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WEIGHT-VIBRATION PARETO OPTIMIZATION OF A DUAL MASS FLYWHEEL®

By using the methodology of the multi-objective optimal design of engineering sys-
tems, the problem of weight-vibration Pareto optimization of a dual mass flywheel
is considered with the aim to study the feasibility of its application in heavy-duty
truck powertrains. The results obtained show the following: the solution of the
considered optimization problem does exist; the mass inertia, stiffness and dam-
ping parameters of the absorber optimized in an operating engine speed range of
600—2000 rpm do exist, providing the best attenuation of the torque oscillation at
the transmission input shaft. Finally, the results show the feasibility evidence for
the application of weight-vibration optimized dual mass flywheel in heavy-duty
truck drivetrain systems.
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Introduction. An engineering system must meet a plenty of require-
ments, e. g. system’s quickness and accuracy, safety and user friendliness,
noiseless and low level of vibrations, environmental friendliness and cost
efficiency. These are some of the constraints to be satisfied during the design
process of modern engineering products, which make the design process of
engineering systems to be very complicative.

In this paper, the methodology of multi-objective optimal design of engi-
neering systems is presented. The methodology is based on the global sensiti-
vity analysis (GSA) and Pareto optimization techniques. It has been imple-
mented in the computer toolbox SAMO, developed at Mechanical Systems,
Division of Dynamics, Chalmers University of Technology [4]. The methodolo-
gy and toolbox SAMO were successfully used for optimal design of engine-
ering systems with different applications [5—7]. Herein, we apply the metho-
dology for solving the weight-vibration Pareto optimization of the design of
dual mass flywheels for application in torsional vibration attenuation in
heavy-duty truck powertrains. A dual mass flywheel (DMF) is a well-known
design of torsional vibration absorbers and was a subject for intensive re-
search [1, 3, 8—10]. The research is ongoing to understand whether this
concept of absorber is suitable for the attenuation of torsional vibrations in
the powertrain of heavy-duty trucks [1, 9, 10].

The outline of the paper is as follows. In Section 1, the global sensitivity
analysis and Pareto optimization problems are formulated for the mathemati-
cal model of a generic engineering system. These problems’ formulations,
together with outline of the algorithm of the GSA and the structure of the
toolbox SAMO, constitute the basis of the methodology for designing optimal
engineering products. The results of weight-vibration Pareto optimal design of
a torsional vibration absorber for application in a heavy-duty truck power-
train are presented in Sections 2 and 3. The paper is finalized with conclusions
and outline of future research.

Some results of the paper were presented at the 10th International Con-
ference on Mathematical Problems of Mechanics of Nonhomogeneous Structu-
res, September 17-20, 2019, Lviv, Ukraine [2].

1. Sensitivity analysis and Pareto optimization. Consider an engineering
system that consists of a number of functional components, representing mass
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inertia, stiffness and damping system’s characteristics. Let q = [ql,qz,...,qn]T
is the vector of generalized coordinates, T =[T},T,,...,T, ]—r is the vector of
external loads, e.g. forces or/and torques, acting on the system, and
d=[d,d,,...,d, ]—r is the vector of design parameters representing the mass

inertia, stiffness and damping characteristics of all functional components of
the system.

The following expression will be used to represent the set of operational
scenarios (0Ss) of the generic engineering system in question:

0Ss = {T(1), q(t), d, t € [ty, 1], d € Q}. (1)

In expression (1), t,, t; are the initial and final instants of time and Q is
the domain of feasible values for the vector of design parameters.

For any feasible vector of design parameters d = [d,,d,,...,d,]" € Q, and

the given external loads T = [’1‘1,T2,...,Tm]T , the vector of generalized coordi-

nates q = [ql,qz,...,qn]T satisfies the equation
L[q(t),4(1), d(1), T(t),d] = 0. (2)
Here, L is an operator that together with given initial state of the system
a0 =4q", q0)=4q" (3)

determine the system performance (response), i. e. vector q[t,to,qo,qO,T(t),d]
for all t e [to,tf].

Equation (2) along with the initial state (3) constitute the mathematical
model of a generic engineering system and allow to obtain all its feasible
operational scenarios.

As an example of the mathematical model (2), (3), the following matrix
equation

Mg + Cq + Kq = U[t, T(t)] (4)

together with the initial state (3) govern the motion of an n -degree-of-free-
dom mechanical system with linear stiffness and damping functional
components. Here, M, C, and K are the mass inertia, the damping and the
stiffness matrices and U is the vector of generalized forces.

1.1. Global sensitivity analysis and Pareto optimization problems
formulations. As the first step in optimal design of an engineering system, it
is important to study the sensitivity of the system’s response with respect to
variation of its design parameters. Sensitivity analysis of an engineering

system with respect to varying parameter d; can be carried out either locally

or globally. In local sensitivity analysis, the effects of design input d, on the

system response is approximated as partial derivative of an objective function
used as a measure of the system response with respect to design parameter

d, which is taken around a fixed point d?. Such an approach only considers

variation of an objective function with respect to a single design parameter at
a time. Furthermore, the domain of input design variables might not be
appropriately scanned using local method.

The global sensitivity analysis is one of the most prominent approaches in
the design of engineering systems that can provide informative insight into
the design process. To determine global sensitivity indices, multilayer integrals
must be evaluated. This process demands a heavy computational effort.
Below, the multiplicative dimensional reduction method proposed in [11], is
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briefly described. This method is used in the computer toolbox SAMO [4] and
can approximate global sensitivity indices in an efficient and accurate manner.
An objective function can be express as function of a set of independent

random variables, ie., design parameters d:[dl,dz,...,dk]T € Q, through

respective deterministic functional relationship F = F(d). It is proposed to
approximate the function F as

k
Fd) ~ [F(©)] T F(d;,c_,), (5)

i=1
where F(c) is a constant, and F(d,,c_;) denotes the function value for the

case that all inputs except d, are fixed at their respective cut point

coordinates, c:[cl,...,ck]T. Expression (5) is capable to approximate the

function F with a satisfactory level of accuracy and is particularly useful for
approximating the integrals required for calculating sensitivity indices [11].
Using this approach, primary and higher order sensitivity indices can be
approximated as follows

| = (B,
S ~ o S _a=1\ Gy

i ~W’ i) ... ~W'
j j
( sz -1 ( sz -1
=1 O =1 %
The coefficients a;, and B]. are defined as mean and mean square of the j-
th univariate function, respectively, and are represented as

N N

2

o; = [Z:wﬂF(dﬂ,c_ﬂ), B, ~ [Z:wﬂF (djg,e_j0)- (7)
/=1 /=1

Here, N is the total number of integration points, dﬂ, and w;, are the /-th

Gaussian integration abscissas and corresponding weight, respectively.
Finally, total sensitivity index corresponding to the parameter d; can be
expressed as

‘2 . (8)

It should be noted that total number of objective function evaluations
required for calculating sensitivity indices using this method is only kx N,
where k is the number of design parameters.

To accomplish sensitivity analysis of a system output, a suitable cut point
together with a probability distribution must be chosen. Equations (6)—(8)
were then utilized to attain sensitivity indices. More details on multiplicative
dimensional reduction method for global sensitivity analysis can be found in
[11].

Let the following functionals are chosen to measure quality of perfor-
mance of the engineering system in question

Fla(t),d],....,F, s[q(t),d]. (9)

The following problem of the global sensitivity analysis for a generic
engineering system is formulated.



Problem GSA. Let d = [dl,dQ,...,dk]T be the vector of the design parame-

ters of the generic engineering system in question. It is required for a given
feasible operational scenario

OS € 0Ss (10)
to determine, by making use of equation (8), the total sensitivity indices
ST(F), i=1...k j=1..,nF, (11)

of the functionals (9) for all varying design parameters d,, subject to equation
(2), initial state (3) and the restriction

d=[d,d,,....,d,]" €Q. (12)

The solution of the problem GSA provides mapping between the values of
the total sensitivity indices (11) and the design parameters (12) of the generic
engineering system.

After the problem GSA is solved, the vector of the most important design
parameters

d, =[d,,d,....d,]" €Q, 1<sk<k, (13)

as well as the most sensitive functionals Fj[q(t),d], 1<j<nF <nF, are

identified. Then, the Pareto optimization problem is now stated as follows.
Problem PO. For given feasible operational scenario (10), it is required to
determine the design parameters

d, =d: =[d},d},,....d5 ", skell,.. kK,

and the vector of generalized coordinates q(t) = q"(t) that altogether satisfy
the system of variational equations

ﬁ?i?z(Ff[q(t)’ds]) =Fld'(t),d;], j=1,...,nF,

subject to the mathematical model (2)—(3) and restriction (13).

In [4], the computer code SAMO, developed at Chalmers University of
Technology, is presented as an efficient toolbox for optimal design of engine-
ering systems. At this stage, the toolbox SAMO includes two modules: SAMO-
GSA and SAMO-PO. The module SAMO-GSA is based on the multiplicative
version of the dimensional reduction method [11] to solve the above
formulated problem GSA. In the SAMO-GSA an efficient approximation is
employed to simplify the computation of variance-based sensitivity indices
associated with a general function of n-random varying parameters. Then,
the results of the solution of problem GSA might be used as an input to the
SAMO-PO module for multi-objective optimization (the above formulated
problem PO). The module SAMO-PO works based on genetic algorithm (GA).
The GA settings include lower and upper bounds for variation of the design
parameters, population size, number of generations, elite count, and Pareto
fraction settings. The results of SAMO-PO module are presented in terms of
Pareto fronts and corresponding Pareto sets for further analysis and decision
making by the user. More details on toolbox SAMO and the link to the
corresponding computer codes for different examples can be found in [4].

2. Weight-vibration Pareto optimization of a dual mass flywheel. Here,
we apply the methodology presented in Section 1 for solving the weight-
vibration Pareto optimization of the design of a dual mass flywheel for
application in torsional vibration attenuation in heavy-duty truck powertrains.

2.1. A drivetrain system equipped with a dual mass flywheel. Consi-
der a system depicted in Fig. 1. The system comprises an engine, (E),
a torsional vibration absorber, (DMF), and the load transmission system,
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(LTS). Assume that vibration absorber (Fig. 1) consists of two rigid bodies
called the primary flywheel (PFW) and the secondary flywheel (SFW). The
wheels are connected by a massless linear torsional spring and a massless
linear torsional viscous damper. The engine output shaft AB and the
transmission input shaft CD are assumed to be rigid and connected rigidly to
the PFW and to the SFW, respectively. The torque T,(t) rotates the primary

flywheel about the shaft AB.

Fig. 1. Sketch of a generic drivetrain system equipped with a dual mass flywheel.
In Fig. 1, ¢, and ¢ are the absolute angles of rotation of the PFW and

the SFW, respectively, J and J, are torsional moments of inertia of the

P
PFW and the SFW, respectively, k;, and c¢; are coefficients of torsional
stiffness and torsional damping.
The equations of torsional vibration dynamics of the drivetrain system
equipped with a DMF can be written in matrix form (4) with
T . . LT . e 1T
a=[e, 0], a=[¢,,¢] , da=[¢,,]

K

U[t, T(t)] = [T, (1), ~T,(0)] ",

J 0 c —c k -k
M- (7» (a9 Ta) go[f T 14
(0 Jsj7 ¢ (_Cl S )7 (_kl ky ) (14)

Equations (4) and (14), together with the following initial state
0,(tg) =00, @, (ty) =0, 0, (ty) =), P(ty) = Py, (15)

constitute the mathematical model of a drivetrain system having a DMF.

2.2. Global sensitivity analysis of a drivetrain system equipped with
a DMF. The set of operational scenarios (1) for the system in question will be
defined by the expressions

0Ss = {T(t) = [T,(t),-T,0)] ", a(t) =[0,(t),0,(1)]",

d=[J,,J k", telt,t;], deQ}, (16)

where
T.(t)=T, +a, sin(mnot), Op = N®,  © = 2nn, /60, 17)
T,(t) =k, (0, = 0,) + ¢, (¢, —P,),  @,(1) =, t. (18)

Here, in expressions (17) the engine input torque T,(t) is modelled by the

constant torque T, plus harmonic function, ®, is the mn,-engine order
0
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vibration frequency, that is n, times the angular velocity o, and n, is the
engine speed in rpm. The torque at the transmission input shaft T (¢) is mo-

delled by the expressions (18) and k,, c, are equivalent torsional stiffness

v

and damping coefficients of the load transmission system, ¢, , o, are absolu-

te angle of rotation and angular velocity of the transmission input shaft.
Consider the vector

d=[d,,dy,dg,d,]" =[], ], K, c]" €Q (19)
and the functionals
2000
F/(d) = j std (T,[q(t),d,n,])dn, (20)
600
Fy(d)=J, +J,, (21)
2000
F,(d) = j std (T;[a(t),d,n,])dn, (22)
600

as the vector of design parameters and the quality measures of the perfor-
mance of the drivetrain system equipped with a DMF. Here, the function Tf

represents the friction torque in the stiffness-damping interface of a DMF
and is defined as

T; =k (¢, — ;) + ¢, (9, — ). (23)

The functionals F;(d) and F;(d) characterize the oscillations of the
torque at the transmission input shaft and the energy dissipating in a DMF in
the operating engine speed range 600 rpm< n, <2000rpm, respectively. The

functional F,(d) characterizes the mass inertia properties of the DMF and is

well relevant for estimating the total weight of the absorber.

The global sensitivity analysis problem, formulated in Section 1, was
solved for the drivetrain system equipped with a DMF by using the
differential equation of motion (4) with (14), the initial state (15), the vector of
the design parameters (19) and the functionals (20)—(22). The feasible

operational scenario (10) was given by the torques T,(t) and Tg(t) that are

determined by expressions (17), (18).
The third engine order vibration harmonic is in focus of analysis as one
of the most significant contribution to the oscillatory response [1, 9], i. e. in all

simulations the engine order vibration frequency n, is chosen to be equal to
3. The rest values of the parameters for the torque T,(t) are the following:

the mean value of engine input torque T, = 300Nm; the amplitude of engine

torque harmonic excitation a, = 500 Nm; and the engine speed n, was chosen
in the range of 600 — 2000 rpm. The values for the parameters of the torque

. . . . _ 5 _
T, (t) at the transmission input shaft are: k, =10° Nm/rad, c, = 0.1 Nms/rad,
and o, = o)no/S.

The results of the GSA of the drivetrain system with respect to variation
of the design parameters (19) have been obtained for engine speeds in the
range of 600 —2000rpm by using the computer code SAMO with settings
given in Table 1. Here, the nominal values of design parameters of the DMF
are chosen to be feasible for application in heavy-duty truck drivetrain
systems. The analysis was performed with normal distribution of varying
parameters and coefficient of variation equal to 0.15.
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Table 1. Settings for GSA and Pareto optimization of a drivetrain system with DMF.

Design parameter, d J, . kem? | J , kgm? k;, Nm/rad ¢;, Nms/rad

Nominal values, d 1.8 0.9 12 732 30
Lower bounds, d 0.2 0.1 2 000 0
Upper bounds, d 24 1.2 26 242 150

The solution of the global sensitivity problem for engine speeds in the
range of 600 —2000rpm is depicted in Fig. 2. The solution is presented by
means of mapping between the design parameters d, =J,,, d, =J, d3 =k,

d, = ¢, and the values of total sensitivity indices of the objective functions
(20)—(22).

FZ(d)/Jmax
0 .
3 07 o8 :;
1%7] .
kS 00 0.5 [-4
e 0.5 F§
;S 0.4 |
22 0.4 i
S 03 %
£ 0.3 F
= i X\
g 02 02— g
197] 1 [ .,
01 g4 f B VO
0 r
1 2 3 4 0
Design parameters: Jp, Jg, ki, ¢; 100 200 300 400 Fy(d)/T,,
Fig. 2. Sensitivity indices of the objec- Fig. 3. Pareto front of weigh-vibration
tive functions F,(d), F,(d), Pareto optimization for the DMF

in operating speed range
600 rpm< n, <2000 rpm,

T, =300Nm, J__ =4.05kgm*

F;(d) for the DMF in the ope-
rating engine speed range
600 rpm< n, <2000 rpm.
2.3. Pareto optimization of a drivetrain system equipped with a
DMF. The multi-objective optimization problem, formulated in Section 1, is
considered now for the drivetrain system equipped with a DMF. The problem
is stated as follows: for the feasible operational scenario that is given by
expressions (16)—(18), it is required to determine the vector of the design
parameters of the DMF

d=[I3, I}k, c]]" =d €Q

X

and the torsional vibration dynamics q(t) = q’(t) that satisfy the wvariational
equations

2000 2000
rjleigrzl{ j std(Tg[q(t),d,ne])dne}: j std(Tg[q*(t),d*,ne])dne,
600 600

I;‘leiglzl{Jp +J b=+,

subject to the differential equation (4) with (14), the initial state (15), and the
restrictions on the design parameters provided by the lower and upper
bounds in Table 1.

This problem was solved by the computer code SAMO for the same
operational scenarios as the problem of the global sensitivity analysis. The
corresponding system of the differential equations was solved by using a
MATLAB subroutine ode45 with absolute and relative tolerances equal to
le - 5. The setting of the genetic algorithm was as follows: population size
=100; number of generations = 100; elite count = 4; and Pareto fraction =1.
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The Pareto front, ie., the best trade-off relationship between (20) and
(21) obtained for engine speeds in the range of 600 —2000 rpm, is shown in
Fig. 3.

Every point of the Pareto front corresponds to the set of values of the

design parameters of the DMF. The values of the design parameters J ;, J,

* *

k;, c¢; that minimize the objective function (20) are
[J;,J:,kf,cf]T =[2.34, 0.1, 3938, 30] . (24)

These values correspond to the highest point of the Pareto front. The DMF
with the design parameters (24) performs the best attenuation of the torsional
oscillation of the torque at the transmission input shaft with the value of the
objective function (20) equal to 35250 Nm. The obtained design of the DMF is

characterized by the feasible total mass inertia J, +J = 2.44 kgm?

*

The values of the design parameters J;, J:, k/, ¢ that minimize the

objective function (21) are
[J5, 75 ki ef]T =[0.23,0.1, 4010, 14] " . (25)

These values correspond to the lowest point of the Pareto front in Fig. 3. The
DMF with the design parameters (25) is characterized by lowest feasible total

mass inertia J; + J: = 0.33 kgm? but attenuation of the torsional oscillation of

the torque at the transmission input shaft with this design of the DMF much
worse than in case of using the design parameters (24). The value of objective
function (20) for the obtained design parameters (25) is about 150000 Nm.

3. Results and discussion. The application of the global sensitivity analy-
sis and the Pareto optimization provides deep insight into torsional vibration
dynamics of a generic drivetrain system with a DMF. The chosen functionals
(20)—(22) are appropriate to focus the design process for the vibration absor-
ber on the best attenuation of the oscillation of the torque at the transmission
input shaft, to minimize its weight, as well as decrease the energy dissipation
in the stiffness-damping interface of the absorber.

The results of the global sensitivity analysis of the drivetrain system with
respect to the design parameters of the DMF, presented in Section 2 (Fig. 2),
make it possible to conclude the following. For the drivetrain system equipped

with the DMF in the operating engine speed range 600 rpm<n, <2000 rpm

the moment of inertia of the primary flywheel, J,, as well as the stiffness of

the absorber, k,;, mostly affect the vibration attenuation and the energy

efficiency of the design of the vibration absorber. The weight of the absorber,
as it is expected, depends on mass inertia parameters only.

The solution of the Pareto optimization problem, presented in Section 2,
shows that there exist a clear trade-off between the measure of the oscillation
attenuation of the torque at the transmission input shaft and the total mass
inertia characteristics (the weight) of the optimized DMF of the drivetrain
system in the operating engine speed range 600 rpm< n, < 2000 rpm (Fig. 3).

The standard deviation of the torques at the transmission input shaft as a
function of the engine speed for the DMF with nominal design parameters

[T, Tk cq]T =[1.8,0.9,12732, 30]" (26)

(curve 1) and for the absorber with the weight-vibration optimized design
parameters (24) (curve 3) are depicted in Figs. 4 and 5 for different ranges of
the engine speeds. Analysis of Figs. 4, 5 shows that the efficiency of the
attenuation of the oscillation of the torque at the transmission input shaft by
using weight-vibration Pareto optimized DMF has significantly increased in
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comparison to the performance of the DMF with nominal design parameters.
For instance, in case of engine speed n, = 1200 rpm, the standard deviation of

the torque at the transmission input shaft (std[Tg(t)]) in drivetrain system

with nominal design parameters of the DMF is equal to 114 Nm, and it is
decreased to the value of std[T,(t)]=24Nm in case of using the DMF with

obtained weight-vibration optimized parameters (24). As it follows from
Figs. 4, 5, both resonance peaks of the curves 1 significantly reduced in case

of using the DMF with weight-vibration optimized parameters.

std(T,), Nm std(T,), Nm
i 1 r ln
i / \ 1600 | I
150 | ', N\
i 1200 |
100 | i vM
[ \ 2 800 |
50 L [
Tt 400 \
o [ 3 [ \K_/\
600 800 1000 1200 1400 1600 1800 n,, rpm 0 400 800 1200 1600 mn,, rpm

Fig. 4. Standard deviation of the torques
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600 rom< n, <2000 rpm for the

DMF with nominal design
parameters (26) (curve 1) and
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parameter (24) (curve 3), as well
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optimized parameters (27) for the
DMF (curve 2).
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Fig. 6. The torques at the transmission

input shaft for the engine speed
1200 rpm for the DMF with
nominal design parameters (26)
(curve 1) and with weight-
vibration optimized parameters
(24) (curve 3), as well as with
energy-vibration optimized
parameters (27) for the DMF
(curve 2).

Fig. 5. Standard deviation of the torques
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at the transmission input shaft in
the operating engine speed range
50 rpm< n, <2000 rpm for the

DMF with nominal design
parameters (26) (curve 1) and
with weight-vibration optimized
parameter (24) (curve 3), as well
as with energy-vibration optimized
parameters (27) for the DMF
(curve 2).
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Fig. 7. The friction torques at the

stiffness-damping interface of the
DMF for the engine speed

1200 rpm for the nominal design
parameters (26) (curve 1) and
with weight-vibration optimized
parameters (24) (curve 3), as well
as with energy-vibration optimized
parameters (27) for the DMF
(curve 2).
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Figures 6 and 7 present the time history of the torques at the transmis-
sion input shaft (18), as well as the time history of the friction torques (23),
illustrating how much the DMF with optimized design parameters (24) can
enhance the attenuation of the torques’ oscillations in comparison to the DMF
with nominal design parameters (26).

The choice of objective functions is an important step in the design opti-
mization of an engineering system. Earlier in [1], different functionals were
proposed for design optimization of vibration absorbers for heavy-duty truck
drivetrain systems. The same as in Section 2.3, the Pareto optimization pro-
blem was formulated and solved for the drivetrain system equipped with the
DMF in case of minimizing the objective functions (20), (22) subject to the dif-
ferential equation (4) with (14), the initial state (15), and the restrictions on
the design parameters provided by the lower and upper bounds in Table 1.

The functionals (20), (22) characterize the energy of the oscillations of the
torque at the transmission input shaft and the energy dissipating in a DMF in
the operating engine speed range 600 rpm< n, <2000 rpm. It is believed that

by minimizing these functionals at the same time, the obtained design para-
meters increase the energy efficiency of a vibration absorber.

The obtained values of the design parameters of the DMF which minimi-
ze the objective function (20) in the Pareto optimization problem (20), (22) are
as follows [1]:

(T3, 05 kel =[2.7, 045, 10967, 41]" . (27

These values correspond to the highest point of the obtained Pareto front
in the bi-objective optimization problem that was solved by using the
functionals (20), (22). The DMF with the design parameters (27) performs the
best attenuation of the torsional oscillation of the torque at the transmission
input shaft of the drivetrain system in the operating engine speed range
600 rpm< n, <2000 rpm.

In Figs. 4—7, curve 2 represents the corresponding characteristics obtai-
ned by solving the energy-vibration Pareto optimization problem (20), (22) for
the drivetrain system equipped with the DMF [1]. Analysis of Figs. 4—7 shows
that within the framework of considered assumptions, the weight-vibration
Pareto optimized DMF attenuate the oscillations of the torques at the trans-
mission input shaft much better in comparison to the performance of the
DMF with energy-vibration optimized design parameters (27) obtained earlier
in [1].

The quantitative analysis of the values of the nominal design parameters
(26), the weight-vibration optimized parameters (24), and the energy-
vibration optimized parameters (27) of the DMF shows that the solution of the
weight-vibration Pareto optimization problem is resulted in the lowest total
mass inertia of the vibration absorber. This can be a significant advantage of
the weight-vibration optimized DMF for its implementation in real drivetrain
systems.

Conclusions and outlook. The following concluding remarks can be
drawn.

e The methodology of multi-objective optimal design of engineering sys-
tems based on global sensitivity analysis and Pareto optimization has
been proven to be efficient for advanced analysis and designing of torsio-
nal vibration absorbers for drivetrain systems.

e There exists a clear trade-off between the measure of oscillation
attenuation of the torque at the transmission input shaft and the measure
of the total weight in designing of the DMF for heavy-duty truck
drivetrain systems.

e For a heavy-duty truck drivetrain system equipped with a DMF there
exists the weight-vibration bi-objective optimized mass inertia, stiffness
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and damping parameters providing the best attenuation of oscillation of
the torque at the transmission input shaft in the operating engine speed
range 600 —2000rpm, when the third engine order vibration harmonic is
in focus.

The results obtained show evidence of feasibility of application of the
weight-vibration optimized dual mass flywheels in heavy-duty truck
drivetrain systems.

Verification and validation of the results obtained using a complete model

of a drivetrain system of a heavy-duty truck [9], as well as experimental data
are important next steps of the study [10].
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MAPETO ONTUMI3AL|IA 3A BAIOIO TA BIBPALIEIO MAXOBUKA NMOABIKMHOT MACHU

3 8UKOPUCMAHHAM MeMOOOA02TT 6AAMOYINBOB020 ONMUMALLHOL0 NPOEKMYBAHH THICE-
HepHUX cucmem po3zainymo npobaemy I[lapemo onmumizayii 3a eazoro ma 6i6PAYiet0
MaAxXo08UKa 3 NOOBIUHOIO MACOI0 3 MEMOI0 8UBUEHHSA O0ULABHOCMT 1020 3ACMOCYBAHHA Y
CUN0BUX a2Peamax BaAHMANCHUX asmomodinig. Ompumani pe3ysbmamu nNoKa3y0OmMbs
maxe: PO36’A30K PO32AAHYMOT 3a0ayl ONMUMI3AYLL ICHYE; NAPAMEMPU MACU, HCOPCM-
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Kocmi ma eé'as3xocmi eidpodemngbepa, onmumizosani 8 pobouomy 0iana3oHi uaAcmMom
obepmig Odsuzyna 600—2000 06/x8, ichyroms ma 3abe3neuyromsv HaUKPawe 2ACTHHIA
KOAUBAHb KPYMHO20 MOMEHMY HA 8Xi0OHOMY 6aay nepedayl. Pesyavmamu ceiduams npo
0oyinbHicMb 3ACMOCYBAHHA MAXOBUKA 3 MOOBIUHOI MACOI0, ONMUMIZ08AHO20 3A 8a2010
ma 8i6Payii, 8 cucmemaxr NPusody 8aIKUX 8AHMANHUL A8MOMOOLAIE.

Katouoei caosa: kxpymHut 8i0PpayitiHutl no2AunaY, Maxro8ur nodeitinol macu, cucmema
npugody 2pY308uUKa 8EAUKOL 8AHMANCONIOUOMHOCTMI, AHAALIZ 2A00AALHOTL UYMAUBO-
cmi, Ilapemo onmumizayis 3a 8azot0 ma 616payli.

MAPETO ONTUMU3ALIUA NO BECY U BUBPALIUM MAXOBUKA OBOMHOW MACCHI

C ucnoav3osanuem memoO0or02UU MHO20YeAe8020 ONMUMALLHOZO NPOLKMUPOSAHUSL UH-
JceHepHBLX cucmem paccmompena npobaema ITapemo onmumusayuu no eecy u subpa-
YUU MaxosuKra ¢ 080UHOU MACCOU C Yeablo UYUeHUS Yeaeco0bPa3Hocmu e2o npumere-
HUSL 8 CUL0BLLL azpezamax 2py3osvblr aemomodunet. Iloayuennsle pesyabmamosL NOKa3bl-
satom caedyroujee: pewieHue PACCMAMPUBAEMOU 3a0QUU ONMUMUSAYUU CYUecmeyem;
napamempsl MACCHL, HeCmMKocMu U 8a3Kocmu subpodemngepa, ONMUMUIUPOBAHHDBLE 8
pabouem duanazore ywacmom epawerus 0suzameas 600—2000 06/mun, cywecmeyrom u
obecneuusatom Hauayywee auleHue KoAe0a Ul KPYmsauezo MOMEeHMa Ha 8LOOHOM 8AAY
nepedauu. Pe3yavmamot céudemeabcmsayiom o 14eaecoodpasHocmu npumenenus Maroeu-
Ka ¢ 080UHOU MaACCOU, ONMUMUSUPOBAHHOZ0 NO 8eCy U 8UOPAYUU, 8 CUCMEMAX NPUB0OA
MAHCCABLL 2PY308bLL a8MOMOOUNLEU.

Kaioueswie caosa: xpymawuti UGPAYUOHHBLL NO2AOMUMEND, MAXO8UK O80UHOU MACCHL,
cucmema npugoda 2py308ura O00AbWOU 2PY30n00seMHOCTNU, AHAAU3 2400ANbHOU
yyscmeumeavnHocmu, Ilapemo onmumudayus no gecy u sudOPAYUU.
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