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ON SOME CLASS OF FACTORIZED OPERATOR DYNAMICAL SYSTEMS
AND THEIR INTEGRABILITY

There is considered a problem of describing the corresponding factorized operator
equations subject to a general factorized pseudo-differential symbol satisfying the
standard Lax-type equation. The associated Poissonian structures are found by
means of a special Backlund-type transform.

1. General setting. Consider a usual Tr-metrizable associative operator
algebra g endowed with the standard commutator Lie structure and

admitting a decomposition into two Lie subalgebras g, ® g_ = g. Then due to
the standard [4] Lie-algebraic theory of dynamical systems, one can construct
on g a so called Lax flow as follows:

4L vy, 0,01, )

here (e g",yeI(g") is a Casimir function on g", that is [Vy({),/] =0 with

the associated gradient decomposition Vy(f):= Vy, (/) ® Vy_({) for all (e g"

and t € R being an evolutions parameter.
The flow (1) is called Lax-type integrable since all Casimir functions on

g" generate invariants of (1) commuting to each other due to the well known
Adler — Kostant — Symes theorem. In general a Casimir function y e I(g")

can be constructed as an analytical functional on g in the following form:
y=Try[{], (2)
where, by definition, Tr(ab):=(a,b) is the mentioned above ad-invariant

non-degenerate symmetric Tr-metrics on g =g".
The expression (1) defines evidently the Hamiltonian vector field d/dt on

g’ with respect to the usual Lie — Poisson bracket on g" subject to the
modified [3, 4] Lie-bracket [-,-]g =[P, (-),P.(.)]-[P.(-),P.(-)] on g, where
P,g:= g, are the corresponding projectors. Take now another element Ve g
and construct the flow d/dt on g":

& Vi1, (3)
where we assumed that ¥y =y € I(g"). So we have built two integrable flows
(1) and (3) subject to the same Casimir function y e I(g"), generating the

same vector field d/dt on g*. Now we pose the following problem: find the

relationships between elements ¢ and Ve g evolving with respect to flows
(1) and (3) and describe their dual Hamiltonian properties. This problem will
be treated in detail below.

2. Factorization properties. Due to the Lax form of equations (1) and (3)
there exist one-parametric subgroups a(t) and a(t) eexpg,,t € R, such that

for any ¢(0) and 2(0) eg"
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0(t) = Ad2 ) 0(0) = ' (1)E(0)at) ,

0(t) = Adj,0(0) = @ (£)0(0)a(t), (4)
where evidently
da(t) da(t) . -
T =~ atVr.(0), o =~ a0vr.(D) (5)

for all t € R. From (4) one gets easily that for all t e R
a(t)l(t)a” (t) = €(0), a)ea () = (). (6)

Assume now that there exists an element B(0) e expg, such that the
expression

Ady,0(0) = £(0)

holds, or equivalently

B7(0)4(0)B(0) = (0). (7)
Whence the equalities (6) give rise to the following relationships:

¢ =BYB, (8)
where, by definition, B € exp g, is given as

B := B(t) = a”' (t)B(0)a(t) 9)
forall t e R.

Let us now assume that an element A € exp g, being defined as
A=/(B. (10)

This is equivalent, evidently, to the statement that the expression

A(0) = £(0)B(0) € exp g, holds for the element ¢(0) g". As a result of the
representations (10) and (9) one finds easily the following evolution equations
on A,B eexpg, written first in [2]:

dB

Cé—‘? = Vy,()A - AVy, (D), G =Vr.(OB - BVy, () (11)
for all t € R. Thereby we have stated the following factorizing representation
theorem.

Theorem 1. Let an element ( € g is factorization ¢ = AB™' with A,Be
€ exp g, . Then the Lax-type flows (1) and (3) are factorized too into two flows
(11) with the element { = B'A=AYA e g".

A proof isneeded only for the last representation (=B'A=A"YA e
€ g". Since owing to (8) 0= B_IEB, from (10) one gets right away that 0=
=B'A=IB'A=AYB -B'A=A""A e g*, that ends the proof. ¢

Thus, we constructed two factorized equations (11) subject to the
representations ¢ = AB™, !{=BlAe g" with elements A,B e exp g, and the
common invariant Casimir function y(¢) = y(Z) e I(g"). Below we proceed to
analyzing Hamiltonian properties of obtained above flows (11).

3. Hamiltonian analysis. Let us consider flows (1) and (2) as being
Hamiltonian on g* @ g" subject to the following tonsorial doubled standard

Poissonian structure:
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( vy (£) J _)([Vv+({),~]—[vv({),€]+ ]
V) (VY (D), 0]=[Vy(), L], )

where ye D(g") is any smooth functional on g" @ g". Concerning the

(12)

transformation
®(A,B;l, )£0 <& HAB! =0, T4B'A=0, (13)

which can be evidently considered as a usual Backlund transformation, we
can construct a new Poisson structure n: T*((G+ xG,) > T(G, xG,) on the

subgroup space G, x G, with respect to the phase variables (4,B) e G, xG, .
Thereby one finds [3, 4] the corresponding to (12) and (13) transformed
Poissonian structure n: T (G, xG,) > T(G, xG,) at (A,B) e G, xG, , where

n=TT",
’ ! -1
T=0,, (®ap) (14)

Making use of the expressions

-1 -1
, [ =(-)B {(-)B ' (10
CI)““'B)_(—Brl(.) B-l(.)zJ’ CDWV(O lj’

@, )" _[—(1—@@21)1(-)3 (1—6@21)168(-)21j
o -(1- @ H')B a- @ HTBC)
e ~-B()1-0"®e)! —-B()(1-0r®0)?
(q)(A,B)) ' =[~_1( . - ) | (X - _1) j, (15)
Y()BU(1- ke ) ()B1- @ )le

jointly with the 9 -structure (12), one gets from (14) that
—1—®UH N H)B  1-¢®e Yy teB( )t
e [ ~(1- @ H(B - @ HlB) j
ml =6 ((-® ) ()BA-(® ) B(L)), ] -
~[r B -t @0 e+ [((BA-t @ 0™, 7],
' == [(BOA- T @™, f+[(BCa- 1T @00,
2t =[(YHBLA -1t @), ] - [0 ()BLL -1 @) 1] -
~[e,a-e@ ) )BA-t@ ()],
n’ =[((BA-1 @), o -[()Ba-1" e 0, (16)
at {=AB and =B 'Aeg".
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Let now take any functional y e I(g") and construct the functional

y = Vgt € D(G, xG, ). Then one constructs due to the Poissonian bracket

(16) the following Hamiltonian flow on G, x G, :
d ~
2-(AB)" =nVi(4,B), (17)

where (A,B) e G, xG, and t € R is an evolution parameter. The flow (17) is
characterized by the following

Theorem 2. The Hamiltonian vector field d/dt on G, xG, , defined by
(17), and the vector field d/dt, defined by (11), coincide on G, xG, .

Proof of this theorem consists in simple but a bit tedious calculation of
the expression (17). ¢

The result above solves completely a problem posed in [2] about Hamilto-
nian formulation of the factorized equations (11).
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MPO OESKI KITACU ®AKTOPU3OBAHUX AUHAMIYHUX
CUCTEM I IX IHTEFPOBHICTb

Poszeasidaemovbes 3a0aua onucy Phaxmopu3osaHuxr onepamoprHux pisHAHs, 810nosidHuxr 0o
3a2aAbH020  PAKMOPU308aH020 nNcesdoduPeperyianbHo20 CUMBOAY, WO 3040080AbHAE
cmandapmue pigHanua muny Jlaxca. Acoyitiosani cmpyxmypu Ilyaccona susnavero 3a
donomozoro cneyianbrhozo nepemeoperus muny Bexaynoa.

O HEKOTOPbIX KNACCAX ®AKTOPU3OBAHHbLIX ANHAMUYECKUX CUCTEM
N UX UHTETPUPYEMOCTU

Paccmampusaemces 3adaua onucanus Gaxmopusosartblr ONepamopHuLr YypasHerutl, co-
omgemcmeayrowuxr oduemy Paxmopusosannomy nces0o0uPPeperyuarbHoMy CUMBOLY,
yOosaemeopaowemy cmandapmuomy ypasHeruto muna Jakxca. Accoyuuposarnvie
cmpyxmypse ITyaccona onpedesensvl C MOMOWBIO CNEYUAABHOZO NPe0OPAZ0BAHUL MUNA
Bexaynoa.
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