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TORSION OF FIBER-REINFORCED COMPOSITE
WITH CYLINDRICAL INTERFACE CRACK

The mode III axisymmetric cylindrical interface crack problem for circular cy-
linder composite structure is considered. The crack between two different homo-
geneous orthotropic materials in the form of a composite cylinder is subjected to
internal loading in circumferential direction. The displacements and stresses are
written in terms of inverse Fourier transforms with respect to the direction of
cylinder axis. The elasticity boundary-value problem is reduced to the integral
equations, which mext are inverted to two uncoupled infinite systems of simulta-
neous algebraic equations. The main results of the study are the stress intensity
factors, the displacement and stress fields and the crack opening displacements
obtained as functions of composite geometric and material parameters.

Introduction. The fracture and fatigue of composites are very important
from engineering practice point of view and are still being extensively
developed (see S. L. Bai and G. K. Hu [1], for instance). The initiation and
growth of a cylindrically shaped crack along an interface is important for the
failure analysis for composite structures containing the interface cracks of
cylindrical shape. The elasticity problem of interface crack between two
isotropic solids was analyzed first by F. Erdogan and T. Ozbek [2, 5]. Later on,
a cylindrical crack in a homogeneous transversally isotropic solid was analyzed
by H. Kasano et al. [3]. The cylindrical interface crack model between two
anisotropic solids (H. Kasano et al. [4]) has been improved by the author
(B. Rogowski [6]) concerning the solution for the problem of a cylindrical
crack on bimaterial interface in an infinite elastic solid under torsion.

The cylindrical interface crack solution for a two-phase composite
cylinder is obtained in this paper. The single elastic orthotropic solid cylinder
(bar or fiber) is considered. It is bonded through a cylindrical interface
r=a, |z|>c, and debonded on a remaining part of the interface r =a,

| z| < ¢ (cf. Fig. 1). Both constituents of the composite cylinder are modelled as

three-dimensional linear elastic orthotropic bodies. It is assumed that the
length of the cylindrically shaped crack is

small compared to the length of the cylinder =
and the geometry of the medium, and the / 4}
loads applied in circumferential direction are a

axisymmetric. Then, through a proper su-

perposition the problem has been reduced to \ bonded
a perturbation problem, in which the crack — |
surface tractions are the only external loads cylindrical] __--==7===~< | jof@
and the cylinder can be assumed to be infi- erack \ [
nitely long. Needless to say, from the view- X0 9:::\70

point of fracture mechanics, the perturba- .-
tion problem would contain all the relevant S )
information such as the stress intensity fac- e
tors and the crack-opening displacements.

Linear elasticity problem formulation.
Let us consider a cylinder specimen of the /

composite material made of fiber with the \
radius denoted by a and surrounding mat- w
rix with the external radius being equal to

b. The composite components are linear 3

elastic and orthotropic with the radial shear Fig. 1
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moduli taken as GS) for fiber and G(TZ) for matrix while the longitudinal ones

are equal to GS) and Gf), respectively. The composite so defined contains a
cylindrically shaped interface crack of radius a and the length equal to 2c.
The crack faces are loaded by internal tangential traction equal to 1,f(2)

resulting in torsional axisymmetric deformation (cf. Fig. 1).
The following boundary conditions are imposed:

o\(a,2) = 6% (a,2), |z] < oo, (1)
G(Tle)(a,z) =—1,f(2), |z]<ec, (2)

D(a,z) = vP(a,2), |z|>¢ (3)
s\ (b,z) = 0, |z| <o, (4)

where o represents the components of stress, v is the circumferential displa-
cement, while the upper indices refer to the fiber (1) and matrix (2).

In the cylindrical co-ordinates (r,0,z) the torsional displacement v(r,z)
of a problem with axial symmetry satisfies the following equilibrium equation:

v 1ov v v
Gr(ar2+1"51"_r2j+G =0. (5)

The displacement v(r,z) may be expressed in the form

(1)(,, 2) Jp*IJ (p j[A(p)sm(pz) + B(p) cos (pz)] dp, 0<r<a, (6)
5

(r z) = jp’IC ( j[C(p)sm(pz)+D(p)cos(pz)]dp, a<r<b, (7)
P

and yields the stresses

s, [ 1, (2 Jlwsin (p2) + Bp)cos (p2)] ap. ®)
0
G(elz) - GS) J'Jl (Iz—jj [A(p)cos(pz) - B(p)sin(pz)] dp, 0<r<a, 9)
0
o2 =-GgPs, j C, (i’—:j [C(p)sin (pz) + D(p) cos (p2)]dp, (10)
0

) C(p)cos(pz) — D(p)sin(pz)] dp, a<r<b. (11)

Gez = _[Cl (
0
In above Eqgs (6)—(11) we use the following notations:

() () a2 ) moe o
s, Sy Sy S, Sq

J,(+), Y, (-) are the Bessel functions of the first and second kinds of order n
such that

Sa
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n+2k
. (-1)F ( j J_(x)cosmn—J__(x)
I () = Zm Yalx) = lm sinmn '

The orthotropy measures for both of the composite components are

G e
_T =
G’ 27 G@

z z

(
N

The continuity condition (1) leads to the following relation:
{C(p)}z_ ( j{A(p }
D(p) ( j B(p)

1)

where
G(
S G® Sy
and condition (4) is identically satisfied by Eqgs (10), (12).
There remain two unknown functions A(p) and B(p), for which the

Sy

following dual-integral equation is obtained

T()f(z)

G5,

|z]<c, (13)

[7, (%[A(p) sin (pz) + B(p) cos (pz)] dp = —
0 1

: (%) el
J‘pflj (paj 1/ M 2
s )| g (mj c (&j
2 2
S S9

X [A(p) sin (pz) + B(p)cos(pz)]dp =0, |z|>c. (14)

0

The series solution. We introduce the following dimensionless quantities:
r=pc, z = E&c, c = Aya, c=Mb, q=7pc. (15)

In order to solve Eqgs (13), (14), the following series representation is
introduced identically satisfying Eq. (14):

{A(q)}JZ( q j J{&)L Cl(sl(ioj

u
B(q) 1 q C q
2Usihyg s
J
B T, c »,;yn Qn(Q)
= o) n , (16)
S
z ! zan2n+1(q)
n=0

where J (q) is the Bessel function of the first kind of order v.

Substituting Eq. (16) into (13) and by using notation (15) together with
the following series representation:

cos(q€) = Jy(q) + 2. J,,,(q) cos (2ma) ,
m=1
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sin(q§) = 2 i Jym-1(q) sin[(2m —1)a], & =sina,
m=1

f(&) =ay +2 i (a,, cos(2ma) +b,, sin[(2m - 1)a]),

m=1
N T TR ot TN P PSR M PE.
b, i sin[(2m —1)a] ’ - 27

the following uncoupled infinite systems of simultaneous algebraic equations
for the determination of the unknown coefficients x, and y, are obtained as

o @© J
Z J’ 2n+1(Q) Qm(q) =a m = 071,2,...,
0

G m
I
5, te,

=0

3

m?

—

iynJ'JQn(q) 2om— 1(Q) q=b
0

1 1
']2 +HC2

q q .
1

1

n=

where

Using the following relation

Jom (@) _ Jom-1(@) + J5,,.1(q)
q 4m ’

adding the m-th equation to the (m +1)-th equation and dividing by
2(2m +1) or 4m , we obtain

& a,_ +a
A —_m__ "m+l =0.1.2....
Z=:xn mn 2(2m+1) ’ m 07 ) ) b
& b_+b
Zyann ZmTM, m=1,2,...,
n=1
where
2J J
. :J‘ 9n+1(Q) J5141(q) dg, m,m =012

)
Iy G,
0@ Ty (@) d
mn = | 7,7 ~~ %4
(vt
2 2
are the matrices symmetric with respect to m and n.
The displacement on the cylindrical interface r = a is expressed by

[ (iiF)

1) __ "¢ 1 H(l -
(a,8) G, T nzz‘bxn —ga1 H [E])+
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[*0) © © )
1] g7y, (@) (@) cos (qg)dg + 1Y a, [ ¢, (q)cos (q8)dg | +
0

=1 gq,

+ g Yy, ﬁ—U%H gnl _ gz)

9
HA-|&)+u | g7, (@) f(@)sin(g8) dg +
0

0

+uY [ g, (@)sin(gg)dg | (17)
i=1 9

=

2) __ W ¢ _ _
v'¥(a,&) = G, T+a nzz;]xn Sl H1-|¢g|)

qp © )

~ [ 4y (@ fl@)cos(q8)dg - Y, [ VT, (g)cos (g8) dg | +
0 =l g
0 U2n_1 ( 1- éz j 99

F 2 Y, | e H - &)~ [ ¢y, (9) f(a)sin(q8) dg -
n=1 0

= a; [ gV, (q)sin(gg)dq | ¢ (18)
i=1 qQ

By the analogous way the stress field components within the composite

are derived as
[ 2
2n+1 ( 1- & j
—_— — x —_—
IL+p | = [1 _ éz

H1-[g])-

n R2n+1(E->)
_(_1) 2—

9
: H(&|=1)+ [ Jy,.1(q) cos(q8)dg +
0

o0 0

2n+1 9

i=1 q n=1
v 1 sgn© F2 @ e 1) [ 1, @@ sin @@ dg +
Ve -1 0
+>b; [ a7y, (@)sin(gg)dg | ;= o5 (a,8), (19)
i=1 90
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. u,, ( 1- §2j
(1) — _ 0 _ -~ 7
Gez (a’ é) - (1 + u) 8 z xn é 9

H1-|¢g]) -

+u j Tyr(@ £(@)sin (@) dg + 1 Y a j q "y .1 (@)F(Q)sin(q8) dg | +
i=1 q

< (&)
+ >y, | ()= Ton H1-1&|)+n | Jy,(q) f(g)cos(qt)dg +
z e & J )

uY, Jq 'J5,,(@) cos (q&) dg ] (20)
i=1 9%
UZn( 1- gzj
— H(l - -
o (a, &) = (1+!J)82 nO - a-1gp

99 0 0

+ [ (@) (@) sin(gg)dg - Y a, [ 477y, (@)f(q)sin(g8) da | +

0 i=1 q
+Zyn (-1 22 p ey - IJQn(q)f(q)COS(qi)dQ+

y1-¢’

= a; [ @ s, (@cos(gE)dg | ¢, (21)
i=1 90

where T (x), U,(x) are the Chebyshev polynomials of the first and second
kind, respectively, and

R =(lel-E-1] . lgl>1,

J C
“1 _ 71 _ 1 _ 1
f( )_ J2 C2 ( )_1 JZ +u(1 CZ)
q _Jl C17 gq - Jl (:11
— +t U= —-— +
2 2

5 Ne
The a, and b, are coefficients of the asymptotic expansions
f@=Yaq", g@=>bqg', aq=gq,,
i=1 =
where

150



ay = %kg%[g(sl —82)—3—811_+fz},
b= Sk
b, = —%kgﬁ[%(sf +s§)—9_(311_+“;‘2)2 }

In the solution (19) the following notation is used: sgn(§) =1 for & >1,
sgn(§) =—1 for §<-1; H(-) is the Heaviside unit step function equal to
unity for positive argument and zero for negative argument and g, is some
large value of q.

From Eqs (17), (18) it is clear that the crack-opening displacement is
expressed by

U(l)(av E.>) - v(2)(a, E_y) =
_ 5 > X, 2 = Y 2
- |:nz=:0 2n+1T2n+1( 1 éj*'éz nU2n71( 1 E-’j:|’

1)
G’ s,

z

and at & = 0 assumes the value

00

M (a,0) - v (a,0) = - —2° T,
GS) s, E:O 2n +1

We observe in Egs (19)—(21) that the stress field o, has a singularity at
£E—>1+0 and & —>-1-0 of order (|&|- 1Y%, while the stresses csgz),

i =1,2, have singularity at £ >1-0 and & - -1+0 of order(1—|&|)/%. To
evaluate the strength of these stress singularities, the stress intensity factors
are defined as follows:

Ky = lim \/2C(|§|_1)[5fe]\g\>1’ (22)

E>+1+0
Ky, =blig1¢0 20(1—|é|)[<¥§z]\g\<1~ (23)
Starting from Eqs (19)—(21) and (22), (23) we obtain
Ky =- 1+M[ nz;)( n'x, +Z(1) yn} in Q, (24)
K,, = (1+u)sl[ nz::( 1)"xn+nz=:l(—l)"yn}, in Q, (25)
Ky, = (1+“) 2[ Zb( D'z, +Z( " yn}, in  Q,, (26)

where Q, is the fiber domain, Q, is the matrix domain and Q =Q, UQ,.

The K and K~ denote the stress intensity factors for the crack tips
£=1 and & = -1, respectively. It is noted, that o,, undergoes a jump across

the cylindrical interface, since
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$; 04(a, &) — s, pol (a,8) =

2
~, —ixn—aUle aj&(—n“yn—%@ Clel<,
n=0 1—(2,2 n=1 1—(2,2
0, €| >1.

This equation yields
o4 (a,8)  of(a,8)

GO~ go 0 D

z

- T e [_ i -1)"x, + i(—l)”yn}, £—>1-0.
GS) 31 n=0 n=1

For the crack tip £=-1+0 in the second of these equations the sign

(1) (2)
K{) K

(1) (2)
G Gt

z

minus before the first series should be replaced by the sign plus.
The main problem arising in calculation of the particular engineering

examples is the convergence of the coefficients x, and y, together with the
series (24)—(26) giving the stress intensity factors. The matrices appearing in
the algebraic equations must be integrated over the infinite interval
0 <g<wo. Convergence of the integrands as q —»> o and the numerical

integration must be treated. Next, the infinite interval is separated into two
subintervals 0 < g < g, and g, < q <.
As a result, it is obtained that
A=A, +tA

"
mn?’

an = an + an ’
where the first order coefficients are equal to

A = e Jon1(@) J3n41(Q)
mn . ﬁ R g

B _"f T3, (@) T4 (@)

dq,

7, C, dq,
T, TR,
2 2

while the second order coefficients are

mn

(=)™ [ 1-sin(2q) . B
mn (l+p) 9 +2C1(q0)
3. s - s, ( 1-sin(2q,) cos(2q,) . . ﬂ -3
_3a - —2si(2q,) ||+ O ,
M Trn 2q[2) % 0 (% )

N o [1 +sin(2q,)

R e )T

s; — us, ( 1+ sin(2q,) N cos(2q,)

3,
270 1+p 2} 9

+2si (2q, )ﬂ +0(q?),

O(q53) denotes the Landau symbol; si(q,), Ci(q,) are recognized as the sine

and cosine integrals.
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The integrals A;nn and B;,m may be easily integrated numerically, e.g.

utilizing Simpson rule or wusing symbolic operations built-up in some
mathematical computational packages, since the integrands are bounded and

well-behaved. It is observed that the coefficients A:nn and B:nn represent
small contributions to the total integrals A, and B, , for a prescribed large

value of gq, 6 therefore an appropriate choice of g, will give a prescribed

accuracy of the solution.
Note that the coefficients x, and y, are associated with even and odd

parts of the function f(z), respectively, namely with

f(2) = f(z) +2f(— 2) f(2) —2f(— 2

If is f(z) an even function, then y, =0, if f(z) is an odd function, then

and f(2) =

x, =0.
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KPYYEHHA APMOBAHOIO BOJTOKHOM KOMIMO3UTA
3 UMnNIHAPNYHOKO MDK®A3HOIKO TPILLMHOLIO

Pozzasnymo ocecumempuuny 3a0auy KPYyueHHs 04 KPY208020 8 NAAHT YUNTHOPA 3 KOM-
NO3UMHO20 Mmamepiary, nocaadbrerozo mixcgaznoro mpiwunoro. Tpiwuna Ha medxni Po3-
diny 0gox opmomponHux mamepianie niddana 017 BHYMPIUWHIX O0MUUHUX 3YCULL
830082c inmepdgbeticy. IlepemiujeHna T HANDPYHICEHHSA 3ANUCAHO Yepe3 ODepHeHi mepemaso-
penns Dyp’e 8i10HOCHO 0cb080i koopdunamu. Kpatiosa 3adaua npyixcHocmi zgedena 00
THMEZPANBHUL PIBHAHD, 3 AKUX OMPUMAHO 081 HE3ANeHCHT HEeCKIHUeHHT cucmemu aazed-
purHuUX PiBHAHL. Busnaueno xoediyienmu iHmeHCUBHOCMI HANDPYIHCeHD, nepemiuenns i
HANPYHCEHHA, G MAKONHC POIKPUMMSA MPIUWUHU 3A1eAHCHO 810 2eomemPuUnHUL i HiauvHux
napamempie mamepiary KomMno3umy.

KPYYEHWUE APMWPOBAHHOIO BOJIOKHOM KOMMO3WUTA
C UWNNHOPUYECKOUN MEX®A3HOU TPELLIMHOU

Paccmompena ocecummempuunas 3adaua Kpyuenus OAs KPY208020 8 MAAHE YUAUHODA
U3 KOMNOZUMHO20 MAMEPUALL, O0CAabAeHH020 Mmedchadnoti mpewyurou. TpewuHna Ha
eparuye pasdesa 08Yxr OPMOMPONHHLIL MAMEPUANL08 NOO8epIHceHa 0eticmeuto sHYmMpeH-
HUX KACAMEeAbHBLL Ycuauti 80oab unmepdghetica. IlepemeweHus U HANPAHEHUS 3ANUCAHDBL
yepe3 ob6pamusle npeodpaszosarus Dypve omrocumenvHo ocesoli koopounamuwi. Kpaesas
3adaua ynpyzocmu ceedena K UHMEZPAAbHBLM YPABHEHUAM, U3 KOMOPHLL NOAYUeHbl 08e
He3asucumbvle 0eCKOHeuHble cucmemvl anzedpauteckux ypasHerul. Onpedesenvt K0IP-
Puyuenmsv. UHMEHCUBHOCTNU HANPAHCEHUL, NepemeweHUus U HANPAHceHUL, 4 MaKHce
packpvimue mpewunsl 8 3a8UCUMOCTNY OM 2e0MeMPUYECKUL U PUUYECKUL Napamem-
P08 MaMePUALd KOMNO3UMA.
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