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METHOD OF SOLVING THE CAUCHY PROBLEM
FOR EVOLUTIONARY EQUATION IN BANACH SPACE

We propose a method of solving the Cauchy problem for evolutionary equation with
in�nite order abstract operator in the Banach space. For the right-hand side of initial
condition, from a special subspace of the Banach space, in which vectors are represented
as Stieltjes integrals over a certain measure, the solution of the problem is represented
as certain Stieltjes integral over the same measure. We give examples of applying the
method to solving the Cauchy problem for partial di�erential equations in the class of
entire analytical functions of certain orders.

1. Statement of the problem. Let A be a given linear operator acting in the
Banach space H, and, for this operator, arbitrary powers Aj , j = 2, 3, . . . , be de�ned
in H, i.e. an arbitrary vector h ∈ H be a C∞ -vector of the operator A [1]. Denote
by x(λ) the eigenvector of the operator A, which corresponds to its eigenvalue λ,
i.e. nonzero solution in H of the equation

Ax(λ) = λx(λ), λ ∈ Λ,

where Λ is an arbitrary subset of the set C. If λ is not an eigenvalue of the operator
A then x(λ) = 0.

Consider an analytical on Λ function b(λ), which would be a symbol of the
abstract operator b(A), in general, of in�nite order, assuming that

b(A)x(λ) = b(λ)x(λ).

We shall investigate the Cauchy problem as follows:
dU

dt
= b(A)U, t ∈ R+, (1)

U | t=0 = h, (2)
where h is a given vector in H, U : R+ → H is a sought function.

Investigation of the problem (1), (2) originates from the case b(A) = A. A
special place in those investigations is taken by the semigroup theory, i.e. the theory
of evolution di�erential equations in Banach spaces. Important results of this theory
could be found in the fundamental monographs by S. G. Krein [6], E. Hille and
R. Phillips [5], A. Pazy [7], K. Yosida [8].

In the last years, new approaches to studying a Cauchy problem, both for
di�erential-operator equations and for partial di�erential equations, have been ap-
pearing. In particular, the work [2] deals with the problem (1), (2) in the case when
b(A) is an in�nite order di�erential operator, where A is a Bessel operator. The
problem (1), (2) for the in�nite order operator b(A), where A = d

dx , has been
studied in [3]. In the work [2], by means of the Fourier-Bessel integral transform, an
integral representation of a solution of the problem (1), (2) have been obtained. In
[3], by means of the proposed by the authors di�erential-symbol method, a solution
of the problem (1), (2) is represented in a di�erential form as an action of, in general,
in�nite order di�erential operator, whose symbol is an initial function, onto a certain
entire function of a parameter.

In the present paper we propose a method of solving the Cauchy problem (1),
(2), which seems to embrace, as particular cases, various above mentioned approaches.
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2. Constructing the formal solution of the problem.
De�nition. We shall say that vector h from H belongs to L, where L ⊆ H,

if on Λ there exist depending on h linear operator Rh(λ) : H → H and measure
µh(λ), such that

h =
∫

Λ

Rh(λ)x(λ)dµh(λ). (3)

So, each vector h from L can be represented as a Stieltjes integral (3) over a
certain measure.

Lemma 1. On the set Λ× R+ the following identity holds:
[

d

dt
− b(A)

] {
exp[b(λ)t]x(λ)

}
≡ 0. (4)

P r o o f. As supposed, for the operator A, arbitrary powers An, for n ∈ N,
are de�ned in H. Then for any λ ∈ Λ and t ∈ R+ we �nd:

[
d

dt
− b(A)

] {
exp[b(λ)t]x(λ)

}
≡ d

dt

{
exp[b(λ)t]x(λ)

}
−

− b(A)
{

exp[b(λ)t]x(λ)
}
≡ b(λ)

{
exp[b(λ)t]x(λ)

}
−

− exp[b(λ)t]
{

b(A)x(λ)
}
≡ b(λ)

{
exp[b(λ)t]x(λ)

}
−

− exp[b(λ)t]
{

b(λ)x(λ)
}
≡ 0.

This completes our proof. ♦

Theorem 1. Let in the problem (1), (2) the vector h belong to L, i.e. h can
be represented in the form (3). Then the formula

U(t) =
∫

Λ

Rh(λ)
{

exp[b(λ)t]x(λ)
}

dµh(λ) (5)

de�nes a formal solution U of the problem (1), (2).

P r o o f. According to the formulas (3){(5), we have
[

d

dt
− b(A)

]
U(t) =

[
d

dt
− b(A)

] ∫

Λ

Rh(λ)
{

exp[b(λ)t]x(λ)
}

dµh(λ) =

=
∫

Λ

Rh(λ)
[

d

dt
− b(A)

]{
exp[b(λ)t]x(λ)

}
dµh(λ) =

∫

Λ

Rh(λ) · 0 dµh(λ).

Since the operator Rh(λ) is linear, then the last integral is equal to zero, i.e.
U(t) formally satis�es the equation (1).

We shall prove the realization of the initial condition (2). Formula (3) implies
the following equality:

U | t=0 =
∫

Λ

Rh(λ)
{

exp[b(λ)t]x(λ)
}

dµh(λ)

∣∣∣∣∣∣
t=0

=
∫

Λ

Rh(λ)x(λ)dµh(λ) = h.

This completes our proof. ♦
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Remark. The formula (5) de�nes a solution of the problem (1), (2) just formally,
since the following equalities are not justi�ed:

[
d

dt
− b(A)

] ∫

Λ

Rh(λ)
{

exp[b(λ)t]x(λ)
}

dµh(λ) =

=
∫

Λ

Rh(λ)
[

d

dt
− b(A)

] {
exp[b(λ)t]x(λ)

}
dµh(λ),

(6)

U | t=0 =
∫

Λ

Rh(λ)
{

exp[b(λ)t]x(λ)
}∣∣∣

t=0
dµh(λ), (7)

neither is the convergence of the Stieltjes integrals in the right-hand sides of the
formulas (5){(7).

The proposed method of solving a Cauchy problem for evolution equation is quite
general. In case of special space H, operator A and measure µ(λ), one can re�ne
the obtained result and prove theorems concerning the existence and uniqueness of
the Cauchy problem solution in the corresponding spaces of functions.

3. Examples of application of the method.
Example 1. Let us take as H the class of entire analytical on R functions, i.e.

H ≡ A(R), as the operator A take the di�erentiating operator d

dx
, Λ = R. Then

exp[λx] is an eigenvector of the operator A on R. Let b(λ) be arbitrary polynomial
of degree p > 1 with real coe�cients. As a space L, we shall take the class of entire
analytical functions with the order less than p′, where 1

p
+

1
p′

= 1, i.e. L = Ap′ .

Note that the operator b
( d

dx

)
acts in Ap′ invariantly (cr. [4]).

The equality (3) for ϕ(x) ∈ L ≡ Ap′ , in case of the Dirac measure, becomes as
follows:

ϕ(x) = Rϕ(λ) exp[λx]
∣∣∣

λ=0
.

It is easily seen that the operator Rϕ(λ) on R for arbitrary function ϕ(x) ∈ Ap′

is de�ned as the in�nite order di�erential operator

Rϕ(λ) =
∞∑

k=0

ϕ(k)(0)
k!

(
d

dλ

)k

or Rϕ(λ) = ϕ

(
d

dλ

)
,

since ∀k ∈ Z+ the following equality holds:
(

d

dλ

)k

exp[λx]

∣∣∣∣∣
λ=0

= xk.

For the solution of the problem
[

∂

∂t
− b

(
∂

∂x

)]
U(t, x) = 0,

U(0, x) = ϕ(x),

(8)

the formula (5) gets the form

U(t, x) = ϕ

(
d

dλ

) {
exp[b(λ)t + λx

}∣∣∣∣
λ=0

. (9)

So, we have obtained the representation (9) of solution of the problem (8), which
has been found in [3] by means of the di�erential-symbol method.
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Note that in brackets of the formula (9) there is an entire analytical function
of order p. The in�nite order operator ϕ

(
d

dλ

)
is applicable to exp[b(λ)t + λx], if

ϕ(x) ∈ Ap′ , moreover, the action of ϕ
(

d
dλ

)
in Ap′ is invariant [4].

In the work [3] it is proved that for any ϕ(x) ∈ Ap′ , in the class of analytical
in t functions U(t, x), which for �xed t > 0 belong to Ap′ , there exists a unique
solution of the problem (8), which could be found with the formula (9). B

Example 2. In the previous example, as the operator A we chose the �rst order
di�erentiating operator. This time, for the operator A, we shall take a second order
operator, namely the Bessel operator:

A =
d2

dx2
+

2ν + 1
x

d

dx
, ν > −1

2
.

As the spaces H and L we shall take H = L =
◦

W
Ω

M (R), i.e. the set of even
entire analytical functions h(x), which as functions of complex variable z ∈ C admit
the estimate

h(z) ≤ c exp {−M(ax) + Ω(by)} ,

where z = x+ iy, a, b, c ∈ R, a > 0, b > 0, c > 0, moreover Ω, M are di�erentiable
and even on R functions, increasing and convex on R+, for which M(0) = Ω(0) = 0,
lim

x→+∞
M(x) = +∞, lim

x→+∞
Ω(x) = +∞.

Consider the problem (1), (2), in which b(λ) is entire analytical even function.
As an eigenfunction of the Bessel operator we shall take Jν , i.e. the normalized Bessel
function, and, besides, as a measure we shall take a Lebesgue measure ( dµ(λ) = dλ),
Λ = R+.

The equality (3), for this case, becomes h(x) =
∫
R+

Rh(λ)Jν(λx)dλ, and the

operator Rh(λ) is as follows:

cν

∫

R+

h(x)Jν(λx)x2ν+1dx,

where cν =
1

22νΓ2(ν + 1)
, Γ is an Euler gamma-function.

The formula (5) de�nes the solution

U(t, x) =
∫

R+

Rh(λ)
{

exp[b(λ)t]Jν(λx)
}

dλ

of the problem (1), (2), which has been obtained in [2] by means of the Fourier{Bessel
integral transform. B

4. Conclusions. In the present paper, we propose a method of solving a Cauchy
problem for the evolution equation. The problem solution is represented in a special
class of functions in the form of Stieltjes integral over a certain measure. Such a
representation includes, as particular cases, the representations of solutions of the
Cauchy problem for the evolution equation with the in�nite order Bessel operator,
in an integral form [2], and the representations of the Cauchy problem solutions in a
di�erential form, obtained by means of the di�erential-symbol method [3].

The interconnections of the obtained representation of the Cauchy problem
solution with another known representations, as well as obtaining similar representa-
tions of Cauchy problem solutions for more general equations or systems of equations
and other boundary value problems for di�erential-operator equations, need further
investigations.
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� ¯à®¯®®¢ ® ¬¥â®¤ à®§¢'ï§ã¢ ï § ¤ ç÷ �®è÷ ¤«ï ¥¢®«îæ÷©®£® à÷¢ïï §  ¡áâ-
à ªâ¨¬ ®¯¥à â®à®¬ ¥áª÷ç¥®£® ¯®àï¤ªã ¢ ¡  å®¢®¬ã ¯à®áâ®à÷. �«ï ¯à ¢®ù ç áâ¨-
¨ ¯®ç âª®¢®ù ã¬®¢¨ §÷ á¯¥æ÷ «ì®£® ¯÷¤¯à®áâ®àã ¡  å®¢®£® ¯à®áâ®àã, ¢ ïª®¬ã ¢¥ª-
â®à¨ §®¡à ¦ îâìáï ïª ÷â¥£à «¨ �â÷«âìõá  §  ¤¥ïª®î ¬÷à®î, à®§¢'ï§®ª § ¤ ç÷ §®¡-
à ¦¥® ã ¢¨£«ï¤÷ ¤¥ïª®£® ÷â¥£à «  �â÷«âìõá  §  â÷õî ¦ ¬÷à®î. �®¤ ® ¯à¨ª« ¤¨
§ áâ®áã¢ ï ¬¥â®¤ã à®§¢'ï§ã¢ ï § ¤ ç÷ �®è÷ ¤«ï ¤¨ä¥à¥æ÷ «ì¨å à÷¢ïì ÷§ ç á-
â¨¨¬¨ ¯®å÷¤¨¬¨ ã ª« á÷ æ÷«¨å   «÷â¨ç¨å äãªæ÷© ¯¥¢¨å ¯®àï¤ª÷¢.

����� ������� ������ ���� ��� �������������
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�à¥¤«®¦¥ ¬¥â®¤ à¥è¥¨ï § ¤ ç¨ �®è¨ ¤«ï í¢®«îæ¨®®£® ãà ¢¥¨ï á  ¡áâà ªâë¬
®¯¥à â®à®¬ ¡¥áª®¥ç®£® ¯®àï¤ª  ¢ ¡  å®¢®¬ ¯à®áâà áâ¢¥. �«ï ¯à ¢®© ç áâ¨  -
ç «ì®£® ãá«®¢¨ï ¨§ á¯¥æ¨ «ì®£® ¯®¤¯à®áâà áâ¢  ¡  å®¢®£® ¯à®áâà áâ¢ , ¢ ª®â®-
à®¬ ¢¥ªâ®àë ¯à¥¤áâ ¢«ïîâáï ¨â¥£à « ¬¨ �â¨«âì¥á  ¯® ¥ª®â®à®© ¬¥à¥, à¥è¥¨¥
§ ¤ ç¨ ¯à¥¤áâ ¢«¥® ¢ ¢¨¤¥ ¥ª®â®à®£® ¨â¥£à «  �â¨«âì¥á  ¯® íâ®© ¦¥ ¬¥à¥. �à¨-
¢¥¤¥ë ¯à¨¬¥àë ¨á¯®«ì§®¢ ¨ï ¬¥â®¤  à¥è¥¨ï § ¤ ç¨ �®è¨ ¤«ï ¤¨ää¥à¥æ¨ «ìëå
ãà ¢¥¨© ¢ ç áâëå ¯à®¨§¢®¤ëå ¢ ª« áá¥ æ¥«ëå   «¨â¨ç¥áª¨å äãªæ¨© ¥ª®â®àëå
¯®àï¤ª®¢.
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