Г. Е. Багдасарян

АСИМПТОТИЧЕСКИЙ МЕТОД ИССЛЕДОВАНИЯ МАГНИТОУПРУГИХ КОЛЕБАНИЙ ПРЯМОУГОЛЬНЫХ ПЛАСТИН

В работе исходя из основных положений асимптотического метода В. В. Болотина предложен способ исследования спектра частот магнитоупругих колебаний прямоугольных пластин в продольном магнитном поле.

1. Пусть упругая изотропная пластина постоянной толщины 2h отнесена к декартовой системе координат x_1 , x_2 , x_3 так, что срединная плоскость недеформированной пластины совпадает с координатной плоскостью x_1x_2 . Пластина изготовлена из материала конечной постоянной электропроводностью σ и колеблется в вакууме при наличии постоянного магнитного поля с заданным вектором напряженности $\vec{H}(H_1, H_2, 0)$.

Рассматриваемые вопросы исследуются на основе предположений: а) магнитные и диэлектрические проницаемости материала пластины считаются равным единице; б) влияние токов смещения на характеристики магнитоупругих колебаний не учитывается; в) следующей гипотезы [2] о характере изменения упругих перемещений по толщине пластины и компонент индуцированного электромагнитного поля по толщине бесконечного слоя $|x_3| < h$:

$$u_1 = -x_3 \frac{\partial w}{\partial x_1}$$
, $u_2 = -x_3 \frac{\partial w}{\partial x_2}$, $u_3 = w$ при $|x_3| < h$, $(x_1, x_2) \in \Omega$, (1) $e_1 = \varphi$, $e_2 = \psi$, $h_3 = f$ при $|x_3| < h$, $-\infty < (x_1, x_2) < \infty$.

Здесь $w(x_1, x_2, t)$ — искомый прогиб пластины; (u_1, u_2, u_3) — компоненты вектора перемещений произвольной точки пластины; $\varphi(x_1, x_2, t)$, $\psi(x_1, x_2, t)$ — искомые тангенциальные компоненты индуцированного в бесконечном слое $|x_3| < h$ электрического поля $\vec{e}(e_1, e_2, e_3)$; $f(x_1, x_2, t)$ — искомая нормальная компонента индуцированного в бесконечном слое $|x_3| < h$ магнитного поля $\vec{h}(h_1, h_2, h_3)$; Ω — область плоскости $\alpha = 0$, ограниченная контуром Γ пластины.

Соотношения (1), когда $|x_3| < h$ и $(x_1, x_2) \in \Omega$, представляют математическую формулировку гипотезы магнитоупругости тонких тел [1].

На основе принятых предположений в работе [2], получена следующая система двумерных интегро-дифференциальных уравнений относительно искомых функций:

$$\frac{\partial F}{\partial x_{1}} + \delta \frac{4\pi\sigma}{c} \left(\psi + \frac{H_{1}}{c} \frac{\partial w}{\partial t} \right) = 0, \quad \frac{\partial \psi}{\partial x_{1}} + \frac{\partial \varphi}{\partial x_{2}} = -\frac{1}{c} \frac{\partial r}{\partial t},
\frac{\partial F}{\partial x_{2}} - \delta \frac{4\pi\sigma}{c} \left(\varphi - \frac{H_{2}}{c} \frac{\partial w}{\partial t} \right) = 0,$$

$$D\Delta^{2}w + 2\rho h \frac{\partial^{2}w}{\partial t^{2}} + \frac{2\sigma h}{c} \left[H_{1} \left(\psi + \frac{H_{1}}{c} \frac{\partial w}{\partial t} \right) - H_{2} \left(\varphi - \frac{H_{2}}{c} \frac{\partial w}{\partial t} \right) \right] = 0,$$
(2)

причем в первых трех уравнениях — $\infty < x_1, x_2 < \infty$, а в четвертом — $(x_1, x_2) \in \Omega$.

В уравнениях (2) $D=2Eh^3/3$ (1— v^2)— цилиндрическая жесткость; E — модуль упругости; v — коэффициент Пуассона; ρ — плотность материала пластины; Δ — двумерный оператор Лапласа; c — скорость света в вакууме;

$$F = f + \frac{1}{2\pi\hbar} \int_{-\infty}^{\infty} \frac{f(\xi_1, \xi_2, t) d\xi_1 d\xi_2}{\sqrt{(x_1 - \xi_1)^2 + (x_2 - \xi_2)^2}}; \ \xi = \begin{cases} 1 & \text{при } (x_1, x_2) \in \Omega, \\ 0 & \text{при } (x_1, x_2) \in \Omega. \end{cases}$$
(3)

К системе уравнений (2) в каждой конкретной задаче необходимо присоединить обычные условия закрепления краев пластины, начальные условия и условия на бесконечности.

Поскольку точное решение сформулированной задачи в общем случае сопряжено с почти непреодолимыми математическими трудностями, то для определения частот магнитоупругих колебаний пластины в основном следует применять приближенные методы. В случае диэлектрической пластины (σ =0) асимптотический метод В. В. Болотина [5, 6] оказался особенно удобным при исследовании всего спектра частот для широкого класса граничных условий. Поэтому следует ожидать, что и в случае проводящих пластин (σ =0) в присутствии магнитного поля указанный метод окажется эффективным.

Для применения асимптотического метода целесообразно из первых трех уравнений системы (2) путем применения интегрального преобразования Фурье определить функции ϕ , ψ , f, выраженные через прогиб пластины [3]. Здесь при определении компонент ϕ , ψ , f индуцированного электромагнитного поля принимается, что пластина бесконечна. В этом случае прогиб пластины представляется в виде

$$w = w_0 e^{i\omega t} e^{-i(\overline{k}_1 x_1 + \overline{k}_2 x_2)}, \tag{4}$$

где ω — частота магнитоупругих колебаний; $\bar{k}_1=\operatorname{Re} k_1;\; \bar{k}_2=\operatorname{Re} k_2;\;\; k_1,\;\; k_2$ — комплексные волновые числа.

Подставляя (4) в первые три уравнения системы (2), для функций φ и ψ найдем выражения

$$\varphi = \frac{1}{ck} \frac{\partial}{\partial t} \left[\frac{4\pi\sigma H_2}{c^2} \frac{\partial w}{\partial t} - \alpha \frac{\partial}{\partial x_1} \left(H_2 \frac{\partial w}{\partial x_1} - H_1 \frac{\partial w}{\partial x_2} \right) \right],$$

$$\psi = \frac{1}{ck} \frac{\partial}{\partial t} \left[\alpha \frac{\partial}{\partial x_2} \left(H_1 \frac{\partial w}{\partial x_2} - H_2 \frac{\partial w}{\partial x_1} \right) - \frac{4\pi\sigma H_1}{c^2} \frac{\partial w}{\partial t} \right], \tag{5}$$

$$k = \frac{4\pi\sigma}{c^2}i\omega + \alpha (\bar{k}_1^2 + \bar{k}_2^2), \quad \alpha = 1 + [h(\bar{k}_1^2 + \bar{k}_2^2)]^{-1}.$$
 (6)

После подстановки (5) в неиспользованное четвертое уравнение системы (2) задача магнитоупругих колебаний пластины приводится к решению следующего уравнения:

$$D\Delta^2 w + 2\rho h \frac{\partial^2 w}{\partial t^2} - \frac{2\sigma h}{c^2 k} \frac{\partial}{\partial t} \left(H_1^2 \frac{\partial^2 w}{\partial x_1^2} + 2H_1 H_2 \frac{\partial^2 w}{\partial x_1 \partial x_2} + H_2^2 \frac{\partial^2 w}{\partial x_2^2} \right) = 0 \quad (7)$$

(в которое входят неизвестные волновые числа k_1 , k_2) при обычных условиях закрепления краев пластины.

В случае идеально проводящей пластины ($\sigma \to \infty$) уравнение (7) в силу (6) принимает вид

$$D\Delta^{2}w + 2\rho h \frac{\partial^{2}w}{\partial t^{2}} - \frac{1}{2\pi} \left(h + \frac{1}{\sqrt[3]{k_{1}^{2} + k_{2}^{2}}} \right) \left(H_{1}^{2} \frac{\partial^{2}w}{\partial x_{1}^{2}} + 2H_{1}H_{2} \frac{\partial^{2}w}{\partial x_{1}\partial x_{2}} + H_{2}^{2} \frac{\partial^{2}w}{\partial x_{2}^{2}} \right) = 0, \tag{8}$$

где волновые числа k_1 и k_2 вследствие отсутствия диссипации являются действительными.

2. До сих пор при получении уравнения (7) или (8) волновые числа k_1 и k_2 считались заданными. Найдем эти величины л. частоты магнитоупругих колебаний пластины путем применения асимптотического метода, развитого в работах [5-7]. Для простоты и наглядности в дальнейшем указанный метод будем применять относительно уравнения (8) (случай идеального проводника). Рассмотрим магнитоупругие колебания прямоугольной в плане идеально проводящей пластины со сторонами a и b в магнитном поле $H(H_1, 0, 0)$.

Условия на контуре пластины будем пока считать произвольными. Уравнение колебаний пластины (8) в этом случае имеет вид

$$\Delta^2 w - \gamma H_1^2 \frac{\partial^2 w}{\partial x_1^2} + \frac{2\rho h}{D} \frac{\partial^2 w}{\partial t^2} = 0, \quad \gamma = \frac{1}{2\pi D} \left(h + \frac{1}{\sqrt{k_1^2 + k_2^2}} \right). \tag{9}$$

Подстановкой

$$w(x_1, x_2, t) = W(x_1, x_2) e^{i\omega t},$$

где ω — частота магнитоупругих колебаний, уравнение (9) приводим к виду

$$\Delta^2 W - \gamma H_1^2 \frac{\partial^2 W}{\partial x_1^2} - \frac{2\rho h}{D} \omega^2 W = 0. \tag{10}$$

Рассмотрим выражение [3-5]

$$W = A \sin k_1 (x_1 - \xi_{11}) \sin k_2 (x_2 - \xi_{21}), \tag{11}$$

в котором A, ξ_{11} , ξ_{21} — некоторые постоянные. Это выражение удовлетворяет уравнению (10) и соответствует частоте

$$\omega^2 = \frac{D}{2\rho h} \left[\left(k_1^2 + k_2^2 \right)^2 + \frac{H_1^2 k_1^2}{2\pi D} \left(h + \frac{1}{\sqrt{k_1^2 + k_2^2}} \right) \right], \tag{12}$$

но, вообще говоря, не удовлетворяет граничным условиям.

Приближенное решение задачи будет найдено [5—7], если окажется возможным построение четырех решений уравнения (10) (в котором определяется согласно (12)), каждое из которых будет удовлетворять двум граничным условиям на одной из границ пластины и будет приближаться к «внутреннему» решению (11) по мере удаления от границы.

Решение, удовлетворяющее граничным условиям при $x_1 = 0$, будем искать в виде [5—7]

$$W_{11} = X_{11}(x_1)\sin k_2(x_2 - \xi_{21}). \tag{13}$$

Подстановка выражения (13) в (10) с учетом (12) приводит к уравнению

$$\frac{d^4X_{11}}{dx_1^4} - \left(2k_2^2 + \gamma H_1^2\right) \frac{d^2X_{11}}{dx_1^2} - k_1^2 \left(k_1^2 + 2k_2^2 + \gamma H_1^2\right) X_{11} = 0,$$

общее решение которого имеет вид

$$X_{11} = c_{11} \exp\left[-x_1 \left(k_1^2 + 2k_2^2 + \gamma H_1^2\right)^{1/2}\right] + a_{11} \sin k_1 \left(x_1 - \xi_{11}\right) + b_{11} \exp\left[x_1 \left(k_1^2 + 2k_2^2 + \gamma H_1^2\right)^{1/2}\right].$$
(14)

Потребуем, чтобы решение (13) стремилось при $x_1 \to \infty$ к «внутреннему» решению (11). Требование это будет удовлетворено, если в (14) положить $b_{11} = 0$ и $a_{11} = A$. Тогда решение (13) принимает вид

$$W_{11} = \left\{ c_{11} \exp\left[-x_1 \left(k_1^2 + 2k_2^2 + \gamma H_1^2\right)^{1/2}\right] + A \sin k_1 \left(x_1 - \xi_{11}\right) \right\} \sin k_2 \left(x_2 - \xi_{21}\right).$$
 (15)

С возрастанием x_1 решение (15) приближается к «внутреннему» решению (11), а входящие в него две константы c_{11} и ξ_{11} позволяют удовлетворить двум условиям на границе $x_1=0$. Тем же путем можно получить следующее решение:

$$W_{12} = \left\{ c_{12} \exp\left[-(a - x_1) \left(k_1^2 + 2k_2^2 + \gamma H_1^2 \right)^{1/2} \right] + A \sin k_1 \left(a - x_1 - \xi_{12} \right) \right\} \sin k_2 \left(x_2 - \xi_{21} \right),$$
 (16)

удовлетворяющее граничным условиям при $x_1 = a$ и стремящееся к «внутреннему» решению (11) по мере удаления от этой границы.

Аналогичным образом записываются решения W_{21} и W_{22} , удовлетворяющие граничным условиям на остальных сторонах контура и при-

ближающиеся к решению (11) во внутренней области пластины.

Неизвестные волновые числа k_1 и k_2 , отвечающие рассматриваемой задаче, можно найти, «склеивая» решения, удовлетворяющие граничным условиям на противоположных сторонах контура пластины [5—7]. С точностью до затухающего экспоненциального члена условия «склеивания» решений (15) и (16), а также W_{21} и W_{22} запишутся в виде [5—7]

$$k_1 a = k_1 (\xi_{11} + \xi_{12}) + n\pi, \quad n = 0, 1, 2, ...,$$

 $k_2 b = k_2 (\xi_{21} + \xi_{22}) + m\pi, \quad m = 0, 1, 2, ...$ (17)

Величины ξ_{lk} , входящие в уравнения (17), определяются из граничных условий на контуре пластины. Имея эти величины, волновые числа k_1 и k_2 найдутся из решения системы уравнений (17). Подставляя полученные таким путем значения волновых чисел в формулу (12), вычисляем соответствующую частоту магнитоупругих колебаний.

3. В качестве примера рассмотрим колебания по цилиндрической поверхности удлиненной пластины, длинные стороны которой жестко защемлены ($b \rightarrow \infty$, $k_2 = 0$). В этом случае, удовлетворяя граничным условиям, для неизвестных ξ_{11} и ξ_{12} найдем

$$\xi_{11} = \xi_{12}, \quad \text{tg } k_1 \xi_{11} = k_1 \left[k_1^2 + \frac{H_1^2}{2\pi D} \left(h + \frac{1}{k_1} \right) \right]^{-1/2}.$$
 (18)

Подставляя (18) в уравнение (17), получим следующие уравнения относительно волнового числа k_1 : для симметричных форм колебаний

$$\operatorname{ctg} \frac{k_1 a}{2} = -k_1 \left[k_1^2 + \frac{H_1^2}{2\pi D} \left(h + \frac{1}{k_1} \right) \right]^{-1/2}, \tag{19}$$

для антисимметричных форм колебаний

$$\operatorname{tg}\frac{k_1 a}{2} = k_1 \left[k_1^2 + \left(H_1^2 / 2\pi D \right) \left(h + \frac{1}{k_1} \right) \right]^{-1/2}.$$
(20)

Численные значения $2^{-1} \cdot k_1 a$ корней уравнений (19) и (20) приведены в табл. 1, в которой $\alpha = 10^{-4} H_1$, а m определяет форму колебания пластины. Для расчета принято $E = 7 \cdot 10^{11}$ дин/см², $\nu = 0,36$ (отожженный алюминий).

Таблица 1

m	$\frac{2h}{q} = 10^{-3}$			$\frac{2h}{a} = 5 \cdot 10^{-3}$			$\frac{2h}{\rho} = 10^{-2}$				
	α										
	0	0.5	1	0	0,5	1	0	0.5	1		
1	2,35	1,59	1,58	2,35	1,90	1,72	2,35	2,24	2,03		
2	3,92	3,21	3,17	3,92	3,76	3,54	3,92	3,90	3,83		
3	5,49	4,84	4,77	5,49	5,43	5,29	5,49	5,48	5,46		
4	7,06	6,48	6,38	7,06	7,03	6,95	7,06	7,06	7,05		
5	8,63	8,12	7,99	8,63	8,62	8,57	8,63	8,63	8,62		

Из табл. 1 видно, что зависимость волнового числа k_1 от напряженности магнитного поля является существенной в случае тонких пластин и это влияние более ощутимо для низших форм колебаний. При $m \gg 4$ и $2h/a \gg 10^{-2}$ этим влиянием можно пренебрегать и использовать

следующие известные решения уравнений (19) и (20) в случае диэлектрической пластины [5]:

$$k_1 = \frac{2m+1}{2} \pi/a. \tag{21}$$

Подставляя (21) в (12), получим формулу для определения частот высших форм магнитоупругих колебаний защемленной пластины-полосы. Эта формула с точностью $1+h/a\approx 1$ имеет вид

$$\omega_{m} = \omega_{0m} \left[1 + \frac{48 \left(1 - v^{2} \right)}{\pi^{4} E} \left(\frac{a}{2h} \right)^{3} \frac{H_{1}^{2}}{(2m+1)^{3}} \right]^{1/2},$$

$$\omega_{0m} = \frac{\pi^{2}}{a^{2}} \left(m + \frac{1}{2} \right)^{2} \sqrt{\frac{Eh^{2}}{3\rho \left(1 - v^{2} \right)}},$$
(22)

где ω_{0m} — частоты собственных колебаний в отсутствие магнитного поля [5]. Формула (22) показывает, что чем выше форма колебаний, тем меньше влияние магнитного поля.

Для сравнения в табл. 2 приведены значения величины $\omega_1[\rho h a^4/8D]^{1/2}$ (где ω_1 — первая частота магнитоупругих колебаний пластины), найденные на основе точного решения [4], по формуле (12), в которой учитывается зависимость волнового числа от напряженности магнитного поля, и по формуле (22), не учитывающей указанной зависимости. Приведены также расхождения между результатами точного решения и по формулам (12) и (22).

Таблица 2

Решение и расхождение		$\frac{2h}{a} = 10^{-2}$		$\frac{2h}{a} = 5 \cdot 10^{-3}$				
в решениях	10 ⁻⁴ H, Э							
	0,5	1,0	3,0	0.5	1,0	3,0		
Точное По формуле (12) По формуле (22)	6,38 6,21 6,70	8,31 8,09 9,33	19,28 19,40 22,50	10,33 10,19 11,97	18,27 18,37 21,93	52,54 52,69 63,88		
Расхождение мєжду точным решением и по (12), % Расхождение между точным решением и по (22), %	2,66 5,02	2,65 12,27	0,62 16,70	1,35	0,56 20,03	0,28		

 Π римечание. Для всех случаев m=1.

Табл. 2 свидетельствует, во-первых, о необходимости учета влияния зависимости волнового числа от напряженности магнитного поля и, во-вторых, о достаточной точности асимптотической формулы (12) для расчета частот магнитоупругих колебаний.

В заключение отметим, что ширина области динамического краевого эффекта, а также неувязка «склеивания» решений (15) и (16) в рассматриваемом случае имеют порядок

$$\exp\left\{-k_1x_1\left[1+\frac{3(1-v^2)H_1^2}{4\pi E}\left(\frac{a}{2h}\right)^3\left(\frac{2}{k_1a}\right)^3\right]^{1/2}\right\}. \tag{23}$$

Используя данные табл. 1, из (23) легко заметить, что при помощи магнитного поля можно существенно уменьшить ширину области динамического краевого эффекта и более точно удовлетворить условию «склеивания» соответствующих решений.

Амбарцумян С. А., Багдасарян Г. Е., Белубекян М. В. Магнитоупругость тонких оболочек и пластин. — М.: Наука, 1977.—272 с.
 Багдасарян Г. Е. О приведении трехмерной задачи магнитоупругости тонких пластин к двумерной. — Учен. зап. Ерев. ун-та, 1977, № 2, с. 32—48.

3. Багдасарян Г. Е. Об уравнениях магнитоупругости тонких пластин в постоянном магнитном поле. — Там же, 1983, № 3, с. 47—52.

4. Багдасарян Г. Е., Акопян П. 3. Магнитоупругие колебания проводящей пластинки в постоянном магнитном поле. — В кн.: Проблемы динамики взаимодействия деформируемых сред. Ереван: Изд-во АН АрмССР, 1984, с. 17—22.

5. Болотин В. В. Динамический краевой эффект при упругих колебаниях пластинок. — Инж. сб., 1960, 31, с. 3—14.

6. Болотин В. В., Макаров Б. П., Мишенков Г. В., Швейко Ю. Ю. Асимптотический метод исследования спектра собственных частот упругих пластинок. — Расчеты на прочность, 1960, вып. 6, с. 231—253.

7. Кидравацев Е. П. Применение асимптотического метода для исследования соб-

7. Кудравцев Е. П. Применение асимптотического метода для исследования собственных колебаний упругих прямоугольных пластин. — Там же, 1964, вып. 10, c. 352-362.

Ин-т механики АН АрмССР, Ереван Получено 23.07.84

УДК 539.3:538.569

А. Р. Гачкевич, Р. Ф. Терлецкий

МЕХАНИЧЕСКИЕ НАПРЯЖЕНИЯ В ПРЕДВАРИТЕЛЬНО ПОДОГРЕТОЙ ПЛАСТИНЕ НИЗКОЙ ЭЛЕКТРОПРОВОДИМОСТИ во внешнем гармоническом ЭЛЕКТРОМАГНИТНОМ ПОЛЕ

Определяются температурные поля и напряжения в пластине низкой электропроводимости, находящейся в электрическом поле плоского конденсатора, между обкладками которого поддерживается разность потенциалов $\varphi|_{z=1} - \varphi|_{z=-1} = U_0 e^{i\omega t}$, где z — безразмерная координата, отнесенная к полутолщине пластины h; U_0 — напряжение; ω — круговая частота; t — время. Пластина предварительно подогрета, и начальное распределение температуры по толщине является заданным $(T|_{t=0} = f(z))$.

Примем, что механические напряжения обусловлены начальным неоднородным распределением температуры, а также усредненными по периоду колебаний электромагнитной волны тепловыделениями, вызванными поляризацией в переменном электромагнитном поле, и джоулевыми тепловыделениями. В связи с наибольшей чувствительностью к изменению температуры электрофизических характеристик будем считать, что зависят от температуры лишь эти характеристики, а теплофизические и физико-механические — постоянны и равны приведенным. При этом электрофизические характеристики считаем также функциями частоты, известными из эксперимента. В такой постановке определение искомых величин сводится к совместному решению уравнений электродинамики и теплопроводности при известных тепловых источниках [1] и дальнейшему нахождению напряженного состояния из уравнений квазистатической термоупругости.

Отличную от нуля составляющую напряженности электрического поля в пластине находим в квазиустановившемся приближении, т. е. в виде $E=E_0\left(z,\;t\right)e^{i\omega t}$, где $E_0\left(z,\;t\right)$ — малоизменяющаяся на периоде колебания $T=2\pi/\omega$ функция [2]. Тогда исходная система уравлений вынужденной электростатики [6], описывающая электрическое поле плоского конденсатора, будет

$$E = -\frac{\partial \varphi}{\partial z}, \ \frac{\partial D}{\partial z} = 0, \tag{1}$$

где $D = \varepsilon E$ — электрическая индукция [5]; $\varepsilon = \varepsilon' - i\varepsilon''^{\circ}$; $\operatorname{tg}^{\circ} \delta = \varepsilon''^{\circ} / \varepsilon'$ тангенс угла диэлектрических потерь, связанных лишь с поляризацией в переменном электромагнитном поле. Выражение для усредненной по периоду колебаний электромагнитной волны мощности тепловых источников, полученное на основании теоремы Пойнтинга в комплексной форме [5], с учетом представления Е, а также малой изменяемости