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WEIGHT-VIBRATION PARETO OPTIMIZATION OF A DUAL MASS FLYWHEEL*  
 

By using the methodology of the multi-objective optimal design of engineering sys-
tems, the problem of weight-vibration Pareto optimization of a dual mass flywheel 
is considered with the aim to study the feasibility of its application in heavy-duty 
truck powertrains. The results obtained show the following: the solution of the 
considered optimization problem does exist; the mass inertia, stiffness and dam-
ping parameters of the absorber optimized in an operating engine speed range of 
600–2000 rpm do exist, providing the best attenuation of the torque oscillation at 
the transmission input shaft. Finally, the results show the feasibility evidence for 
the application of weight-vibration optimized dual mass flywheel in heavy-duty 
truck drivetrain systems. 

Key words: torsional vibration absorber, dual mass flywheel, drivetrain system of a 
heavy-duty truck, global sensitivity analysis, weight-vibration Pareto optimization. 

 
Introduction. An engineering system must meet a plenty of require-

ments, e. g. system’s quickness and accuracy, safety and user friendliness, 
noiseless and low level of vibrations, environmental friendliness and cost 
efficiency. These are some of the constraints to be satisfied during the design 
process of modern engineering products, which make the design process of 
engineering systems to be very complicative. 

In this paper, the methodology of multi-objective optimal design of engi-
neering systems is presented. The methodology is based on the global sensiti-
vity analysis (GSA) and Pareto optimization techniques. It has been imple-
mented in the computer toolbox SAMO, developed at Mechanical Systems, 
Division of Dynamics, Chalmers University of Technology [4]. The methodolo-
gy and toolbox SAMO were successfully used for optimal design of engine-
ering systems with different applications [5–7]. Herein, we apply the metho-
dology for solving the weight-vibration Pareto optimization of the design of 
dual mass flywheels for application in torsional vibration attenuation in 
heavy-duty truck powertrains. A dual mass flywheel (DMF) is a well-known 
design of torsional vibration absorbers and was a subject for intensive re-
search [1, 3, 8–10]. The research is ongoing to understand whether this 
concept of absorber is suitable for the attenuation of torsional vibrations in 
the powertrain of heavy-duty trucks [1, 9, 10]. 

The outline of the paper is as follows. In Section 1, the global sensitivity 
analysis and Pareto optimization problems are formulated for the mathemati-
cal model of a generic engineering system. These problems’ formulations, 
together with outline of the algorithm of the GSA and the structure of the 
toolbox SAMO, constitute the basis of the methodology for designing optimal 
engineering products. The results of weight-vibration Pareto optimal design of 
a torsional vibration absorber for application in a heavy-duty truck power-
train are presented in Sections 2 and 3. The paper is finalized with conclusions 
and outline of future research. 

Some results of the paper were presented at the 10th International Con-
ference on Mathematical Problems of Mechanics of Nonhomogeneous Structu-
res, September 17–20, 2019, Lviv, Ukraine [2].  

1. Sensitivity analysis and Pareto optimization. Consider an engineering 
system that consists of a number of functional components, representing mass 
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inertia, stiffness and damping system’s characteristics. Let 1 2, , , nq q q=q … �[ ]  

is the vector of generalized coordinates, 1 2, , , mT T T=T �…[ ]  is the vector of 

external loads, e.g. forces or/and torques, acting on the system, and 

1 2, , , kd d d=d �…[ ]  is the vector of design parameters representing the mass 

inertia, stiffness and damping characteristics of all functional components of 
the system. 

The following expression will be used to represent the set of operational 
scenarios ( sOS ) of the generic engineering system in question: 

 0( ), ( ), , [ , ],fs t t t t t= Î Î WOS T q d d{ } . (1) 

In expression (1), 0t , ft  are the initial and final instants of time and  W  is 

the domain of feasible values for the vector of design parameters. 

For any feasible vector of design parameters 1 2, , , kd d d= Î Wd �…[ ] , and 

the given external loads 1 2, , , mT T T=T �…[ ] , the vector of generalized coordi-

nates 1 2, , , nq q q=q �…[ ]  satisfies the equation 

 ( ), ( ), ( ), ( ),t t t t =L q q q T d 0& &&[ ] . (2) 

Here, L  is an operator that together with given initial state of the system 

 0 0(0) , (0)= =q q q q& &  (3) 

determine the system performance (response), i. e. vector 0 0
0, , , , ( ),t t tq q q T d&[ ]  

for all 0[ , ]ft t tÎ . 

Equation (2) along with the initial state (3) constitute the mathematical 
model of a generic engineering system and allow to obtain all its feasible 
operational scenarios. 

As an example of the mathematical model (2), (3), the following matrix 
equation 

 , ( )t t+ + =Mq Cq Kq U T&& & [ ]  (4) 

together with the initial state (3) govern the motion of an n -degree-of-free-
dom mechanical system with linear stiffness and damping functional 
components. Here, M , C , and K  are the mass inertia, the damping and the 
stiffness matrices and U  is the vector of generalized forces. 

1.1. Global sensitivity analysis and Pareto optimization problems 
formulations. As the first step in optimal design of an engineering system, it 
is important to study the sensitivity of the system’s response with respect to 
variation of its design parameters. Sensitivity analysis of an engineering 
system with respect to varying parameter id  can be carried out either locally 

or globally. In local sensitivity analysis, the effects of design input id  on the 
system response is approximated as partial derivative of an objective function 
used as a measure of the system response with respect to design parameter 

id  which is taken around a fixed point 0
id . Such an approach only considers 

variation of an objective function with respect to a single design parameter at 
a time. Furthermore, the domain of input design variables might not be 
appropriately scanned using local method. 

The global sensitivity analysis is one of the most prominent approaches in 
the design of engineering systems that can provide informative insight into 
the design process. To determine global sensitivity indices, multilayer integrals 
must be evaluated. This process demands a heavy computational effort. 
Below, the multiplicative dimensional reduction method proposed in [11], is 
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briefly described. This method is used in the computer toolbox SAMO [4] and 
can approximate global sensitivity indices in an efficient and accurate manner. 

An objective function can be express as function of a set of independent 

random variables, i.e., design parameters 1 2, , , kd d d= Î Wd �…[ ] , through 

respective deterministic functional relationship ( )F F= d . It is proposed to 
approximate the function F  as 

 1

1

( ) ( ) ( , )
k

k
i i

i

F F F d-
-

=

» Õd [ ]c c , (5) 

where ( )F c  is a constant, and ( , )i iF d -c  denotes the function value for the 

case that all inputs except id  are fixed at their respective cut point 

coordinates, 1, , kc c= �…[ ]c . Expression (5) is capable to approximate the 

function F  with a satisfactory level of accuracy and is particularly useful for 
approximating the integrals required for calculating sensitivity indices [11]. 
Using this approach, primary and higher order sensitivity indices can be 
approximated as follows 
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The coefficients ja , and jb  are defined as mean and mean square of the j -

th univariate function, respectively, and are represented as 

 2

1 1
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N N

j j j j j j j jw F d w F d- -
= =

a » b »å åc cl l l l l l
l l

. (7) 

Here, N  is the total number of integration points, jd l , and jw l  are the l -th 

Gaussian integration abscissas and corresponding weight, respectively. 
Finally, total sensitivity index corresponding to the parameter id  can be 

expressed as 
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It should be noted that total number of objective function evaluations 
required for calculating sensitivity indices using this method is only k N´ , 
where k  is the number of design parameters. 

To accomplish sensitivity analysis of a system output, a suitable cut point 
together with a probability distribution must be chosen. Equations (6)–(8) 
were then utilized to attain sensitivity indices. More details on multiplicative 
dimensional reduction method for global sensitivity analysis can be found in 
[11]. 

Let the following functionals are chosen to measure quality of perfor-
mance of the engineering system in question 

 1 ( ), , . , ( ),nFF t F tq d q d…[ ] [ ] . (9) 

The following problem of the global sensitivity analysis for a generic 
engineering system is formulated. 
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Problem GSA. Let 1 2, , , kd d d=d �…[ ]  be the vector of the design parame-

ters of the generic engineering system in question. It is required for a given 
feasible operational scenario 

 sÎOS OS%  (10) 

to determine, by making use of equation (8), the total sensitivity indices 

 = =… …T ( ), 1, , , 1, ,i jS F i k j nF , (11) 

of the functionals (9) for all varying design parameters id , subject to equation 
(2), initial state (3) and the restriction 

 1 2, , , kd d d= Î Wd �…[ ] . (12) 

The solution of the problem GSA provides mapping between the values of 
the total sensitivity indices (11) and the design parameters (12) of the generic 
engineering system. 

After the problem GSA is solved, the vector of the most important design 
parameters 

 1 2, , , , 1s s s skd d d sk k= Î W £ £d �…[ ] , (13) 

as well as the most sensitive functionals ( ),jF tq d[ ] , 11 j nF nF£ £ £ , are 

identified. Then, the Pareto optimization problem is now stated as follows. 
Problem PO. For given feasible operational scenario (10), it is required to 

determine the design parameters 

 1 2, , , , 1, ,s s s s skd d d sk k* * * *= Îd d �… …[ ][ ]= , 

and the vector of generalized coordinates ( ) ( )t t*=q q  that altogether satisfy 
the system of variational equations 

 1min ( ), ( ), , 1, ,
s

j s j sF t F t j nF* *

ÎW
= =

d
q d q d …[ ] [ ]( ) , 

subject to the mathematical model (2)–(3) and restriction (13). 
In [4], the computer code SAMO, developed at Chalmers University of 

Technology, is presented as an efficient toolbox for optimal design of engine-
ering systems. At this stage, the toolbox SAMO includes two modules: SAMO-
GSA and SAMO-PO. The module SAMO-GSA is based on the multiplicative 
version of the dimensional reduction method [11] to solve the above 
formulated problem GSA. In the SAMO-GSA an efficient approximation is 
employed to simplify the computation of variance-based sensitivity indices 
associated with a general function of n -random varying parameters. Then, 
the results of the solution of problem GSA might be used as an input to the 
SAMO-PO module for multi-objective optimization (the above formulated 
problem PO). The module SAMO-PO works based on genetic algorithm (GA). 
The GA settings include lower and upper bounds for variation of the design 
parameters, population size, number of generations, elite count, and Pareto 
fraction settings. The results of SAMO-PO module are presented in terms of 
Pareto fronts and corresponding Pareto sets for further analysis and decision 
making by the user. More details on toolbox SAMO and the link to the 
corresponding computer codes for different examples can be found in [4]. 

2. Weight-vibration Pareto optimization of a dual mass flywheel. Here, 
we apply the methodology presented in Section 1 for solving the weight-
vibration Pareto optimization of the design of a dual mass flywheel for 
application in torsional vibration attenuation in heavy-duty truck powertrains. 

2.1. A drivetrain system equipped with a dual mass flywheel. Consi-
der a system depicted in Fig. 1. The system comprises an engine, (E), 
a torsional vibration absorber, (DMF), and the load transmission system, 
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(LTS). Assume that vibration absorber (Fig. 1) consists of two rigid bodies 
called the primary flywheel (PFW) and the secondary flywheel (SFW). The 
wheels are connected by a massless linear torsional spring and a massless 
linear torsional viscous damper. The engine output shaft AB and the 
transmission input shaft CD are assumed to be rigid and connected rigidly to 
the PFW and to the SFW, respectively. The torque ( )eT t  rotates the primary 
flywheel about the shaft AB. 

  
Fig. 1. Sketch of a generic drivetrain system equipped with a dual mass flywheel. 

In Fig. 1, pj  and sj  are the absolute angles of rotation of the PFW and 

the SFW, respectively, pJ  and sJ  are torsional moments of inertia of the 

PFW and the SFW, respectively, 1k  and 1c  are coefficients of torsional 
stiffness and torsional damping. 

The equations of torsional vibration dynamics of the drivetrain system 
equipped with a DMF can be written in matrix form (4) with 

 , , , , ,p s p s p s= j j = j j = j jq q q� � �& & && &&& &&[ ] [ ] [ ] , 

 , ( ) ( ), ( )e gt t T t T t= -U T �[ ] [ ] , 

 1 1 1 1

1 1 1 1

0
, ,

0
p

s

J c c k k
c c k kJ

- -æ ö æ ö æ ö= = =ç ÷ ç ÷ç ÷ - -è ø è øè ø
M C K . (14) 

Equations (4) and (14), together with the following initial state 

 0 0 0 0
0 0 0 0( ) , ( ) , ( ) , ( )p p s s p p s st t t tj = j j = j j = j j = j& & & & , (15) 

constitute the mathematical model of a drivetrain system having a DMF. 
2.2. Global sensitivity analysis of a drivetrain system equipped with 

a DMF. The set of operational scenarios (1) for the system in question will be 
defined by the expressions 

 ( ) ( ), ( ) , ( ) ( ), ( )e g p ss t T t T t t t t= = - = j jOS T q{ [ ] [ ]� � , 

 T
1 1 0, , , , , ,p s fJ J k c t t t= Î Î Wd d[ ] [ ] } , (16) 

where 

 
0 0 0( ) sin ( ), , 2 /60e m e n n eT t T a t n n= + w w = w w = p , (17) 

 ( ) ( ) ( ), ( )g v s v v s v v vT t k c t t= j - j + j - j j = w& & . (18) 

Here, in expressions (17) the engine input torque ( )eT t  is modelled by the 

constant torque mT  plus harmonic function, 
0nw  is the 0n -engine order 
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vibration frequency, that is 0n  times the angular velocity w, and en  is the 

engine speed in rpm. The torque at the transmission input shaft ( )gT t  is mo-

delled by the expressions (18) and vk , vc  are equivalent torsional stiffness 

and damping coefficients of the load transmission system, vj , vw  are absolu-
te angle of rotation and angular velocity of the transmission input shaft. 

Consider the vector 

 1 2 3 4 1 1, , , , , ,p sd d d d J J k c= = Î Wd � �[ ] [ ]  (19) 

and the functionals 

 = ò
2000

1
600

( ) std ( ), ,g e eF T t n dnd q d( )[ ] , (20) 

 = +2 ( ) p sF J Jd , (21) 

 
2000

3
600

( ) std ( ), ,f e eF T t n dn= òd q d[ ]( )  (22) 

as the vector of design parameters and the quality measures of the perfor-
mance of the drivetrain system equipped with a DMF. Here, the function fT  

represents the friction torque in the stiffness-damping interface of a DMF 
and is defined as 

 1 1( ) ( )f p s p sT k c= j - j + j - j& & . (23) 

The functionals 1( )F d  and 3 ( )F d  characterize the oscillations of the 
torque at the transmission input shaft and the energy dissipating in a DMF in 
the operating engine speed range 600 rpm 2000en£ £ rpm, respectively. The 

functional 2 ( )F d  characterizes the mass inertia properties of the DMF and is 
well relevant for estimating the total weight of the absorber. 

The global sensitivity analysis problem, formulated in Section 1, was 
solved for the drivetrain system equipped with a DMF by using the 
differential equation of motion (4) with (14), the initial state (15), the vector of 
the design parameters (19) and the functionals (20)–(22). The feasible 
operational scenario (10) was given by the torques ( )eT t  and ( )gT t  that are 

determined by expressions (17), (18). 
The third engine order vibration harmonic is in focus of analysis as one 

of the most significant contribution to the oscillatory response [1, 9], i. e. in all 
simulations the engine order vibration frequency 0n  is chosen to be equal to 

3. The rest values of the parameters for the torque ( )eT t  are the following: 

the mean value of engine input torque 300mT = Nm; the amplitude of engine 

torque harmonic excitation 500ea = Nm; and the engine speed en  was chosen 

in the range of 600 2000- rpm. The values for the parameters of the torque 

( )gT t  at the transmission input shaft are: 510vk = Nm/rad, 0.1vc = Nms/rad, 

and 
0
/3v nw = w . 

The results of the GSA of the drivetrain system with respect to variation 
of the design parameters (19) have been obtained for engine speeds in the 
range of 600 2000- rpm by using the computer code SAMO with settings 
given in Table 1. Here, the nominal values of design parameters of the DMF 
are chosen to be feasible for application in heavy-duty truck drivetrain 
systems. The analysis was performed with normal distribution of varying 
parameters and coefficient of variation equal to 0.15 . 
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Table 1. Settings for GSA and Pareto optimization of a drivetrain system with DMF. 

Design parameter, d  pJ , kgm2 
sJ , kgm2

 1k , Nm/rad 1c , Nms/rad 

Nominal values, d  1.8 0.9 12 732 30 

Lower bounds, d  0.2 0.1 2 000 0 

Upper bounds, d  2.4 1.2 26 242 150 

The solution of the global sensitivity problem for engine speeds in the 
range of 600 2000- rpm is depicted in Fig. 2. The solution is presented by 
means of mapping between the design parameters 1 pd J= , 2 sd J= , 3 1d k= , 

4 1d c=  and the values of total sensitivity indices of the objective functions 
(20)–(22). 

  
Fig. 2. Sensitivity indices of the objec-

tive functions 1( )F d , 2 ( )F d , 

3 ( )F d  for the DMF in the ope-
rating engine speed range 
600 rpm 2000en£ £ rpm. 

Fig. 3. Pareto front of weigh-vibration 
Pareto optimization for the DMF  
in operating speed range 
600 rpm 2000en£ £ rpm, 

300mT = Nm, max 4.05J = kgm2. 

2.3. Pareto optimization of a drivetrain system equipped with a 
DMF. The multi-objective optimization problem, formulated in Section 1, is 
considered now for the drivetrain system equipped with a DMF. The problem 
is stated as follows: for the feasible operational scenario that is given by 
expressions (16)–(18), it is required to determine the vector of the design 
parameters of the DMF 

 *
1 1,  , ,  p sJ J k c* * * *= = Î Wd d�[ ]  

and the torsional vibration dynamics ( ) ( )t t*=q q  that satisfy the variational 
equations 

 
2000 2000

600 600

min std ( ), , std ( ), ,g e e g e eT t n dn T t n dn* *

ÎW

ì ü
=í ý

î þ
ò òd

q d q d[ ] [ ]( ) ( ) ,  

 min p s p sJ J J J* *

ÎW
+ = +

d
{ } , 

subject to the differential equation (4) with (14), the initial state (15), and the 
restrictions on the design parameters provided by the lower and upper 
bounds in Table 1. 

This problem was solved by the computer code SAMO for the same 
operational scenarios as the problem of the global sensitivity analysis. The 
corresponding system of the differential equations was solved by using a 
MATLAB subroutine ode45 with absolute and relative tolerances equal to 

-1e 5 . The setting of the genetic algorithm was as follows: population size 
100= ; number of generations 100= ; elite count 4= ; and Pareto fraction 1= . 
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The Pareto front, i.e., the best trade-off relationship between (20) and 
(21) obtained for engine speeds in the range of 600 2000- rpm, is shown in 
Fig. 3. 

Every point of the Pareto front corresponds to the set of values of the 

design parameters of the DMF. The values of the design parameters pJ* , sJ* , 

1k* , 1c
*  that minimize the objective function (20) are 

 1 1, , , 2.34, 0.1, 3938, 30p sJ J k c* * * * =� �[ ] [ ] . (24)  

These values correspond to the highest point of the Pareto front. The DMF 
with the design parameters (24) performs the best attenuation of the torsional 
oscillation of the torque at the transmission input shaft with the value of the 
objective function (20) equal to 35250 Nm. The obtained design of the DMF is 

characterized by the feasible total mass inertia 2.44p sJ J* *+ = kgm2. 

The values of the design parameters pJ* , sJ* , 1k* , 1c
*  that minimize the 

objective function (21) are 

 1 1, , , 0.23, 0.1, 4010, 14p sJ J k c* * * * =� �[ ] [ ] . (25)  

These values correspond to the lowest point of the Pareto front in Fig. 3. The 
DMF with the design parameters (25) is characterized by lowest feasible total 

mass inertia 0.33p sJ J* *+ = kgm2 but attenuation of the torsional oscillation of 

the torque at the transmission input shaft with this design of the DMF much 
worse than in case of using the design parameters (24). The value of objective 
function (20) for the obtained design parameters (25) is about 150000 Nm. 

3. Results and discussion. The application of the global sensitivity analy-
sis and the Pareto optimization provides deep insight into torsional vibration 
dynamics of a generic drivetrain system with a DMF. The chosen functionals 
(20)–(22) are appropriate to focus the design process for the vibration absor-
ber on the best attenuation of the oscillation of the torque at the transmission 
input shaft, to minimize its weight, as well as decrease the energy dissipation 
in the stiffness-damping interface of the absorber. 

The results of the global sensitivity analysis of the drivetrain system with 
respect to the design parameters of the DMF, presented in Section 2 (Fig. 2), 
make it possible to conclude the following. For the drivetrain system equipped 
with the DMF in the operating engine speed range 600 rpm 2000en£ £ rpm 

the moment of inertia of the primary flywheel, pJ , as well as the stiffness of 

the absorber, 1k , mostly affect the vibration attenuation and the energy 
efficiency of the design of the vibration absorber. The weight of the absorber, 
as it is expected, depends on mass inertia parameters only. 

The solution of the Pareto optimization problem, presented in Section 2, 
shows that there exist a clear trade-off between the measure of the oscillation 
attenuation of the torque at the transmission input shaft and the total mass 
inertia characteristics (the weight) of the optimized DMF of the drivetrain 
system in the operating engine speed range 600 rpm 2000en£ £ rpm (Fig. 3). 

The standard deviation of the torques at the transmission input shaft as a 
function of the engine speed for the DMF with nominal design parameters 

 1 1, , , 1.8, 0.9, 12732, 30p sJ J k c =[ ] [ ]� �  (26)  

(curve 1) and for the absorber with the weight-vibration optimized design 
parameters (24) (curve 3) are depicted in Figs. 4 and 5 for different ranges of 
the engine speeds. Analysis of Figs. 4, 5 shows that the efficiency of the 
attenuation of the oscillation of the torque at the transmission input shaft by 
using weight-vibration Pareto optimized DMF has significantly increased in 
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comparison to the performance of the DMF with nominal design parameters. 
For instance, in case of engine speed 1200en = rpm, the standard deviation of 

the torque at the transmission input shaft ( std ( )gT t[ ] ) in drivetrain system 

with nominal design parameters of the DMF is equal to 114 Nm, and it is 
decreased to the value of std ( ) 24gT t =[ ] Nm in case of using the DMF with 

obtained weight-vibration optimized parameters (24). As it follows from 
Figs. 4, 5, both resonance peaks of the curves 1 significantly reduced in case 
of using the DMF with weight-vibration optimized parameters. 

   

Fig. 4. Standard deviation of the torques 
at the transmission input shaft in 
the operating engine speed range 
600 rpm 2000en£ £ rpm for the 
DMF with nominal design 
parameters (26) (curve 1) and 
with weight-vibration optimized 
parameter (24) (curve 3), as well 
as with energy-vibration 
optimized parameters (27) for the 
DMF (curve 2). 

Fig. 5. Standard deviation of the torques 
at the transmission input shaft in 
the operating engine speed range 
50 rpm 2000en£ £ rpm for the 
DMF with nominal design 
parameters (26) (curve 1) and 
with weight-vibration optimized 
parameter (24) (curve 3), as well 
as with energy-vibration optimized 
parameters (27) for the DMF 
(curve 2). 

    

Fig. 6. The torques at the transmission 
input shaft for the engine speed 
1200 rpm for the DMF with 
nominal design parameters (26) 
(curve 1) and with weight-
vibration optimized parameters 
(24) (curve 3), as well as with 
energy-vibration optimized 
parameters (27) for the DMF 
(curve 2). 

Fig. 7. The friction torques at the 
stiffness-damping interface of the 
DMF for the engine speed 
1200 rpm for the nominal design 
parameters (26) (curve 1) and 
with weight-vibration optimized 
parameters (24) (curve 3), as well 
as with energy-vibration optimized 
parameters (27) for the DMF 
(curve 2). 
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Figures 6 and 7 present the time history of the torques at the transmis-
sion input shaft (18), as well as the time history of the friction torques (23), 
illustrating how much the DMF with optimized design parameters (24) can 
enhance the attenuation of the torques’ oscillations in comparison to the DMF 
with nominal design parameters (26). 

The choice of objective functions is an important step in the design opti-
mization of an engineering system. Earlier in [1], different functionals were 
proposed for design optimization of vibration absorbers for heavy-duty truck 
drivetrain systems. The same as in Section 2.3, the Pareto optimization pro-
blem was formulated and solved for the drivetrain system equipped with the 
DMF in case of minimizing the objective functions (20), (22) subject to the dif-
ferential equation (4) with (14), the initial state (15), and the restrictions on 
the design parameters provided by the lower and upper bounds in Table 1. 

The functionals (20), (22) characterize the energy of the oscillations of the 
torque at the transmission input shaft and the energy dissipating in a DMF in 
the operating engine speed range 600 rpm 2000en£ £ rpm. It is believed that 
by minimizing these functionals at the same time, the obtained design para-
meters increase the energy efficiency of a vibration absorber. 

The obtained values of the design parameters of the DMF which minimi-
ze the objective function (20) in the Pareto optimization problem (20), (22) are 
as follows [1]: 

 1 1, , , 2.7, 0.45, 10967, 41p sJ J k c* * * * =� �[ ] [ ] . (27)  

These values correspond to the highest point of the obtained Pareto front 
in the bi-objective optimization problem that was solved by using the 
functionals (20), (22). The DMF with the design parameters (27) performs the 
best attenuation of the torsional oscillation of the torque at the transmission 
input shaft of the drivetrain system in the operating engine speed range 
600 rpm 2000en£ £ rpm. 

In Figs. 4–7, curve 2 represents the corresponding characteristics obtai-
ned by solving the energy-vibration Pareto optimization problem (20), (22) for 
the drivetrain system equipped with the DMF [1]. Analysis of Figs. 4–7 shows 
that within the framework of considered assumptions, the weight-vibration 
Pareto optimized DMF attenuate the oscillations of the torques at the trans-
mission input shaft much better in comparison to the performance of the 
DMF with energy-vibration optimized design parameters (27) obtained earlier 
in [1]. 

The quantitative analysis of the values of the nominal design parameters 
(26), the weight-vibration optimized parameters (24), and the energy-
vibration optimized parameters (27) of the DMF shows that the solution of the 
weight-vibration Pareto optimization problem is resulted in the lowest total 
mass inertia of the vibration absorber. This can be a significant advantage of 
the weight-vibration optimized DMF for its implementation in real drivetrain 
systems. 

Conclusions and outlook. The following concluding remarks can be 
drawn. 

· The methodology of multi-objective optimal design of engineering sys-
tems based on global sensitivity analysis and Pareto optimization has 
been proven to be efficient for advanced analysis and designing of torsio-
nal vibration absorbers for drivetrain systems. 

· There exists a clear trade-off between the measure of oscillation 
attenuation of the torque at the transmission input shaft and the measure 
of the total weight in designing of the DMF for heavy-duty truck 
drivetrain systems.  

· For a heavy-duty truck drivetrain system equipped with a DMF there 
exists the weight-vibration bi-objective optimized mass inertia, stiffness 
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and damping parameters providing the best attenuation of oscillation of 
the torque at the transmission input shaft in the operating engine speed 
range 600 2000- rpm, when the third engine order vibration harmonic is 
in focus. 

· The results obtained show evidence of feasibility of application of the 
weight-vibration optimized dual mass flywheels in heavy-duty truck 
drivetrain systems. 
Verification and validation of the results obtained using a complete model 

of a drivetrain system of a heavy-duty truck [9], as well as experimental data 
are important next steps of the study [10]. 
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ПАРЕТО ОПТИМІЗАЦІЯ ЗА ВАГОЮ ТА ВІБРАЦІЄЮ МАХОВИКА ПОДВІЙНОЇ МАСИ 
 
З використанням методології багатоцільового оптимального проектування інже-
нерних систем розглянуто проблему Парето оптимізації за вагою та вібрацією 
маховика з подвійною масою з метою вивчення доцільності його застосування у 
силових агрегатах вантажних автомобілів. Отримані результати показують 
таке: розв’язок розглянутої задачі оптимізації існує; параметри маси, жорст-
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кості та в'язкoсті вібродемпфера, оптимізовані в робочому діапазоні частот 
обертів двигуна 600–2000 об/хв, існують та забезпечують найкраще гасіння 
коливань крутного моменту на вхідному валу передачі. Результати свідчать про 
доцільність застосування маховика з подвійною масою, оптимізованого за вагою 
та вібрації, в системах приводу важких вантажних автомобілів. 

Ключові слова: крутний вібраційний поглинач, маховик подвійної маси, система 
приводу грузовика великої вантажопідйомності, аналіз глобальної чутливо-
сті, Парето оптимізація за вагою та вібрації. 

 
ПАРЕТО ОПТИМИЗАЦИЯ ПО ВЕСУ И ВИБРАЦИИ МАХОВИКА ДВОЙНОЙ МАССЫ 
 
С использованием методологии многоцелевого оптимального проектирования ин-
женерных систем рассмотрена проблема Парето оптимизации по весу и вибра-
ции маховика с двойной массой с целью изучения целесообразности его примене-
ния в силовых агрегатах грузовых автомобилей. Полученные результаты показы-
вают следующее: решение рассматриваемой задачи оптимизации существует; 
параметры массы, жесткости и вязкости вибродемпфера, оптимизированные в 
рабочем диапазоне частот вращения двигателя 600–2000 об/мин, существуют и 
обеспечивают наилучшее гашение колебаний крутящего момента на входном валу 
передачи. Результаты свидетельствуют о целесообразности применения махови-
ка с двойной массой, оптимизированного по весу и вибрации, в системах привода 
тяжелых грузовых автомобилей. 

Ключевые слова: крутящий вибрационный поглотитель, маховик двойной массы, 
система привода грузовика большой грузоподъемности, анализ глобальной 
чувствительности, Парето оптимизация по весу и вибрации. 
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