

для параметров оболочки: R = 0.03 м, h = 0.0015 м, $\alpha_0 = 0.5$, $\alpha_1 = 0.55$, $\mu_1 = 0,01, \beta = 0, \beta = 0,1, \beta = 0,2$ (значение β для кривых 1-3 соответственно). Как следует из рис. 2, экстремальное значение функции T_1 (α , β)/ q_0 достигается при $\alpha = 0$, $\beta = 0$. При этом с увеличением количества разрезов значение $T_1(\alpha, \beta)/q_0$ уменьшается.

1. Каландия А. И. Математические методы двумерной упругости. - М.: Наука.

А. Задача теплопроводности для замкнутой цилиндрической оболочки с поперечной термоизолированной трещиной при наличии теплообмена. — Докл. АН УССР. Сер. А, 1978, № 5, с. 436—440.

3. Подстригач Я. С., Швец Р. Н. Термоупругость тонких оболочек. — Киев: Наук. думка, 1978.—343 с.

4. Швец Р. Н., Павленко В. Д. О циклически симметричных задачах теплопровод-

ности для пластин и оболочек с отверстиями при наличии теплообмена. — Инж.-физ. журн., 1972, 23, № 5, с. 890—897.

Ин-т прикладных проблем механики и математики АН УССР, Львов

Получено 25.04.84

УДК 550.837.6

В. И. Гордиенко, Я. П. Кулыныч

ВТОРИЧНОЕ ЭЛЕКТРОМАГНИТНОЕ ПОЛЕ **БЕСКОНЕЧНО ДЛИННОГО ЦИЛИНДРА** В СЛОИСТОЙ СРЕДЕ

Определение аномального электромагнитного поля (ЭМП) бесконечного цилиндра, возбуждаемого дипольным источником, является необходимым условием для разработки принципов построения активных электромагнитных систем обнаружения трасс и контроля глубин залегания инженерных коммуникаций (ИК) и протяженных включений [1]. Известное [5] решение задачи возбуждения бесконечного цилиндра дипольным источником в безграничной среде является достаточным для обоснования принципов построения систем поиска подземных ИК. При обнаружении подводных ИК диполь и цилиндр расположены в высокопроводящей среде (вода), электродинамические параметры которой резко отличаются от электродинамических параметров воздуха и дна. Поэтому является актуальным исследование вторичного ЭМП бесконечно длинного цилиндра, возбуждаемого произвольно ориентированным электрическим диполем в трехслойной среде (рис. 1). На рис. 1 обозначено: x=l и x=-h плоские бесконечные границы раздела сред; а — радиус цилиндра; в точку $M(x_0, y_0, z_0)$ помещен произвольно ориентированный электрический диполь. Используя метод Ерофеенко [2], указанную задачу можно свести к решению бесконечной системы линейных алгебраических уравнений.

Целью настоящей работы является исследование полученной бесконечной

системы уравнений.

Рассматриваемую задачу сформулируем в виде краевой задачи. требуется определить векторы $\overrightarrow{E}^i(M)$ и $\overrightarrow{H}^i(M)$ ($M \in D_i$, $i = \overline{1, 4}$), удовлетворяющие уравнениям

rot rot
$$\vec{c} - k_i^2 \vec{c} = 0$$
, div $\vec{c} = 0$ ($\vec{c} = \vec{E}^i$, \vec{H}^i), (1)

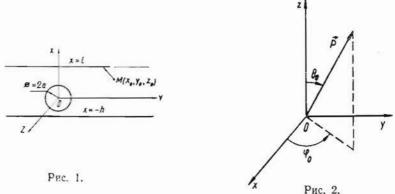
граничным условиям

$$\vec{E}_{\tau}^{1} = \vec{E}_{\tau}^{0} + \vec{E}_{\tau}^{2}, \quad \vec{H}_{\tau}^{1} = \vec{H}_{\tau}^{0} + \vec{H}_{\tau}^{2}|_{x=l}, \tag{2}$$

$$\vec{E}_{\tau}^{3} = \vec{E}_{\tau}^{0} + \vec{E}_{\tau}^{2}, \ \vec{H}_{\tau}^{3} = \vec{H}_{\tau}^{0} + \vec{H}_{\tau}^{2} \Big|_{x=-h}, \tag{3}$$

$$\vec{E}_{\tau}^{4} = \vec{E}_{\tau}^{0} + \vec{E}_{\tau}^{2}, \ \vec{H}_{\tau}^{4} = \vec{H}_{\tau}^{0} + \vec{H}_{\tau}^{2} \Big|_{\rho=a}$$
 (4)

и принципу предельного поглощения на бесконечности. Здесь $\vec{E^0}$, $\vec{H^0}$ — векторы первичного ЭМП в однородной и бесконечной средах.



Для представления искомых векторов ЭМП используем два независимых векторных решения уравнений (1) соответственно типу границ раздела сред:

а) в прямоугольной системе координат

$$\vec{M}_i = \operatorname{rot} \left[\exp \left(\gamma x + j \beta y + j \lambda z \right) \vec{e}_i \right], \ \vec{N}_i = \frac{1}{k} \operatorname{rot} \vec{M}_i, \tag{5}$$

где х, в - произвольные постоянные параметры;

$$\eta = \sqrt{\lambda^2 + \beta^2 - k^2}; -\frac{\pi}{2} < \arg \eta \leqslant \frac{\pi}{2}; \vec{e_i} - \text{opm};$$

б) в цилиндрической системе координат

$$\overrightarrow{m_n} = \operatorname{rot} \left[Z_n \left(\rho \xi \right) \exp \left(j n \varphi + j \lambda z \right) \overrightarrow{e_3} \right], \quad \overrightarrow{n_n} = \frac{1}{b} \operatorname{rot} \overrightarrow{m_n}, \tag{6}$$

где $Z_n\left(\rho\xi\right)=K_n\left(\rho\xi\right)$ или $I_n\left(\rho\xi\right)$; K_n и I_n — бесселевые функции мнимого аргумента 1-го и 2-го родов; λ — произвольный параметр; $\xi=\sqrt{\lambda^2-k^2}$; $\frac{\pi}{2}<\arg\xi\leqslant\frac{\pi}{2}$. Если в формулах (6) $Z_n\left(\rho\xi\right)=K_n\left(\rho\xi\right)$, то решения в ци-

линдрической системе координат будем обозначать через m_n и n_n .

Допустим, что электрический диполь с моментом \vec{P} расположен в безграничной среде и центр системы Oxyz совпадает с диполем (рис. 2). Тогда, используя рекуррентные формулы для функций K_n (р ξ), легко показать, что

$$\vec{E}_0 = \frac{j\omega\mu P}{4\pi^2k} \sum_{l=-1}^{+1} \left[\int_{-\infty}^{+\infty} (B_l \vec{m}_l + A_l \vec{n}_l) d\lambda \right], \tag{7}$$

$$\begin{split} A_{-1} &= \frac{j\lambda \sin\theta_0}{2\xi} \exp{(j\varphi)}; \quad B_{-1} = -\frac{jk \sin\theta_0}{2\xi} \exp{(j\varphi_0)}; \\ A_0 &= \cos\theta_0; \ B_0 = 0; \\ A_{+1} &= \frac{j\lambda \sin\theta_0}{2\xi} \exp{(-j\varphi_0)}; \ B_{+1} = \frac{jk \sin\theta_0}{2\xi} \exp{(-j\varphi_0)}. \end{split}$$

Учитывая инвариантность дифференциальных операторов grad, div и гоt относительно преобразования системы координат и используя теорему сложения для бесселевых функций [3] с учетом выражения (7), несложно получить выражение для вектора \vec{E}^0 , если начало выбранной системы координат не совпадает с диполем.

Искомые вектора $\vec{E^i}$ представим в виде: в области D_1 —

$$\vec{E}^{1} = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \{f_{1}(\lambda, \beta) \vec{M}_{1}(-\eta_{1}) + \varphi_{1}(\lambda, \beta) \vec{N}_{1}(-\eta_{1})\} d\lambda d\beta; \tag{8}$$

в области D_2 —

$$\vec{E^2} = \vec{E''} + \vec{E'},$$
 (9)

где

$$\vec{E}' = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \left\{ f_2(\lambda, \beta) \vec{M}_1(\eta_2) + \varphi_2(\lambda, \beta) \vec{N}_1(\eta_2) + f_3(\lambda, \beta) \vec{M}_1(-\eta_2) + \varphi_3(\lambda, \beta) N_1(-\eta_2) \right\} d\beta d\lambda;$$

$$\vec{E}'' = \int_{-\infty}^{+\infty} \left\{ \sum_{n=-\infty}^{+\infty} \left[a_n^{(1)}(\lambda) \vec{m}_n + b_n^{(1)}(\lambda) \vec{n}_n \right] \right\} d\lambda;$$

в области Д3 —

$$\vec{E}^{3} = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \left\{ f_{4}(\lambda, \beta) \vec{M}_{1}(\eta_{3}) + \varphi_{4}(\lambda, \beta) \vec{N}_{1}(\eta_{3}) \right\} d\beta d\lambda; \tag{10}$$

в области D_4 —

$$\overrightarrow{E}^{4} = \int_{-\infty}^{+\infty} \left\{ \sum_{n=-\infty}^{+\infty} \left[a_{n}^{(2)}(\lambda) \overrightarrow{m}_{n} + b_{n}^{(2)}(\lambda) \overrightarrow{n}_{n} \right] \right\} d\lambda. \tag{11}$$

Здесь $f_i(\lambda, \beta)$, $\varphi_i(\lambda, \beta)$ $(i = \overline{1, 4})$, $a_n^{(j)}(\lambda)$, $b_n^{(j)}(\lambda)$ (j = 1, 2) — неизвестные функции.

Выражения вектора $\overrightarrow{H^i}$ получаются из (8) — (11) заменой $\overrightarrow{M}_1 \leftrightarrow \overrightarrow{N}_1$, $\overrightarrow{m}_n \leftrightarrow \overrightarrow{n}_n$, $\overrightarrow{m} \leftrightarrow \overrightarrow{n}_n$ и умножением на $\frac{k_i}{j\omega\mu_i}$ (μ_i — магнитная проницаемость среды D_i ; ω — круговая частота).

В представленном виде задача определения векторов \vec{E}^i и \vec{H}^i сведена к задаче нахождения неизвестных функций $f_i(\lambda, \beta)$, $\varphi_i(\lambda, \beta)$, $a_n^{(i)}(\lambda)$, $b_n^{(i)}(\lambda)$, которые определяются из граничных условий (2) — (4).

на к задаче пахождения и положения $b_n^{(i)}(\lambda)$, которые определяются из граничных условий (2)-(4). Удовлетворим граничные условия на границах x=l и x=-h. Для этого разложим выражения $\overrightarrow{E^0}$ и $\overrightarrow{E^{''}}$ по декартовым решениям $\overrightarrow{M}_1(-\eta_2)$

и N_1 (— η_2), используя интегральное представление векторов m_n и n_n [4]. Подставляя полученные выражения в граничные условия (2) и (3), произведя очевидные преобразования и опуская интеграл по β и λ , в силу единственности интегрального преобразования Фурье получим следующие выражения неизвестных функций f_2 (λ , β), f_3 (λ , β), φ_2 (λ , β) и φ_3 (λ , β):

$$f_2(\lambda, \beta) = [u_2(\lambda, \beta) A(\lambda, \beta) + v_2(\lambda, \beta) B(\lambda, \beta)] \exp(-2l\eta_2) +$$

$$+ [F_0^2(\lambda, \beta) f_0(\lambda, \beta) + \Phi_0^2(\lambda, \beta) \varphi_0(\lambda, \beta)] \exp [(x_0 - 2l) \eta_2],$$

$$f_3(\lambda, \beta) = [u_3(\lambda, \beta) A(\lambda, \beta) + v_2(\lambda, \beta) B(\lambda, \beta)] \exp [-2h\eta_2) +$$

$$+ [F_0^3(\lambda, \beta) f_0(\lambda, \beta) + \Phi_0^3(\lambda, \beta) \varphi_0(\lambda, \beta)] \exp [-(x_0 + 2h) \eta_2],$$

$$\varphi_2(\lambda, \beta) = [v_2(\lambda, \beta) A(\lambda, \beta) + \tilde{u}_2(\lambda, \beta) B(\lambda, \beta)] \exp (-2l\eta_2) +$$

$$+ [\tilde{F}_0^2(\lambda, \beta) f_0(\lambda, \beta) + \tilde{\Phi}_0^2(\lambda, \beta) \varphi_0(\lambda, \beta)] \exp [(x_0 - 2l) \eta_2],$$

$$\varphi_3(\lambda, \beta) = [v_3(\lambda, \beta) A(\lambda, \beta) + \tilde{u}_3(\lambda, \beta) B(\lambda, \beta)] \exp (-2l\eta_2) +$$

$$+ [\tilde{F}_0^3(\lambda, \beta) f_0(\lambda, \beta) + \tilde{\Phi}_0^3(\lambda, \beta) \varphi_0(\lambda, \beta)] \exp [-(x_0 + 2h) \eta_2].$$

Здесь

$$u_{2}(\lambda, \beta) = \frac{1}{D} \left[\alpha_{31} \left(\Delta_{32} \Delta_{12} \exp \left(-2h\eta_{2} \right) - \Delta_{12} \Delta_{32}^{+} \right) \right];$$

$$v_{2}(\lambda, \beta) = \frac{1}{D} \left[\gamma_{31} \left(\Delta_{32} \Delta_{12}^{-} \exp \left(-2h\eta_{2} \right) + \Delta_{12} \Delta_{32}^{+} \right) \right];$$

$$u_{3}(\lambda, \beta) = \frac{1}{D} \left[\alpha_{31} \left(\Delta_{32} \Delta_{12}^{+} - \Delta_{12} \Delta_{32} \exp \left(-2l\eta_{2} \right) \right) \right];$$

$$v_{3}(\lambda, \beta) = \frac{1}{D} \left[\gamma_{31} \left(\Delta_{32}^{+} \Delta_{12}^{-} + \Delta_{12} \Delta_{32}^{-} \exp \left(-2l\eta_{2} \right) \right) \right];$$

$$F_{0}^{2}(\lambda, \beta) = \frac{1}{D} \left[\alpha_{31} \left(\Delta_{32}^{-} \Delta_{12}^{-} \exp \left[-2\left(x_{0} + h \right) \eta_{2} \right] - \Delta_{12}^{-} \Delta_{32}^{+} \right) \right];$$

$$F_{0}^{2}(\lambda, \beta) = \frac{1}{D} \left[\gamma_{31} \left(\Delta_{32}^{+} \Delta_{12}^{-} \exp \left[-2\left(x_{0} + h \right) \eta_{2} \right] + \Delta_{12}^{-} \Delta_{32}^{+} \right) \right];$$

$$F_{0}^{3}(\lambda, \beta) = \frac{1}{D} \left[\alpha_{31} \left(\Delta_{12}^{+} \Delta_{32}^{-} - \Delta_{12}^{-} \Delta_{32}^{-} \exp \left[\left(x_{0} - 2l \right) \eta_{2} \right] \right) \right];$$

$$\Phi_{0}^{3}(\lambda, \beta) = \frac{1}{D} \left[\gamma_{31} \left(\Delta_{12}^{+} \Delta_{32}^{-} - \Delta_{12}^{-} \Delta_{32}^{-} \exp \left[\left(x_{0} - 2l \right) \eta_{2} \right] \right) \right];$$

$$\left\{ A \left(\lambda, \beta \right) \right\} = \frac{1}{D} \left[\gamma_{31} \left(\Delta_{12}^{+} \Delta_{32}^{-} - \Delta_{12}^{-} \Delta_{32}^{-} \exp \left[\left(x_{0} - 2l \right) \eta_{2} \right] \right) \right];$$

$$\left\{ A \left(\lambda, \beta \right) \right\} = \frac{1}{D} \left[\gamma_{31} \left(\Delta_{12}^{+} \Delta_{32}^{-} - \Delta_{12}^{-} \Delta_{32}^{-} \exp \left[\left(x_{0} - 2l \right) \eta_{2} \right) \right] \right];$$

$$\left\{ A \left(\lambda, \beta \right) \right\} = \frac{1}{D} \left[\gamma_{31} \left(\Delta_{12}^{+} \Delta_{32}^{-} - \Delta_{12}^{-} \Delta_{32}^{-} \exp \left[\left(x_{0} - 2l \right) \eta_{2} \right) \right] \right];$$

$$\left\{ A \left(\lambda, \beta \right) \right\} = \frac{1}{D} \left[\gamma_{31} \left(\Delta_{12}^{+} \Delta_{32}^{-} - \Delta_{12}^{-} \Delta_{32}^{-} \exp \left[\left(x_{0} - 2l \right) \eta_{2} \right) \right] \right];$$

$$\left\{ A \left(\lambda, \beta \right) \right\} = \frac{1}{D} \left[\gamma_{31} \left(\Delta_{12}^{+} \Delta_{32}^{-} - \Delta_{12}^{-} \Delta_{32}^{-} \exp \left[\left(x_{0} - 2l \right) \eta_{2} \right) \right] \right];$$

$$\left\{ A \left(\lambda, \beta \right) \right\} = \frac{1}{D} \left[\gamma_{31} \left(\Delta_{12}^{+} \Delta_{32}^{-} - \Delta_{12}^{-} \Delta_{32}^{-} \exp \left[\left(x_{0} - 2l \right) \eta_{2} \right) \right] \right];$$

$$\left\{ A \left(\lambda, \beta \right) \right\} = \frac{1}{D} \left[\gamma_{31} \left(\Delta_{12}^{+} \Delta_{32}^{-} - \Delta_{12}^{-} \Delta_{32}^{-} \exp \left[\left(x_{0} - 2l \right) \eta_{2} \right] \right];$$

$$\left\{ A \left(\lambda, \beta \right) \right\} = \frac{1}{D} \left[\gamma_{31} \left(\Delta_{12}^{+} \Delta_{32}^{-} - \Delta_{12}^{-} \Delta_{32}^{-} + \Delta_{12}^{-} \Delta_{32}^{-} \right] \right]$$

$$\left\{ A \left(\lambda, \beta \right) \right\} = \frac{1}{D} \left[\gamma_{31} \left(\Delta_{12}^{+} \Delta_{32}^{-} - \Delta_{12}^{-} \Delta_{32}^{-} \right) \right]$$

$$\left\{ A \left(\lambda, \beta \right) \right\} = \frac{1}{D} \left[\gamma_{31} \left($$

Выражения для $u_t(\lambda, \beta)$, $v_t(\lambda, \beta)$, $\widetilde{F}_0^t(\lambda, \beta)$ и $\widetilde{\Phi}_0^t(\lambda, \beta)$ получаются из соответствующих выражений (13) заменой в последних Δ_{ij}^{\pm} на $\widetilde{\Delta}_{ij}^{\pm}$.

Далее рассмотрим граничные условия на поверхности цилиндра. Разложив \vec{E}' по векторам (6) с помощью соотношений, приведенных в [4], подставив полученные выражения в граничные условия (4), опуская интеграл по λ в силу единственности интегрального преобразования Фурье и приравнивая коэффициенты при $\exp(jn\varphi)$ в силу единственности разложения в ряд Фурье, получим систему уравнений

$$a_{n}^{1}(\lambda) = x_{n}^{(1)}(\lambda) \left[\bar{a}_{n}^{1}(\lambda) + b_{n}^{0}(\lambda) \right] + y_{n}^{1}(\lambda) \left[\bar{b}_{n}^{1}(\lambda) + a_{n}^{0}(\lambda) \right],$$

$$b_{n}^{1}(\lambda) = x_{n}^{(2)}(\lambda) \left[\bar{a}_{n}^{1}(\lambda) + b_{n}^{0}(\lambda) \right] + y_{n}^{2}(\lambda) \left[\bar{b}_{n}^{1}(\lambda) + a_{n}^{0}(\lambda) \right],$$
(14)

где

$$x_n^{(1)}(\lambda) = (C_n A_n^1 - B_n B_n^1) / \Delta; \ y_n^{(1)}(\lambda) = (C_n B_n^1 - C_n^1 B_n) / \Delta;$$

$$x_{n}^{(2)}(\lambda) = (A_{n}B_{n}^{1} - B_{n}A_{n}^{1})/\Delta; \quad y_{n}^{(2)}(\lambda) = (C_{n}^{1}A_{n} - B_{n}B_{n}^{1})/\Delta;$$

$$\Delta = A_{n}C_{n} - B_{n}^{2};$$

$$A_{n} = \xi_{2}K_{n}'(a\xi_{2}) - \frac{\mu_{4}\xi_{2}^{2}I_{n}'(a\xi_{4})}{\mu_{2}\xi_{4}I_{n}(a\xi_{2})}K_{n}(a\xi_{2});$$

$$B_{n} = \frac{n\lambda}{ak_{2}}\left(1 - \frac{\xi_{2}^{2}}{\xi_{4}^{2}}\right)K_{n}(a\xi_{2});$$

$$C_{n} = \xi_{2}K_{n}(a\xi_{2}) - \frac{k_{4}^{2}\mu_{2}\xi_{2}^{2}I_{n}'(a\xi_{4})}{k_{2}^{2}\mu_{4}\xi_{4}I_{n}(a\xi_{4})}K_{n}(a\xi_{2});$$

$$A_{n}^{1} = \frac{\mu_{4}\xi_{2}^{2}I_{n}'(a\xi_{4})}{\mu_{2}\xi_{4}I_{n}(a\xi_{4})}I_{n}(a\xi_{2}) - \xi_{2}I_{n}'(a\xi_{2});$$

$$B_{n}' = \frac{n\lambda}{ak_{2}}\left(\frac{\xi_{2}^{2}}{\xi_{4}^{2}} - 1\right)I_{n}(a\xi_{2});$$

$$C_{n}^{1} = \frac{k_{4}^{2}\mu_{2}\xi_{2}^{2}I_{n}'(a\xi_{4})}{k_{2}^{2}\mu_{4}\xi_{4}I_{n}(a\xi_{4})}I_{n}(a\xi_{2}) - \xi_{2}I_{n}'(a\xi_{2});$$

$$\bar{a}_{n}^{(1)}(\lambda) = \int_{-\infty}^{\infty}\left\{\left(\frac{\beta + \eta_{2}}{\xi_{2}}\right)^{n}[\gamma_{13}\varphi_{2}(\lambda, \beta) - \alpha_{13}f_{2}(\lambda, \beta) + \left(\frac{\beta - \eta_{2}}{\xi_{2}}\right)^{n}[\gamma_{13}f_{2}(\lambda, \beta) - \alpha_{13}\varphi_{2}(\lambda, \beta)]\right\}d\beta;$$

$$\bar{b}_{n}^{(1)}(\lambda) = \int_{-\infty}^{\infty}\left\{\left(\frac{\xi + \eta_{2}}{\xi_{2}}\right)^{n}[\gamma_{13}f_{2}(\lambda, \beta) - \alpha_{13}\varphi_{2}(\lambda, \beta)]\right\}d\beta;$$

$$\bar{b}_{n}^{(1)}(\lambda) = \int_{-\infty}^{\infty}\left\{\left(\frac{\xi + \eta_{2}}{\xi_{2}}\right)^{n}[\gamma_{13}f_{2}(\lambda, \beta) - \alpha_{13}\varphi_{2}(\lambda, \beta)]\right\}d\beta.$$

С учетом (12) система (14) преобразуется в бесконечную систему линейных алгебраических уравнений относительно неизвестных функций $a_n^{(1)}(\lambda)$ и $b_n^{(1)}(\lambda)$:

$$a_n^{(1)}(\lambda) = \sum_{m=-\infty}^{+\infty} [M_{mn}^1(\lambda) a_m^{(1)}(\lambda) + N_{mn}^1(\lambda) b_m^{(1)}(\lambda)] + L_n^1(\lambda),$$

$$b_n^{(1)}(\lambda) = \sum_{m=-\infty}^{+\infty} [M_{mn}^2(\lambda) a_m^{(1)}(\lambda) + N_{mn}^2(\lambda) b_m^{(1)}(\lambda)] + L_n^2(\lambda).$$
(16)

Выражения для коэффициентов $M_{mn}^{t}(\lambda)$, $N_{mn}^{t}(\lambda)$ и $L_{n}^{t}(\lambda)$ несложно получить из (12) и (15).

Тєорема. Если поверхность цилиндра не соприкасается с границами раздела сред, то система (16) фредгольмова.

Изложим схему доказательства теоремы. Коэффициенты M^i_{mn} (λ), N^i_{mn} (λ) и L^i_n (λ) являются суммой произведений интегралов типа

$$I_n(\lambda) = \int_{-\infty}^{+\infty} \frac{1}{2\eta_2} \left(\frac{\beta + \eta_2}{\xi_1}\right)^n w(\lambda, \beta) \exp(-H\eta_2) d\beta$$

и одной из функций $x_n^i(\lambda)$, $y_n^i(\lambda)$ (i=1, 2). Выражения функций $w(\lambda, \beta)$ несложно получить из (12). Оценкой модуля подынтегральной функции интеграла $I_n(\lambda)$ с учетом неравенства $|w(\lambda, \beta)| \leqslant C$ можно показать, что существует функция $C_1(\lambda)$, удовлетворяющая неравенству

$$|I_n(\lambda)| < C_1(\lambda) \frac{(|n|)!}{H^{|n|+1} |\xi_2|^{|n|+1}}.$$
 (17)

Используя асимптотические оценки относительно индекса для бесселевых функций [5], получим

$$|x_n^{(1)}(\lambda)|, |x_n^{(2)}(\lambda)|, |y_n^{(1)}(\lambda)|, |y_n^{(2)}(\lambda)| < C_2(\lambda) \frac{a^{2|n|} |\xi_2|^{2|n|}}{|n|^{2} 2^{2|n|}}.$$
 (18)

Тогда из неравенств (17) и (18) следует, что бесконечная система

$$z_{n}(\lambda) = A(\lambda) \frac{a^{2|n|} |\xi_{2}|^{2|n|}}{[(|n|)!]^{2} 2^{2|n|}} \sum_{k=-\infty}^{+\infty} \frac{(|n|+|k|)!}{[i^{|n|+|k|}] |\xi_{2}|^{k}} z_{k}(\lambda) + B(\lambda) \frac{a^{|n|} |\xi_{2}|^{|n|}}{[i^{|n|}] |n|! 2^{|n|}}$$
(19)

(где $l = \min(l, h)$), является мажорантной по отношению к системе (15). Осуществим замену неизвестных $z_n(\lambda)$ новыми неизвестными $u_n(\lambda)$, положив

$$u_n(\lambda) = z_n(\lambda) \left(\left| n \right| \right)! \frac{2^{|n|}}{\left| \left| \xi_2 \right| \right|^{|n|} a^{2|n|}}$$

При этом система (19) преобразуется к виду

$$u_n(\lambda) = A(\lambda) \sum_{m=-\infty}^{+\infty} \frac{(|n| + |m|)!}{|n|! |m|! |2^{lml}} \left(\frac{a}{l}\right)^{|n| + |m|} u_m(\lambda) + B(\lambda) \frac{a^{|n|}}{l^{|n|}}.$$
(20)

Если $\frac{a}{\sim} < 1$, то [3]

$$\sum_{n=-\infty}^{+\infty} \left\lceil \frac{(\mid n\mid +\mid m\mid)!}{\mid n\mid !\mid m\mid !} \left(\frac{a}{\sim l}\right)^{\mid n\mid +\mid m\mid} \right\rceil^2 < \infty.$$

В этом случае система (20) — фредгольмова и, следовательно, имеет единственное решение. Это решение можно получить методом редукции. В силу мажорантности все, сказанное выше, справедливо и для системы (15).

Полученная система (15) может быть использована для расчета вторичного ЭМП бесконечно дливного цилиндра в трехслойной среде.

- 1. Гордиенко В. И. Морская геофязическая разведка.— Кяев: Наук. думка, 1978.—
- 2. *Ерофеенко В. Т., Пацовский Г. Д.* Решение задач дифракции в плоскослоистом пространстве с цилиндрическими включениями.— М., 1978.— 28 с. Рукопись деп. в ВИНИТИ, № 3048—78 Деп.
- 3. Иванов Е. А. Дифракция электромагнитных волн на двух телах.— Минск: Наука
- лемпов С. А. Дифракция электромагнитных волн на двух телах.— Минск: Наука и техника, 1968.— 528 с.
 Кулыныч Я. П., Убогий В. П. Поле электрического диполя в плоскослоистой среде в присутствии цилиндрической неоднородности.— В кн.: Мат. Х конф. молодых ученых Физ.-мех. ин-та АН УССР. Львов, 1981, с. 69—70. Рукопись деп. в ВИНИТИ, № 7108—83 Деп.
 Марков Т. Т., Чаплин А. Ф. Возбуждение электромагнитных волн.— М.; Л.: Энертия 1967—374 с.

гия, 1967.- 374 с.

Физико-механический ин-т им. Г. В. Карпенко АН УССР, Львов

Получено 07,12.83