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ELASTIC SURFACE WAVES INDUCED BY INTERNAL SOURCES

The paper is focused on surface wave field induced by an internal time-harmonic
point source, embedded in an elastic half-space. Using the superposition principle,
first the disturbances caused by embedded source in an unbounded half-space are
analyzed. The problem is then reformulated in terms of the discrepant stresses on
the surface of a homogeneous half-space. The consideration relies on the
hyperbolic-elliptic asymptotic model for surface elastic waves, neglecting the
contribution of the bulk waves. Explicit results for surface wave contribution are
obtained, including the arising frequency-dependent factor.
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Introduction. Surface waves induced by internal sources possess several
important applications, including seismic engineering [8], as well as structural
vibrations caused by underground dynamics, see e.g. [5]. Among the contri-
butions addressing the effect of embedded sources, we mention the recipro-
city based approach [16—18], as well as related analytic treatments of scat-
tering surface waves from defects, see e.g. [1, 6, 15, 20], and also numerical
analysis of cracks located in an elastic media [12, 13]. The conventional for-
mulation of the problem involves consideration of both bulk and surface
waves. However, in the near-surface vicinity only surface wave contribution
can be of interest, motivating a special theory.

Such a theory for Rayleigh and Rayleigh-type waves extracting the
contribution of the studied wave to the overall dynamic response has been
presented recently, see [9, 10] and references therein. The main advantage of
the proposed approach is reduction of the vector formulation in conventional
elasticity to a scalar boundary value problem for the Laplace equation, with
the boundary condition on the surface in the form of a hyperbolic equation
containing prescribed loading in the right-hand side. The main range of
applicability of the described approximate theory to dynamic problems of
elasticity include the far-field zone, as well as the case of near-resonant
excitation of surface waves, e.g. moving load problems, see e.g. [11].

The current paper aims at extension of the methodology in [9] to
Rayleigh wave field induced by an embedded source. First, a brief description
of the hyperbolic-elliptic model for the Rayleigh wave is presented. Then,
radiation of longitudinal waves from the time-harmonic point internal source
in an unbounded media is considered. Then, using the superposition principle,
the problem is reformulated to that for a homogeneous half-space subject to
appropriate boundary conditions on the surface. This allows direct
implementation of the aforementioned asymptotic formulation for surface
waves. The closed form solution in terms of elementary functions is obtained
and illustrated numerically, showing the effect of depth of the source and
frequency.

1. A specialized formulation for the Rayleigh wave field. Here we
describe the hyperbolic-elliptic model for the Rayleigh wave field induced by

surface stresses on a linearly elastic, isotropic half-space 0 < x, < o within
the framework of plane strain assumption for which the displacement u, =0

and both displacements u; and u, are independent of x,, for more detail see

[9]. The original formulation of the boundary value problem involves the
equations of motion
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for the scalar Lamé elastic potentials ¢ and v, subject to prescribed stresses

on the surface x, =0 ie.
5 = P(x,1), Gy = Py(x),1). (2)

In above A denotes a 2D Laplacian in Cartesian coordinates x; and x,,

¢ = /7»-1-_'32;.1 and c, = ‘/% are the longitudinal and transverse wave speeds,

respectively, with A and p standing for the Lamé elastic parameters, and p
being the volume mass density.

The asymptotic hyperbolic-elliptic formulation for the Rayleigh wave
field contains pseudo-static elliptic equations for the potentials

a(P Za(P a\V za\V
+a =0, =0, 3)
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with ¢y denoting the Rayleigh wave speed, being a unique solution of
dogBr —(1+P%)* =0.
The potentials are related

\U(xl,Bsz,t) = S(p*(xl,Bsz,t), (4)

as shown by Chadwick in [3], and earlier by Sobolev [19], where the asterisk
denotes a harmonic conjugate, and

_ 20p
R
1+B%
The boundary condition on the surface is provided by a hyperbolic equation
2
a_(g_gaq) AP, + 97'P), )
ox; ot?

where the asterlsk in the right-hand side may be interpreted in a sense of the
Hilbert transform, with

2
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R 2uBg
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The displacement components are conventionally expressed as
op oy op Oy
“ ox, Ox,’ 2 ox, Ox;’ ®)

which in view of (3) become

a(p(xl,(X,sz,t) 1 + B%{ a(P(xpBsz,t)

t
U (@, %y, 1) = ox, 2 ox,
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Uy (Xy, 29,8) = (7)
Thus, the solution may be expressed in terms of a single plane harmonic
functions, say elastic potential ¢, being a solution of the elliptic equation (3),,
subject to a hyperbolic equation (5) on the boundary x, =0. The second
potential is then given by (4), with the displacement field expressed as (7).
2. Internal point source. Let us now consider the Rayleigh wave field

emerging due to action of an embedded time-harmonic point source. Suppose
that the source is located at the origin, at a given depth a from the surface

x, = —a (see Fig. 1).
| To=—a
e /

source x,

Ly
Fig. 1. Schematic location of an internal source.

Applying the superposition principle, first, consider a problem of
radiation from a time-harmonic point source in a 2D unbounded medium. For
the sake of definiteness, in this paper we focus on the longitudinal potential
¢ . The solution is then given by the Green function

0 = 4%2 HO (kr)e™™ 8)

where is ® frequency, k=w/c, is wave number, r = 1/ xf + xg is polar
radius, and H((Jl) is the Hankel function of the first kind, see e.g. [2]. Note that

in what follows the factor e is omitted for the sake of brevity. Now,

assuming y =0, the appropriate stress components can be obtained in the

3 x,x
s1y = S 2 HY (’“\' ay +x§), 9)

9 2 2
xy + X

2 2
|20 Xy — ) 1 2 2
Soy :Z[——MH§)(IC,/ x; +x2j—

fo(af +a3)

rx? + (A + 2p)a’
-4 % g (k,/xf +x§ﬂ (10)

2
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form

Hence, in view of superposition principle, we can now formulate a non-
homogeneous problem for a homogeneous half-plane (without a source) as

O12 = _312|x2:_a ) Ggy = _322|x2:_a' (11)

Let us introduce the dimensionless scaling
x x oa
& =+, & =2, ky =ka =—"=.
a a c

Then, the loading terms in the right-hand side in conditions (2) take the form

p =W _5_ g (kl‘/@j (12)

2 +1
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In view of the time-harmonic regime, the hyperbolic equation (5)
transforms to

d2
dgz +kio = a’A, (P, + 97'P"), (14)
with Pl* being the Hilbert transform of P, given by (12), P, defined by (13),
and the wave number kg %.
R

We apply a Fourier transform in &, to the 2D counterpart of the
equation (14) and (3), over the interior, having

a*Ag (P, + 97'P)F

F
¢ (§,0,1) = , (15)
' K2 - k2
d*o" 2 2 p
-kaze" =0, (16)
dg; "
where (pF denotes the transformed potential and k is Fourier transform
parameter.

Then, solving the equation (16) subject to the boundary condition (15), we
obtain a decaying solution in the form

a*Ag (P, +97'P)F
2 2
k® kg
The Rayleigh wave contribution can be extracted from the latter by taking
residues at the poles k = kg, which gives

— k
e orlklS

(PF(E.alyEJzyt) = —

2
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0(&;,8y,t) = —1W

where integrals I,(ow) and I,(®) allow table evaluation, see e.g. [6]:
it Tl HO 2 1 _
I, (0) = 3 J J Py (kl £ + ljﬁdﬁcos(kRn)dn =

= o VKR (18)

k_2

and
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Therefore, the potential (17) may now be rewritten with (18) and (19) as

0 (8,8, 1) = iA(a, @)1l onta), (20)
where an amplitude is expressed as
2
a ]2 3.2
Ala,®) = —BRze VER R (21)
Bgk;

It is worth noting that the function (20) is not smooth at &, =0, due to the
presence of |§1|. Moreover, this has been noticed previously for the Rayleigh

pole contribution in the associated plane problem in elasticity, see [4].
On employing the relations (3), and (4) the related transverse potential vy

is obtained as

(&, &y 1) = 580 (&) $A(a, o) m 0 Prt), (22)
The expression (21) readily confirms the expectation that the amplitude
decreases with increase in depth of the source. The dependence of the

. . . 2 . . .
dimensionless expression A(a,®)/a” on the dimensionless wave number k; is

presented in Fig. 2 for several values of the Poisson coefficient (v =0.2,
v=0.3 and v=04). It is clear from this illustration that the amplitude is a
decaying function of the wave number.
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Fig. 2. The dependence of the dimensionless amplitude on dimensionless wave number
k, at different values of the Poisson coefficient v .

Concluding remarks. In this paper, the effect of an embedded point
time-harmonic source on propagation of surface waves in an elastic half-space
has been studied. The superposition principle allowed reduction of the
formulation of the problem to a simpler one for a homogeneous half-space,
subject to discrepant surface stresses. This in turn enabled the application of
the hyperbolic-elliptic formulation for the Rayleigh wave, providing elegant
explicit expressions for the Lamé potentials (20), (22).

The approach could be extended to interfacial waves, using the asymp-
totic theories exposed in [9]. The effects of anisotropy can also be incorpora-
ted, see e.g. [14]. Finally, similar ideas could be developed for transient and
moving sources, as well as wave fields with non-homogeneous initial con-
ditions.
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NPYXHI NOBEPXHEBI XBWUJI, IHOYKOBAHI BHYTPILUHIMU OXKEPEJIAMU

Hocaidiiceno none nogeprHesur Xeuab, 3Y.MO6AeHE BHYMPIWHIM MOUKOBUM Oxlcepesom
2APMOHIUHUL KOAUBAHD Y MNPYHCHOMY nignpocmopi. I3 3acmocysanram NPUHYUNY
cynepno3uyli cnepuly aHaLi3yromscs Ounamiuni 36ypernsa 610 posaaanymozo Odxcepeaa Yy
0e3mencHomy npocmopi. 3 YParysarHAM Ybo2o PO36’A3KYy suxiona 3adaua nepedop.my-
AbOBYEMDBCA Uepe3 3a0aAHHA 8I0N0BIOHUX 2APMOHIUHUL HANPYHCEHD HA NMOBEPILHL NIBNPO-
cmopy. Lle 3abesneuye suKOPUCMAHHA 2iNePOOATYHO-CAINMUYHOT ACUMNMOMUYHOT MO-
Oeai 04 ONUCY MOBEPIHEBUX NPYIHUX X8UAD, Y AKIU HEXMYEMbCL 8HEeCoK 00 emHuUx
x6uUNb. OMPUMAHO ABHT 3AN1eHCHOCTNT OAS BUSHAUEHHS 8NAUBY UACTMOMHO20 Napamempa
HA amnaimyoy 32eHepPosarol NosePXHesol Leul.

Kaouoei caoea: 2inepbosiuno-eainmuuna mo0eas, 8HYympiuki 0xcepeaa, xeuai Peaes.

YNPYITME NOBEPXHOCTHbIE BOJIHbI, UHOYUUPOBAHHbLIE BHYTPEHHMMU UCTOYHUKAMU

Hccnedosano mosae mo8epPILHOCMHLIX 60AH, O00YCAOBACHHOE BHYMPEHHUM MOUEUHbBLM
UCMOYHUKOM 2aPMOHULECKUL KOAeOAHUU 8 ynpyeom noaynpocmpancmee. C npumere-
HUeM MPUHYUNA CYNePNno3uyuUl CHAUANA AHAAUSUPYIOMCS OUHAMUUECKUE B03MYWEHUS
om PACCMOMPEHHO20 UCMOYHUKA 8 OeckoHeuHom mnpocmpancmee. C yuemom 9amozo
peweHus ucxrodras 3adaua mepeopmysupyemcs ueped 3a0aHue COOMBEMCMBYOULUL
2APMOHULECKUX HANMPANCEHUN HA MOBePIHOCMU noaynpocmpancmea. Imo Oaem 603-
MOHCHOCTND UCTIOADBI0BAHUS 2UNEPOOAULECKU-IAMUNMULECKOT acumnmomuieckoli mode-
AU O ONUCAHUSL NOBEPLHOCMHBLY YNPYUX B0AH, 8 KOMOPOU npeHedpezaemcs 6kaa0
00bemMHBLL 80AH. TloayueHbl A6Hble 3a8UCUMOCTNU Oasl onpedeseHus BAUAHUSL 1LACTOM-
HO20 Napamempa Ha AaMNAUMYOY C2eHePUPOBAHHOU NOBEPLHOCTMHOL B0AHDL.

Katoueswvle caosa: 2unepbosuiecku-aaiunmuueckas mooeab, BHYympenHue UCmovHuUKU,
80aHbL Panes.
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