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ON SOME CLASS OF FACTORIZED OPERATOR DYNAMICAL SYSTEMS 
AND THEIR INTEGRABILITY 
 

There is considered a problem of describing the corresponding factorized operator 
equations subject to a general factorized pseudo-differential symbol satisfying the 
standard Lax-type equation. The associated Poissonian structures are found by 
means of a special Backlund-type transform. 

 
1. General setting. Consider a usual Tr -metrizable associative operator 

algebra g  endowed with the standard commutator Lie structure and 

admitting a decomposition into two Lie subalgebras + −⊕ =g g g . Then due to 

the standard [4] Lie-algebraic theory of dynamical systems, one can construct 

on ∗g  a so called Lax flow as follows:  

 ( ),d
dt += ∇γ[ ]   , (1) 

here , ( )I∗ ∗∈ γ ∈g g  is a Casimir function on ∗g , that is ( ), 0∇γ =[ ]   with 

the associated gradient decomposition ( ) : ( ) ( )+ −∇γ = ∇γ ⊕ ∇γ    for all ∗∈ g  

and t ∈   being an evolutions parameter. 
The flow (1) is called Lax-type integrable since all Casimir functions on 

∗g  generate invariants of (1) commuting to each other due to the well known 

Adler – Kostant – Symes theorem. In general a Casimir function ( )I ∗γ ∈ g  

can be constructed as an analytical functional on ∗g  in the following form: 

 : Trγ = γ [ ] , (2) 

where, by definition, Tr ( ) : ( , )ab a b=  is the mentioned above ad-invariant 

non-degenerate symmetric Tr -metrics on ∗g g . 

The expression (1) defines evidently the Hamiltonian vector field /d dt  on 
∗g  with respect to the usual Lie – Poisson bracket on ∗g  subject to the 

modified [3, 4] Lie-bracket , : ( ), ( . ) ( ), ( )P P P P+ + − −⋅ ⋅ = ⋅ − ⋅ ⋅[ ] [ ] [ ]  on g , where 

:P± ±=g g  are the corresponding projectors. Take now another element ∗∈ g  

and construct the flow /d dt  on ∗g : 

 ( ),
d
dt += ∇γ
  [ ]


  , (3) 

where we assumed that ( )I ∗γ = γ ∈ g . So we have built two integrable flows 

(1) and (3) subject to the same Casimir function ( )I ∗γ ∈ g , generating the 

same vector field /d dt  on ∗g . Now we pose the following problem: find the 

relationships between elements   and ∗∈ g  evolving with respect to flows 
(1) and (3) and describe their dual Hamiltonian properties. This problem will 
be treated in detail below. 

2. Factorization properties. Due to the Lax form of equations (1) and (3) 
there exist one-parametric subgroups ( )a t  and ( ) exp ,a t t+∈ ∈ g  , such that 

for any (0)  and (0) ∗∈ g  
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 1
( )( ) (0) ( ) (0) ( )a tt Ad a t a t∗ −= =   , 

 1
( )( ) (0) ( ) (0) ( )a tt Ad a t a t∗ −= =

     , (4) 

where evidently 

 
( ) ( )

( ) ( ),           ( ) ( )
da t da t

a t a t
dt dt+ += − ∇γ = − ∇γ

    (5) 

for all t ∈  . From (4) one gets easily that for all t ∈    

 1 1( ) ( ) ( ) (0),             ( ) ( ) ( ) (0)a t t a t a t t a t− −= =      . (6) 

Assume now that there exists an element (0) expB +∈ g  such that the 
expression 

 (0) (0) (0)BAd∗ =    

holds, or equivalently  

 1(0) (0) (0) (0)B B− =   . (7) 

Whence the equalities (6) give rise to the following relationships:  

 1B B−=  , (8) 

where, by definition, expB +∈ g  is given as  

 1: ( ) ( ) (0) ( )B B t a t B a t−= =   (9) 

for all t ∈  . 
Let us now assume that an element expA +∈ g  being defined as  

 :A B=  . (10) 
This is equivalent, evidently, to the statement that the expression 

(0) (0) (0) expA B += ∈ g  holds for the element (0) ∗∈ g . As a result of the 
representations (10) and (9) one finds easily the following evolution equations 
on , expA B +∈ g  written first in [2]:  

 ( ) ( ),            ( ) ( )
dA dBA A B B
dt dt+ + + += ∇γ − ∇γ = ∇γ − ∇γ      (11) 

for all t ∈  . Thereby we have stated the following factorizing representation 
theorem.  

Theorem 1. Let an element ∗∈ g  is factorization 1AB−=  with ,A B ∈  

exp +∈ g . Then the Lax-type flows (1) and (3) are factorized too into two flows 

(11) with the element 1 1B A A A− − ∗= = ∈  g . 

A  p r o o f  is needed only for the last representation 1 1B A A A− −= = ∈   
∗∈ g . Since owing to (8) 1B B−=  , from (10) one gets right away that =  

1 1 1 1 1B A IB A A B B A A A− − − − − ∗= = ≡ ⋅ = ∈  g , that ends the proof. ◊ 
Thus, we constructed two factorized equations (11) subject to the 

representations 1 1,AB B A− − ∗= = ∈  g  with elements , expA B +∈ g  and the 

common invariant Casimir function ( ) ( ) ( )I ∗γ = γ ∈  g . Below we proceed to 
analyzing Hamiltonian properties of obtained above flows (11). 

3. Hamiltonian analysis. Let us consider flows (1) and (2) as being 

Hamiltonian on ∗ ∗⊕g g  subject to the following tonsorial doubled standard 
Poissonian structure:  
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( ), ( ),( )

:  
( ), ( ),( )

+ +
∗

+ +

∇γ − ∇γ∇γ   ϑ →   ∇γ − ∇γ∇γ      
[ ] [ ]

[ ] [ ]

   
   

, (12) 

where ( )D ∗γ ∈ g  is any smooth functional on ∗ ∗⊕g g . Concerning the 
transformation 

 1 1( , ; , ) 0  0,         0A B AB B A− −Φ = ⇔ − = − =     , (13) 

which can be evidently considered as a usual Backlund transformation, we 

can construct a new Poisson structure : ( ) ( )T T∗
+ + + +η × → ×     on the 

subgroup space + +×   with respect to the phase variables ( , )A B + +∈ ×  . 
Thereby one finds [3, 4] the corresponding to (12) and (13) transformed 

Poissonian structure : ( ) ( )T T∗
+ + + +η × → ×     at ( , )A B + +∈ ×  , where  

 T T∗η = ϑ , 

 1
( , )( , ) A BT −′ ′= Φ Φ  ( ) . (14) 

Making use of the expressions  

 
1

( , ) ( , )1 1

1 1 0( ) ( ) ,        
0 1( ) ( )

A B
B B

B B

−

− −

− − ⋅ ⋅  ′ ′Φ = Φ =      − ⋅ ⋅
  




, 

 
1 1 1 1 1

1
( , ) 1 1 1 1

(1 ) ( ) (1 ) ( )

(1 ) ( ) (1 ) ( )
A B

B B

B B

− − − − −
−

− − − −

− − ⊗ ⋅ − ⊗ ⋅ ′Φ =  
− − ⊗ ⋅ − ⊗ ⋅ 

  

 ( )
     

    
, 

 
1 1 1 1

1
( , ) 1 1 1 1 1

( )(1 ) ( )(1 )

( ) (1 ) ( ) (1 )
A B

B B

B B

− − − −
−∗

− − − − −

− ⋅ − ⊗ − ⋅ − ⊗ ′Φ =  
⋅ − ⊗ ⋅ − ⊗ 

 

  ( )
  

  

   

       
, (15) 

jointly with the ϑ -structure (12), one gets from (14) that  

 
11 12
2 2

1 2 2 21 22
2 2

,             
 η η

η = η ⋅ η η =   η η 
, 

 
1 1 1 1 1

1 1 1 1 1

(1 ) ( ) (1 ) ( )

(1 ) ( ) (1 ) ( )

B B

B B

− − − − −

− − − −

− − ⊗ ⋅ − ⊗ ⋅ 
η =  

− − ⊗ ⋅ − ⊗ ⋅ 

  

 
     

    
, 

 11 1 1 1 1
2 , (1 ) ( ) (1 ) ( . )B B− − − −

+η = − ⊗ ⋅ − ⊗ −     ( )[ ]  

 1 1 1 1 1( ) (1 ) , ( ) (1 ) ,B B− − − − −
+− ⋅ − ⊗ + ⋅ − ⊗           ( )[ ] [ ], 

 12 1 1 1 1
2 ( )(1 ) , ( )(1 ) ,B B− − − −

+ +η = − ⋅ − ⊗ + ⋅ − ⊗      ( ) ( )[ ] [ ]  

 21 1 1 1 1 1 1
2 ( ) (1 ) , ( ) (1 ) ,B B− − − − − −

+η = ⋅ − ⊗ − ⋅ − ⊗ −              ( )[ ] [ ]  

 1 1 1 1, (1 ) ( ) (1 ) ( )B− − − −
+− − ⊗ ⋅ − ⊗ ⋅     [ ] , 

 22 1 1 1 1
2 ( ) (1 ) , ( ) (1 ) ,B B− − − −

+ +η = ⋅ − ⊗ − ⋅ − ⊗        ( )[ ] [ ]  (16) 

at 1AB−=  and 1B A− ∗= ∈ g . 
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Let now take any functional ( )I ∗γ ∈ g  and construct the functional 

1: ( )
AB

D− + +=
γ = γ ∈ ×  


. Then one constructs due to the Poissonian bracket 

(16) the following Hamiltonian flow on + +×  :  

 ( , ) ( , )d A B A B
d

= η∇γ
τ

 , (17) 

where ( , )A B + +∈ ×   and τ ∈   is an evolution parameter. The flow (17) is 
characterized by the following  

Theorem 2. The Hamiltonian vector field /d dτ  on + +×  , defined by 

(17), and the vector field /d dt , defined by (11), coincide on + +×  . 

P r î o f  of this theorem consists in simple but a bit tedious calculation of 
the expression (17). ◊ 

The result above solves completely a problem posed in [2] about Hamilto-
nian formulation of the factorized equations (11). 
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ПРО ДЕЯКІ КЛАСИ ФАКТОРИЗОВАНИХ ДИНАМІЧНИХ  
СИСТЕМ І ЇХ ІНТЕГРОВНІСТЬ 
 
Ðîçãëÿäàºòüñÿ çàäà÷à îïèñó ôàêòîðèçîâàíèõ îïåðàòîðíèõ ð³âíÿíü, â³äïîâ³äíèõ äî 
çàãàëüíîãî ôàêòîðèçîâàíîãî ïñåâäîäèôåðåíö³àëüíîãî ñèìâîëó, ùî çàäîâîëüíÿº 
ñòàíäàðòíå ð³âíÿííÿ òèïó Ëàêñà. Àñîö³éîâàí³ ñòðóêòóðè Ïóàññîíà âèçíà÷åíî çà 
äîïîìîãîþ ñïåö³àëüíîãî ïåðåòâîðåííÿ òèïó Áåêëóíäà. 
 
О НЕКОТОРЫХ КЛАССАХ ФАКТОРИЗОВАННЫХ ДИНАМИЧЕСКИХ СИСТЕМ 
И ИХ ИНТЕГРИРУЕМОСТИ 
 
Ðàññìàòðèâàåòñÿ çàäà÷à îïèñàíèÿ ôàêòîðèçîâàííûõ îïåðàòîðíûõ óðàâíåíèé, ñî-
îòâåòñòâóþùèõ îáùåìó ôàêòîðèçîâàííîìó ïñåâäîäèôôåðåíöèàëüíîìó ñèìâîëó, 
óäîâëåòâîðÿþùåìó ñòàíäàðòíîìó óðàâíåíèþ òèïà Ëàêñà. Àññîöèèðîâàííûå 
ñòðóêòóðû Ïóàññîíà îïðåäåëåíû ñ ïîìîùüþ ñïåöèàëüíîãî ïðåîáðàçîâàíèÿ òèïà 
Áåêëóíäà. 
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