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MULTIPOINT FORMULA BASED ON ASSOCIATED CONTINUED FRACTION 
 

The m -point formula for a function approximation has been constructed by using 
a function expansion into an associated continued function of special type at m , 

2m ≥ , points and properties of functions being the unit factorization. The pro-
perties of a such associated continued fraction have been also investigated. 

 
 1. Preliminary investigation. It is known that generalizations of the clas-
sic Taylor formula have some advantages in comparison with the Taylor for-
mula. O. M. Lytvyn and V. L. Rvachov [3] proposed to construct an approxi-
mate Taylor-like polynom, using the Taylor expansion at several points and 
connected them with special real functions being the unit factorization, i. e. 
the polynom of the form 
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for a choice of the functions ( ).mh x  For instance, if in (1) 2,k =  
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It was interesting to construct multipoint approximate formula, using rational 
polynomials, in particular, the Thiele polynomial [4], closely connected with 
the Taylor expansion. In [1] the formula like (1) was constructed 
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 are the n -th approximants of the Thiele expansions at the 

points mx  respectively, and used for the function approximation. 
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 2. Investigation purpose. To construct the multipoint Thile formula the 
corresponding continued fraction to the Taylor expansion was used [4]. It is 
naturally to continue previous investigations, using the different type of 
continued fraction expansions. Since an associated continued fraction is one of 
the important type of continued fractions we will consider the formula (2) 
with the n -th approximants of the associated continued fractions of the 
special type. It is known that a continued fraction of the form 
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where 0,  n nk k≠  and ,  1,2,n n =  , are complex constants, z ∈  , is called 

an associated continued fraction and it was also shown that the even part of a 
regular C -fraction is an associated continued fraction [4, 5]. We will consider 
a continued fraction of the following form: 
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where 2 2 2 10,  ,  ,  0,1,k k k k+ω ≠ ω ω =  , are complex constants, obtained from 

the interpolating problem [2] in the one-dimensional case, investigate its 
properties and apply it for the construction of the multipoint formula. 

3. Main results. At first we show that the fraction (4) is the associated 
continued fraction with the order of correspondence of its n -th approximant 
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 equals 2 2n +  (the order of correspondence of the n -th approximant of 

the continued fraction (3) is equal to 2 1n +  [5]). 
 By equivalent transformations the continued fraction (4) can be reduced 
to the following form: 
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and using the difference equations [(2.1.6), [5]], we have that the n -th 
numerator ( )nP z  and denominator ( )nQ z  of (4) are polynomials in 0z z−  of 

the form 
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has a positive radius of convergence. 
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Theorem 1. 1°. A continued fraction (4) corresponds to a uniquely deter-
mined formal power series 
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2°. If two continued fractions of the same form (4) correspond to the same 
formal power series (5), then their corresponding coefficients coincide. 

P r o o f. By using the determinant formula (2.1.9) from [5] we obtain 
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and hence the first part of the theorem follows from Theorem 5.1 [5]. The 
second part of the theorem is proved by induction on n . ◊ 

Theorem 2. For a given formal power series (5) there exists an unique 
associated continued fraction of the form 
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if 0,  1,2,n nϕ ≠ =  . 
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 The p r o o f  of this theorem is similar to the proof of the theorem 7.14 
[5] and therefore is omitted. ◊ 

Remark 1. One can note that putting in (4) 
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where 01,2, ,  1n k= = , after elementary transformations, the fraction (6) is 

obtained. 

 Let us assume that a function ( )f z  given in the bounded domain G , 

G ⊂  , expands into the associated continued fraction (4) at the point 0z z= , 

0z G∈  and find the remainder term of the function approximation by the 

n− th approximant of the continued fraction (4). 

Theorem 3. Let a function ( )f z  given in the bounded domain G ⊂  , 

being 2 2n +  continuously differentiable on ,G  be approximated by the conti-
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P r o o f. We expand the function ( ) ( ) ( ) ( )n nz f z Q z P zψ = − , equals zero at 

0z z= , into the Taylor series at 0z z= : 

 
2 1

0 0
2 2

0

( ) ( )
( ) ( )

!

k kn

nk
k

d z z z
z R z

kdz

+

+
=

ψ −
ψ = +∑ , 

where 2 2( )nR z+  is the remainder term of the Taylor formula. Taking into 

account the fraction (4) is the associated fraction for the Taylor series, we 
have at once  
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we obtain ( ) 0,  0 1′ϕ θ = < θ < . It means that 

 
2 22 2

0
2 2 0 02 2

( )
( ) ( )

(2 2) !

nn

n n

z zdR z z z z
ndz

++

+ +

−
= ψ + − θ

+
( ) , 

 
2 2 2 2

0 0 0 0 0 02 2 2 2
( ) ( ) ( )

n n

nn n
d dz z z f z z z Q z z z
dz dz

+ +

+ +ψ + − θ = + − θ + − θ( ) ( ) ( )[ ], 



44 

where 0 1,< θ <  taking into account the degree of ( ),nP z  and 2 2 ( , )nR f z+ =  
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+= . From this, the statement of the theorem follows. ◊ 

In the next results we will consider the continued fraction (4) with real 
coefficients and use it for the approximation of a real function. 

Theorem 4. Let ( )f x  given on 0,1[ ] be expanded into the continued frac-

tion (4) at the point 0 0,  (0,1)x x x= ∈ , and all partial denominators of (4) are 
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P r o o f. Because of all partial numerators of (4) are positive and taking 
into account the recurrence relations for ( ),nQ x  we have by induction, 
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where nM  is defined by (10). 

Now we use the associated continued fraction (4) and its properties for 
the function approximation by the formula looks like the formula (2). Let a 
function ( )f x  given on ,a b[ ]  be a 2 2n +  continuously differentiate function 

at least on ( , )a b  and represented by the formula for all ( , )x a b∈  
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Functions ( ) ,  1,2ih x C i∞∈ = , are non-negative and can be used in the form 
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Taking into account (7), (10), for the reminder form of (11) 1 2( , , )nr x x x =  

1 1 2 2( ) ( , ) ( ) ( , )n nh x r x x h x r x x= +  we can write the inequality for all ( , )x a b∈  

 
2 2 2 2

1 2
1 2 1 2

1 2

( ) ( )
( , , ) ( ) ( )

(2 2)! ( , ) ( , )

n n
n

n
n n

M x x x x
r x x x h x h x

n Q x x Q x x

+ +− − 
≤ + +  

, 

where 1 2, ( , ),x x a b∈  and 

 
1

1

(2 2)
1

( , )
max max ( ) ( , ) n

n n xa b
M f x Q x x +

=ξξ ∈

= 


[ ] , 

 
2

2

(2 2)
2

( , )
max ( ) ( , ) n

n xa b
f x Q x x +

=ξξ ∈





[ ] . (13) 

Theorem 5. Let the function ( )f x  given on , ,  1a b b a− =[ ] , being 2 2n +  

continuously differentiable at least on ( , )a b , expands into the associated con-

tinued fraction (4) at the points 1x x=  and 2 1 2,   , ( , )x x x x a b= ∈ . 
Then, 

(i) the formula (11) is valid on ( , )a b ; 

(ii) if all partial denominators in the both terms of (11) are positive and 
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P r o o f. For the sake of simplicity we put 0,a =  1b =  and using the 
theorem 4 we receive that  
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Theorem 6. Let the function ( )f x  given on , ,  1,a b b a− =[ ]  being 2 2n +  

continuously differentiable at least on ( , )a b , expands into the associated con-
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Then, 

(i)  the formula (11) is valid on ( , )a b ; 

(ii)  if all partial denominators in the both terms of (11) satisfy the following 
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P r o o f. We can assume that all partial denominators are positive, if not 
multiplying the numerator and denominator by ( 1)− , we change the denomi-
nator sign. If all partial numerators are positive then using recurrent relations 

for 1 2( , ),   ( , )n nQ x x Q x x  we obtain 2
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are negative, then (4) will be transformed to the continued fraction with po-
sitive partial numerators, excluding, may be the first partial numerator as it 
was done in Lemma 3.1 [4]. It is not difficult to show that in this case 
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An m -point formula can be constructed by analogy with the two-point 
formula. One denotes by ,  1,2, ,ix i m=  , a sequence of values of x  on the 

interval ( , ),  1a b b a− = , such that 1 2 ma x x x b< < < < < . The length of 
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− . Let a function ( )f x  given on ,a b[ ] , 
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1b a− = , be a 2 2n +  continuously differentiable function at least on ( , )a b , 
then an m -point formula, based on an associated continued fraction (4), is the 
following formula for all ( , )x a b∈ : 
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Reminders ( , )n ir x x  for this formula are investigated in similar way as for 

the formula (11).  

4. Conclusion. Proposed formulae give possibility to approximate func-
tions by rational polynomials. However, only the form of remainders of consi-
dered formulae have been proposed and it will be interesting to obtain the 
error estimations for some class of functions and investigate the possibilities of 
different continued fractions be applied to a such problem in future. 
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БАГАТОТОЧКОВА ФОРМУЛА, ЯКА БАЗУЄТЬСЯ  
НА ПРИЄДНАНОМУ НЕПЕРЕРВНОМУ ДРОБІ 
 
Äëÿ íàáëèæåííÿ ôóíêö³¿ îäí³º¿ çì³ííî¿ ïîáóäîâàíî m -òî÷êîâó ôîðìóëó, â ÿê³é 
âèêîðèñòàíî ðîçâèíåííÿ ôóíêö³¿ ó ïðèºäíàíèé íåïåðåðâíèé äð³á ñïåö³àëüíîãî âè-
ãëÿäó â ,  2m m ≥ , òî÷êàõ ³ âëàñòèâîñò³ ôóíêö³é, ÿê³ º ðîçâèíåííÿì îäèíèö³. 
Äîñë³äæåíî òàêîæ âëàñòèâîñò³ òàêîãî äðîáó. 
 
МНОГОТОЧЕЧНАЯ ФОРМУЛА, ОСНОВАННАЯ  
НА ПРИСОЕДИНЕННОЙ НЕПРЕРЫВНОЙ ДРОБИ 
 
Äëÿ ïðèáëèæåíèÿ ôóíêöèè îäíîé ïåðåìåííîé ïîñòðîåíà m -òî÷å÷íàÿ ôîðìóëà, 
èñïîëüçóþùàÿ ðàçëîæåíèå ôóíêöèè â ïðèñîåäèíåííóþ íåïðåðûâíóþ äðîáü ñïå-
öèàëüíîãî âèäà â ,  2m m ≥ , òî÷êàõ è ñâîéñòâà ôóíêöèé, ÿâëÿþùèõñÿ ðàçëîæå-
íèåì åäèíèöû. Èññëåäóþòñÿ òàêæå ñâîéñòâà òàêîé äðîáè. 
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