood

: 0 _sh
Ulayby),... (g by, OF zero 0 in (Czr Tonin) -

The definition of the topology rfﬁ’i implies that there exist finitely many

n
non-zero elements (e, f,),...,(e,,, f,,) of the semigroup CZO with e,...,e, 2a
such that

Ul o a1 =S\ (M (e fHU..U L (e, £,))-

.....

Since (a,b)CZ0 :S‘a, by Lemma 2 (i7) there exist minimal elements

(¢;,dy),...,(Cm,dy) in Cy such that

(aib).(elial)z(el7f1)7 AR (ayb)'(em7am)=(emifm)'

Then the last equalities imply that
1
@8 U a) i, S Vbt

Again, by similar way there exists finitely many non-zero elements
(el,fl),...,(ep,fp) of the semigroup Cg with fl,...,fp > b such that

U(‘Ll’bl) (ag; by ) DSQT = SQT \(Tﬁ (el’fl)U"'U Tﬁ (ep’fp))'

.....

Since CZO(a,b):Sb?, Lemma 2 (z) implies that there exist minimal

elements (61,&1),...,(6,,,81,,) in C, such that
(Clidl)'(avb):(elifl)v ] (Cm,dm)‘(a,b):(ep,fp).
e T
Then the last equalities imply that U(El,&l),...ﬁ(ép,&p) (@,0) S U b)), ap b ?

which completes the proof of the separate continuity of the semigroup

operation in (Cy, " ).

: ) -1_¢77
Also, since (U(al’bl) (ak'bk)) —U(

,,,,,

by.ay ). (bt for any (a;,b)),...,(a;,b;) €

. . . . . 0 _sh
€ C;, the inversion is continuous in (CZ, rmin) as well.
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sh
min

topology on CZO and hence (CO sk

Lemma 3 implies that = is the coarsest Hausdorff shift-continuous

75 min) is a minimal semitopological semigroup.

Example 3. We define a topology Timi on the semigroup CZO in the

following way:

1°) all non-zero elements of CZO are isolated points in the topological space
0 i .
(Cz: Tmin) 5

2°) the family 1301-4 = {Sla n.sot ta,be Z} is the base of the topology

Tooin at zero 0.

It is obvious that the space (CO h

2, T ) is Hausdorff, 0-dimensional and

scattered and hence it is regular. Since the base ﬁoi is countable, similarly

Tmin

as in Example 2 we get that the space (Cy,t. . ) is metrizable.
i

Proposition 5. (Cg,rmm) is a minimal topological inverse semigroup.

Proof We have that for any a,beZ and any non-zero element

(Jc,y)eC£ there exists an integer n such that (x,y)ecg[n] and

slen st < Cg[n]. By Corollary 1 the semigroup Cg[n] is isomorphic to the

bicyclic monoid with adjoined zero C°. Also, it is obvious that the topology

sh
min

T induces the topology t on CZO[n] such that t generates by the map

hzcg[n]—>CO, (a,b) > ¢ "p®™ and 0 — 0, the topology Toin 0N c® 19

Then the proof of Lemma 2 from [1] implies that (C°,t,. ) is a Hausdortf

> “min
topological semigroup. This and the above arguments imply that (Cg,rimn) is

a topological inverse semigroup. The minimality of (CO T ) as topological

Z> “min
inverse semigroup follows from Lemma 3, because

co\ (s Ns™) = {,y) : (2, y) (@ y " et (@-La-D}U

U, y) s (e, - () €T2 (b-1b -1}
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HAMIBTOMONONIYHI PO3WWUPEHHA BILUKINIYHOI
HAMIBrerynu 3 nPUEAHAHUM HYINEM

Jlosedeno, wo KoxucHa 2ayc0opdosa AOKAABHO KOMNAKMHA HANIBZPYNOBA MON0A02IL HA
po3wupeHitl OIYUKATUHITU HaANigePYNL 3 NPUEOHAHUM HYAeM Cg € duckpemnoto, ane Ha

0 - . Lo
C; icnye ¢ pisHUx 2ayc0opPosUL AOKANBHO KOMNAKMHUL MPAHCAAYIUHO-HeNnepePsHuUL

Lo 0 Lo -
monoaoeiti. Taxoxu Ha C; mMo6YO08aHO €OUHY MIHIMAALHY MPAHCAAYITHO-HenepepsHy
MON0A02II0 MA EOUHY MIHIMAALHY THBEPCHY HANIBZPYNO8Y MONOA0IIO.

Kawmouoei caoea: poswupena GIYUUKAIUHA HANIBZPYNG, AOKAABHO KOMNAKMHULU, HANIE-
MONOA0TUHA HANIBZPYNA, MONOAOIUHA HANIEPYNA, MIHIMAALHA MONOAOIUHA
Hanigzpyna, Ouckpemuul.

NMonyTOMNOJNIOMMYECKUE PACLUMPEHUA BULIMKITUYECKOW
nonyreynnbl C NAPUCOEAUHEHHBLIM HYJIEM

Hoxazano, umo xaxdas xaycdopgosa AOKAABHO KOMNAKMHASL NOAY2PYNNO8AL MONO-

02U HA PACWUPEHHOU OUYUKAUYECKOU noayzpynne ¢ mpucoeduHeHHbvlM HYseMm CZO
asasemcs OUCKpemHol, HO Ha CZO cywecmeyem ¢ pPasnwvlr xaycoopgPosvir A0KALBLHO

KOMNAKMHDBLL MPAHCAAYUOHHO-HENPEPHLEHDBLL monoaozuti. Taxie wHa Cg nocmpoena

eduHCMBEHHAS MUHUMAABHASL MPAHCAIYUOHHO-HENPEPBIBHAS MONOA0USL U eOUHCMBeH-

HASL MUHUMAABHASL UHBEPCHASL NOAYSPYNNOBASL MONOAOLUSL.

Katouesvie caosa: pacwupertas OUYUKAULECKAS NOAY2PYNNA, LOKAALHO KOMNAKMHDBLIUL,
NOAYMONON0ZULECKASL NOAYZPYNNA, MONOA0ZULECKAS NOAYZPYNNA, MUHUMALBHAS
MONOA0ZUUECKASL NOAY2PYNNA, OUCKPEMHDBLY.
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