$$= \frac{4}{N^2} \sum_{m=1}^{N} T_m (s) \sum_{\nu=1}^{N} \cos m\theta_{1\nu} \sum_{l=1}^{N} U_{l-1} (r) \sum_{j=1}^{N-1} \mu_{pkj\nu} \sin l\theta_{2j},$$

где T_m , U_m — полиномы Чебышева первого и второго рода.

Определенное выше неограниченное на концах решение принадлежит к наиболее широкому классу функций. Если условия (2) (или часть их) отсутствуют, то аналогичным образом можно получить решение в других классах. В частности, если функции $f_{p}(s)$ и ядра $M_{kp}(s, s_{0})$ по второй переменной удовлетворяют условию Гельдера (ядра $M_{kp}\left(s,\ s_{0}\right)$ в данном случае могут содержать интегрируемую по s особенность), то для обращения системы (1) в классе функций, ограниченных на концах, можно непосредственно воспользоваться полученными выше результатами. Действительно, после дифференцирования системы (1) по so и интегрирования по частям с использованием условий $\varphi_p(\pm 1)=0, p=\overline{1,n}$, придем к системе СИУ для функций φ_p (s), не ограниченных на концах. Единственность решения этой системы обусловлена наличием очевидных условий $\int_{-1}^{1} \varphi_{\rho}^{'}(s) ds = 0$, а обращение ее можно осуществить изложенным выше способом.

- 1. Каландия А. И. Математические методы двумерной упругости. М.: Наука,
- 1973.—303 с.
 2. Карпенко Л. М. Про зображення функцій за допомогою многочленів Якобі та обчислення деяких інтегралів типу Коші.— Вісник Київ. ун-ту. Сер. математики та механіки, 1971, № 13, с. 74—79.
 3. Кит Г. С., Кривцун М. Г. Плоские задачи термоупругости для тел с трещинами.— Киев: Наук. думка, 1983.—278 с.

Ин-т прикладных проблем механики и математики АН УССР, Львов

Получено 16.11.83.

УДК 517.63

О. В. Побережный, М. Д. Ткач

ОБ ОДНОМ СПОСОБЕ ЧИСЛЕННОГО ОБРАЩЕНИЯ ПРЕОБРАЗОВАНИЯ ЛАПЛАСА

Проблеме численного обращения преобразования Лапласа посвящено много исследований. Достаточно полный анализ приведен в [3—6]. Как правило, все существующие методы основаны либо на разложении оригинала в ряды по специальным функциям, либо на замене функции-изображения другой функцией. В последнее время получил развитие метод, основанный на аппроксимации экспоненциальной функции в формуле Меллина. Развитию этого метода, оценке точности численного обращения преобразования Лапласа посвящена настоящая

1. Представление оригинала f(t) через его изображение F(s) по Лапласу определяется формулой Меллина

$$f(t) = \frac{1}{2\pi i} \int_{-i\infty}^{+i\infty} F(s) e^{st} ds.$$
 (1)

Чаще всего на практике известно преобразование Лапласа F (s) функции f(t) с некоторой абсциссой абсолютной сходимости γ_0 , не обязательно равной нулю. Запишем формулу (1) в области регулярности функции изображения. С этой целью обозначим $F_*(s) = F(s+\gamma_0)$, тогда (1) примет вид

$$f(t) = e^{\gamma_0 t} f_{\star}(t), \tag{2}$$

$$f_{\star}(t) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} F_{\star}(s) e^{st} ds; \tag{3}$$

 $F_*(s)$ — функция, аналитическая в области s>0. Функцию e^x аппроксимируем выражением

$$e_a^{\mathsf{x}} \approx \frac{1}{2} \left[\varphi_1(\mathsf{x}, a) + \varphi_2(\mathsf{x}, a) \right], \tag{4}$$

где

$$\varphi_1(x, a) = \frac{\sinh a}{\sinh (a - x)}; \quad \varphi_2(x, a) = \frac{\cosh a}{\cosh (a - x)}.$$
 (5)

Запишем выражение (4) с учетом (5) в другом виде:

$$e_a^x \approx e^x - e^{-4a} \left[e^{3x} - e^{5x} \right] - e^{-8a} \left[e^{7x} - e^{9x} \right] - \dots,$$
 (6)

где a — положительное число.

Очевидно следующее равенство

$$e^x = \lim_{a \to \infty} e^x_a$$

откуда следует, что точность аппроксимации зависит от количества членов ряда (6) и величины числа α .

Используя известные представления [2]

$$\frac{1}{\sinh x} = \frac{1}{x} + 2x \sum_{n=1}^{\infty} \frac{(-1)^n}{x^2 + n^2 \pi^2},\tag{7}$$

$$\frac{1}{\operatorname{ch} x} = 4\pi \sum_{n=1}^{\infty} \frac{(-1)^{n+1} (2n+1)}{4x^2 + (2n+1)^2 \pi^2},$$
 (8)

из формулы (3) с учетом (4) — (5) находим

$$f_{\bullet}(t, a) = \frac{1}{2} \left\{ \frac{\sin a}{t} \left[R_0 + 2 \sum_{n=1}^{\infty} R_n \right] + 2 \frac{\cot a}{t} \sum_{n=1}^{\infty} I_n \right\}, \tag{9}$$

где

$$R_n = (-1)^n \operatorname{Re} F_* \left(\frac{a}{t} + i \frac{\pi}{t} n \right); \quad I_n = (-1)^n \operatorname{Im} F \left(\frac{a}{t} + i \frac{\pi}{t} \left(n - \frac{1}{2} \right) \right).$$
 (10)

На практике приходится обрывать до некоторого количества членов бесконечные ряды в (9), которые, как правило, медленно сходятся. Это приводит к большой погрешности. Для знакопеременных рядов ускорение сходимости можно достичь при помощи преобразования Эйлера [1], использование которого приводит к следующему соотношению:

$$\sum_{n=1}^{\infty} A_n = \sum_{n=1}^{k-1} A_n + \sum_{n=0}^{\infty} \frac{1}{2^{n+1}} \Delta^n A_k.$$
 (11)

Второе слагаемое в правой части (11) есть быстросходящийся ряд. Поэтому обрывание членов ряда приводит к малой погрешности. В другом виде его можно записать так:

$$\sum_{n=0}^{m} \frac{\Delta^{n} A_{k}}{2^{n+1}} = \frac{1}{2^{m+1}} \sum_{n=0}^{m} a_{mn} A_{n+k}, \tag{12}$$

где a_{mn} определяется рекуррентными формулами

$$a_{mn} = 1, \quad a_{mn-1} = a_{mn} + \binom{m+1}{n}.$$
 (13)

С учетом (11), (12) формула (9) примет вид

$$f_{\bullet}^{k,m,i,j}(t, a) = \frac{1}{2} \left\{ \frac{\sin a}{t} \left[R_0 + 2 \left(\sum_{n=1}^{k-1} R_n + \frac{1}{2^{m+1}} \sum_{n=0}^{m} a_{mn} R_{n+k} \right) \right] + 2 \frac{\cosh a}{t} \left(\sum_{n=1}^{i-1} I_n + \frac{1}{2^{i+1}} \sum_{n=0}^{i} a_{in} I_{n+i} \right) \right\}.$$
(14)

Параметр a выбираем из соображений достижения необходимой точности вычислений оригинала. Заменяя в соотношении (3) e^{st} выражением e_a^{st} , определяемым формулой (6), находим

$$f_{\star}(t, a) = f_{\star}(t) - e^{-4a} [f_{\star}(3t) - f_{\star}(5t)] - e^{-8a} [f_{\star}(7t) - f_{\star}(9t)] - \dots,$$

откуда получаем

$$|f_{\star}(t, a) - f_{\star}(t)| \le |e^{-4a}[f_{\star}(3t) - f_{\star}(5t)] - e^{-8a}[f_{\star}(7t) - f_{\star}(9t)] + \dots|.$$
 (15)

Если функция $f_*(t)$ ограничена при t>0, т. е. $|f_*(t)| \leqslant C$, тогда

$$|f_{\star}(t, a) - f_{\star}(t)| \le C \varepsilon e^{-4a} (1 + e^{-4a} + \ldots), \quad 0 < \varepsilon < 2.$$
 (16)

Количество членов k, i в рядах (14) и количество членов m, j в поправочных к ним суммам выбирается из условия постоянства с заданной точностью функции $\int_{*}^{k.m.l.j} (t, a)$ при изменении этих величин:

$$f_{\star}(t) = f_{\star}(t, a) = f_{\star}^{k,m,i,j}(t, a) = f_{\star}^{k+l,m+\nu,i+l,j+\nu}(t, a).$$

Неравенство (15) может служить условием для выбора параметра a, когда функция $f_*(t)$ не ограничена при t>0. В этом случае требуется дополнительное условие: все разности, входящие в правую часть неравенства, должны быть ограничены одной постоянной.

По известной функции $f_*(t)$ оригинал f(t) находим по формуле (2). 2. Рассмотрим случай следующих аппроксимаций:

$$e_a^x \approx \varphi_1(x, a) = \frac{e^a}{2 \sin(a - x)}, \tag{17}$$

$$e_a^x \approx \varphi_2(x, a) = \frac{e^a}{2\operatorname{ch}(a-x)}.$$
 (18)

Аналогично, как для аппроксимации (4), соответственно находим

$$f_{\star}^{1}(t, a) = f_{1}^{k,m}(t, a) = \frac{e^{n}}{2t} \left[R_{0} + 2 \left(\sum_{n=1}^{k-1} R_{n} + \frac{1}{2^{m+1}} \sum_{n=0}^{n} a_{mn} R_{n+k} \right) \right],$$
 (19)

$$f_{*}^{2}(t, a) = f_{2}^{i,j}(t, a) = \frac{e^{a}}{t} \left[\sum_{n=1}^{t-1} I_{n} + \frac{1}{2^{i+1}} \sum_{n=0}^{t} a_{in} I_{n+i} \right], \tag{20}$$

причем

$$f_{\star}^{1}(t, a) - f(t) = \frac{1}{2}e^{-2a}f_{\star}(3t) + e^{-4a}f_{\star}(5t) + e^{-6a}f_{\star}(7t) + \dots, \tag{21}$$

$$f_{\star}^{2}(t, a) - f(t) = -\frac{1}{2}e^{-2a}f_{\star}(3t) + e^{-4a}f_{\star}(5t) - e^{-6a}f_{\star}(7t) + \dots$$
 (22)

Если функция $f_*(t)$ ограничена постоянной C на всем полубесконечном интервале t>0, то из (21) и (22) получим

$$\left| f_{\bullet}^{1}(t, a) - f_{\bullet}(t) \right| \le Ce^{-2a} \frac{1}{1 - e^{-2a}},$$
 (23)

$$|f_{\bullet}^{2}(t, a) - f_{\bullet}(t)| \le Ce^{-2a} \frac{1}{1 - e^{-2a}}.$$
 (24)

Как видно из (21), (22), функции $f_{\star}^{1}(t, a)$ и $f_{\star}^{2}(t, a)$ дают двустороннее приближение искомой функции. По их разности можем судить о величине интервала, в котором заключена сама функция.

$$e_a^x \approx \frac{e^a}{4} \left(\frac{1}{\sinh{(a-x)}} + \frac{1}{\cosh{(a-x)}} \right) \tag{25}$$

формула (14) будет иметь вид

$$f_{\star}(t, a) = f_{\star}^{k,m,i,j}(t, a) = \frac{1}{2} [f_{1}^{k,m}(t, a) + f_{2}^{i,j}(t, a)].$$
 (26)

Аппроксимация (25) значительно увеличивает точность вычисления оригинала. Погрешность приближенного вычисления оригинала в этом случае равна

$$|f_{\star}(t, a) - f_{\star}(t)| \le e^{-4a} |f_{\star}(5t) + e^{-4a}f_{\star}(9t) + \dots|.$$
 (27)

Для ограниченной функции ($|f_*(t)| \leqslant C$) неравенство (27) примет вид

$$|f_{\star}(t, \alpha) - f_{\star}(t)| \le Ce^{-4a} |1 + e^{-4a} + \dots|.$$
 (28)

Из рассмотренных аппроксимаций наименьшую погрешность обеспечивает аппроксимация (4).

Случай аппроксимации (18) был рассмотрен в [7].

- 1. Бронштейн И. Н., Семендяев К. А. Справочник по математике.—М.: Наука, 1980.— 974 с.
- Градитейн И. С., Рыжик И. М. Таблицы интегралов, сумм, рядов и произведений.—М.: Физматгиз, 1963.—1100 с.
- Диткин В. А., Прудников А. П. Операционное исчисление.—М.: Высш. шк., 1975.— 407 с.
- Крылов В. И., Скобля Н. С. Методы приближенного преобразования Фурье и обращение преобразования Лапласа.— М.: Наука, 1974.— 223 с.
 Побережный О. В., Пяныло Я. Д. Об оценке погрешности и условиях сходимости
- 5. Побережный О. В., Пяныло Я. Д. Об оценке погрешности и условиях сходимости приближенного обращения преобразования Лапласа с помощью ортогональных многочленов.—Мат. методы и физ.-мех. поля, 1980, вып. 12, с. 91—94.
- точленов.—Мат. методы и физ.-мех. поля, 1980, вып. 12, с. 91—94. 6. *Цирулис Т. Т., Белов М. А.* Асимптотические методы исследования схемы Папулиса для приближенного обращения преобразования Лапласа.—Учен. зап. Латв. ун-та, 1973, № 292, с. 139—154.
- Toshio Hosono. Numerical inversion of Laplase transform and some applications to wave optics.—Radio Sciense, 1981, 16, № 6, p. 1015—1019.

Ин-т прикладных проблем механики и математики АН УССР, Львов

Получено 03.02.84.

УДК 519.62

П. И. Боднарчук, Р. В. Слоневский

ОБОСНОВАНИЕ ДРОБНО-РАЦИОНАЛЬНЫХ ЧИСЛЕННЫХ МЕТОДОВ УСТОЙЧИВОЙ КОРРЕКЦИИ

В работе исследуется актуальная задача обоснования решения систем жестких дифференциальных уравнений. В отличие от известных результатов рассматриваются явные устойчивые реализации неявных дробно-рациональных алгоритмов. Основной результат работы состоит в построении конкретных примеров неявных устойчивых дробно-рациональных отображений дифференцируемых функций, допускающих явную реализацию в виде простых устойчивых итераций [1, 2].

1. Пусть y(x) есть m+1 раз дифференцируемая функция, представленная формулой Обрешкова [2] в виде

$$y_{n+1}^{[m]} = y_n + \sum_{s=1}^{m} (-1)^{s+1} y_{n+1}^{(s)} \frac{h^s}{s!} + 0 (h^{m+1}). \tag{1}$$

Образуем ее неявные дробно-рациональные отображения

$$y_{n+1}^{[m]} = y_n + \frac{A_{n+1}^{[m]}}{B_{n+1}^{[m]}},\tag{2}$$