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N. I. MAZURENKO

ABSORBING SYSTEMS IN THE HILBERT CUBE
RELATED TO HAUSDORF AND COVERING DIMENSION

The topology of the system (D;Z"L(Q))kGNU{O} sk where D;Z"(Q) ={Ae€
yIn yYn+4+1=

€ exp(Q) | dimg(A) > Yn,dim(A) > k} and T = {7:}i21 1s a countable ordered set
with 0 <y <72 <...< 00, is described.

Introduction. The theory of absorbing systems is one of powerful tools of
modern infinite-dimensional topology that received numerous applications to the
general problem of recognition of infinite-dimensional model spaces in topology, func-
tional analysis, measure theory etc.

One of the directions of investigations concerns the hyperspaces of compacta with
prescribed dimensional properties lying in the Euclidean spaces or, more generally, in
ANR-spaces (see [3, 6, 8]). The author first considered the hyperspaces of compacta of
given Hausdorf dimension [7]. It turned out that these hyperspaces lead to absorbing
systems ordered by some linearly ordered subsets of real line.

In this paper, we consider the hyperspaces of compacta in the Hilbert cube with
given both Hausdorf and covering dimension. Our main result (theorem 2) states that,
in some cases, these hyperspaces form absorbing systems in the Hilbert cube ordered
by partially ordered set. This allows us to describe the topology of the hyperspaces
under consideration.

The paper is organized as follows. In section 1 we recall the necessary definitions
and facts from the theory of absorbing systems. In particular, we construct a model
absorbing system ordered by product of linearly ordered sets. Theorem 1 is proved in
subsection 1.3.

1. Preliminaries. A typical metric will be denoted by d. By diam(A) we
denote the diameter of a subset A in a metric space. Given a cover U of a metric
space, we define mesh(U) as sup{diam(U) |U € U} . For z € X and & > 0 the set
O:(z) ={y € X|d(z,y) < e} is an open e-ball centered at x. Further, all spaces
are separable metrizable, all maps are continuous.

By @ we denote the Hilbert cube, @ = [][—1,1]; . The class of absolute nei-

i=1
ghborhood retracts is denoted by ANR. A closed subset A of X € ANR is called
a Z-setin X if for every continuous function £: X — (0,00) there exists a map
f: X — X\ A which is e-close to the identity in the sense that d(z, f(z)) < e(x),
for every x € X. An embedding ¢g: Y — X is called a Z-embedding if its
image ¢g(Y) is a Z-set in X . By B(Q) we denote the pseudoboundary of @,

B(Q) = Q\il;ll(—Ll)z-.

1.1. Hyperspaces. Let X be a metric space. The hyperspace of X is the space
exp X of nonempty compact subsets of X endowed with the Vietoris topology. A
base of this topology consists of the sets

Vi,...,Vp)={A€expX |AC UVi and for every i € {1,2,....,n} ANV; # 0},

i=1
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where V7,...,V,, run over the topology of X . The Vietoris topology is generated by
the Hausdorf metric dg ,

d(A, B) = inf{e > 0]A C O.(B), B C O-(A)}.

For n € N, we denote by exp,, X the subspace of exp X consisting of sets of
cardinality <n. Let exp, X = U{exp,, X | n € N}.

1.2. Hausdorf dimension. Let X be a complete separable metric space, let
F' be a compact nonempty subset of X and s a non-negative number. For ¢ > 0
define

HI(F) = 1réf Z (diamB)?,
BeB

where the infimum is taken over all covers B of F with mesh(B) <e.

Let H*(F) = liH(l) HE(F). There exists a unique number sg, the Hausdorf di-

E—

mension of F, such that H*(F) = oo whenever 0 < s < sp and H*(F) = 0
whenever sy < s < oo. We write dimgF = sg .

Proposition 1 [7]. Let X be a complete separable metric space. For every o >
>0 the set C,, = {A € exp(X) | dimgy(A) < a} is a Gs -subset of exp(X).

1.3. Absorbing systems. We briefly recall some definitions from the theory
of absorbing systems; see [1, 2, 6, 8] for details.

A space X has the Z -approzimation property if for every compact space B,
every map f: B — X that restricts to a Z -embedding on some compact subset K
of B, can be approximated arbitrarily closely by a Z -embedding ¢g: B — X such
that g|K = f|K .

Let I' be an ordered set and M, a class of metric spaces for v € I'. Put
Mrp = (M,)yer . An M -system in a space X is an order preserving (with respect
to inclusion) indexed collection (A,)yer of subsets of X such that A, € M, for
every .

An Mrp-system X in X € ANR is called strongly Mr -uniwersal in X if
for every Mr -system (A,) in @, every map f: Q@ — X that restricts toa Z-
embedding on some compact subset K of @) can be approximated by a Z -embedding
g: Q@ — X such that g|K = f|K and for every v € ' we have ¢ !(X,)\K =
=A\K.

An Mr-system X is called Mr -absorbing in X if the set (J X, is con-
tained in a o-compact o-Z-set in X and X is strongly Mr -universal in X .

By F, we denote the class of o -compact spaces.

We shall now consider a special case when the system X is a decreasing sequence
of absorbers (so I' is ordered by the relation >) and we assume that all the classes
M, are equal to a fixed class M. In this situation we shall use the term M-
absorbing system.

Let X = (Xa)aca, D = (Y3)pep be decreasing systems of sets (the sets A
and B are ordered by the relation >). The system X x Q) = (X4 X Y3)aca,geB
of sets is partially ordered by the relation 2: X, x Yg O X, x Yp if and only if
a>a and B> where a,0/ € A, 3,8 € B.

Theorem 1. For i = 1,2 let E; be a topologically complete ANR with the
Z -approzimation property and I'; be a countable ordered by the relation > set with
the first element. If X' = (X;)Veri is a strongly M -universal system in E; for
i=1,2, then the system X' xX? = (X1 x X,%,)
in E=F x E;.

is strongly M -universal
(v,y)€T1XT2 9y
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Proof For i =1,2,let d; be an admissible metric on FE; that is bounded
by 1. Then p(z,y) = max{d;(z;,y;)} is an admissible metric on E.

Consider a map f: @Q — E that restricts to a Z-embedding on some compact
subset K C @, and let € > 0. In addition, let 2l = (A(y,,/))(y,y/)er, xr, be an order
preserving (with respect to inclusion) indexed system of subsets of @ consisting of
elements of M (that is A(,,,) 2 A5 if and only if v > 75 and ' > 7). It is
obvious that the system 2l in addition should satisfy the condition:

(1) if © € Ay y)\AF7) for any v > 75 and o > 7 then = € Axyy )\ A7)
and, similarly, =z € A(%%)\AW%), where 79 and ~{ are initial elements of
sets 'y and 'y respectively.

We may assume without loss of generality that f is a Z-embedding. Write Q\K =

= |J F;, where Fy =0, each F; is compact, and F; C Int(F;11) for every i € N.
i=0
For every i« > 0 put

1

5011717 }

€; = min {Qi - €,
and observe that
502612...261‘2...>0,41im g; = 0.

11— 00

Now consider the kth component function fr: Q — Ej for k =1,2. Put oy = fx
and assume that we have constructed «o;: Q — Ej such that

(2) di(ay, i—1) < e, 04| Fim1 = a_1|Fi_1;
(3) Oéi|Q\Fi+1 = fk|Q\E+1 and Oé7,|FZ is a Z—nnbeddlng,

(4) a;l[X,ﬂ NF; = A )N E; for every v €Ty and a;l[X,f] NF; = Ay NE;
for every v €T's.

For the construction of «a;y1 satisfying our inductive hypotheses, use the strong M -
universality of the system X" for k= 1,2. We can find a Z -imbedding 3: F;11 —
— Fy, close to «;|Fi41, with 8|F; = o;|F; and ﬂ_l[Xﬂ = A(y,4) N Fit1 for every
v eTy (similarly, 37'[X2?] = A(y,,4) N Fiq1 for every v € I'y). Using the fact that
Ey isan ANR, we can assume that 8 and «|F;;, are sufficiently close so we could
extend a map U (o;|Q\Fit2): Fip1 UQ\Fi42 — Ej to amap a;41: Q — Ej such
that dk(ai+17 Cki) < Ei41 -
The maps «; obviously form a Cauchy sequence and thus the function

gk = lim (67

is continuous. It is easy to verify that gx has the following properties (for k =1,2)
(5) dilgr: fr) <e;
(6) if x € Fia\F; then di(gk(2), fu(2)) < p(f[K], fFita]);
(7) gx|K = fx|K, gr|F; is a Z-imbedding for every 7;

(8) g '[XI\K = Ay )\K for every v € Ty and 93 "[X2\K = Ay, )\K for
every v € I'y.
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Define g = (g1,92): Q@ — E1 x E5. It is easily seen that g is one-to-one, hence an

embedding. The compact set g[Q] is contained in the Z-set f[K]U B G g1[F;] x
i=0 j=0

x g2[F;] and is therefore a Z -set. Moreover, the maps f and g are clegxrly € -close

and satisty ¢g|K = f|K .

If = is an element of A, ) \K for any (v,7’) € 'y x I'y then it is easy to see
that © € A(,,,4) and = € A, ) . Therefore, taking into account condition (8), we
obtain that gi(z) € X}, g2(z) € X2, and hence g(z) € X} x X2, .

If = is not an element of A, ) \K for any (v,7") € I'1 x I'z then we consider
two possible cases:

(a) €@\ U A(y,) - Then from condition (8) it follows that g(z) €
(v,7)€T1 xT2
€ E\ U (X3 x X2,). This implies that g(z) ¢ X5 x X2,
(7,7)€L1 XTIy

(b) z € Am5y, where 7 > v or (and) 7 > ~'. Without loss of generality we
may assume that 7 > . Then, by condition (1), = € A7)\ A(y,4;) and by
condition (8), clearly, g1(z) & X . Therefore g(z) & X x Xg, .0

Corollary 1. If M = F, and a system X' s F, -absorbing in E; (for i =
= 1,2 ) then the system Xt x X2 s Fo -absorbing in E1 x Ey .

Proof follows from Theorem 1 and the definition of absorbing system. <

Corollary 2. The system (B(Q)* xQ x -+ x B(Q)" x Q x "')kneNu{o} is
Fo -absorbing in Q> X Q.

P roof follows from the standard results of the theory of absorbing sets in @
(see [6, 8]) and Corollary 1. &

2. Main result. For any non-negative integer number k and non-negative real
number v denote by D;Z(Q) the collection of all compacta in @ for which the
Hausdorf dimension is > + and the covering dimension is > k. In this section we
consider a system (D;Z(Q)) indexed by the partially ordered set T' x (N U {0})
where I' = {7;}32; with 0 <y <72 < ... <7y, <...< oo and the set NU {0}
is ordered naturally. It is easy to verify that the system (D>% )

Y Y Y Y 26 (@) yersciom
is F, -system if and only if a condition ~;11 > k holds. We shall prove that the
system % = (D;?(Q)) is an absorbing system in exp(Q) for

(7i,k) €T X (NU{0}),vi+12k
the class of all o-compact spaces. Hence the pair

(exp(@). D21 (@)

(k) ET X (NU{0}), Y412k

is homeomorphic to the pair
(Q% x Q% B@Q)" x Qx - x BQ)" x QX +); cniy0) it
A topological characterization of the pair (Q™ x Q>, B(Q)" x Q x --- x B(Q)* x

X Q X "')k,nENU{O},'ynJrle is given in Theorem 1.
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Now we have to prove the strong F, -universality of the system 2 in exp(Q) .
Theorem 2. The system 2 is strongly F, -universal in exp(Q) .

Proof Let ¢ >0 and f: Q — exp(Q) be a continuous map that restricts
to a Z -embedding on some compact subset K of @ . Without loss of generality we
may assume that f is a Z-embedding because exp(Q) is a Hilbert cube.

We consider the sets ' and NU {0} with inverted order. Now choose an any
order preserving (with respect to inclusion) system of o-compact subsets A =
= (‘A('Y"rvk))(«/n,k)el“x(NU{O}),'y,Lsz in @. It is obvious that the system A should
satisfy a condition analogical to condition (1) in the proof of Theorem 1:

(1) if 2 € A\ Agg forany v <7 and k < k then z € A('vk/,k')\A(W,E)
and similarly = € A(,,0)\‘A¢5,0), where k' = max{i € N |~; < k}. (Here, for
technical reasons, we accept that max{0} =1.) Clearly, vp» <7 and 7 <7.

Define pu: @ — 1 by

ple) = 5 -min{e, du(f(2), JIK])}

The set exp(Q)\ exp,,(Q) is locally homotopy negligible in exp(Q) (see [6]), therefore
there is a homotopy H: exp(Q) x I — exp(Q) such that

(2) Ho=lexp@);
(8) for every t € (0,1], Hi(exp(Q)) C exp,(Q) -
It is clear that we may additionally assume that
(4) for every t € [0,1], du(Hy, Lexp(q)) < 2t;
(5) for every t € (0,1] and A € exp(Q), Hi(A) € exp,([-1+t,1 —¢]*).

For every x € Q let F(z) = H(f(z),n(x)). Then if p(z) > 0, F(z) is a finite
approximation of the set f(x).

Consider a sequence of compact subsets {B,}72; in the finite-dimensional cube
[0,1]™ x {(0,0,...)} in @ defined as follows:

Bt = 1[07 1]n X {<070’ e )}7
By = | 5[0,1]" + 3(1,1,...,1)| x{(0,0,...)},
N——

It is easy to see that the sets B} are smaller copies of the cube [0,1]" x {(0,0,...)}
located on its diagonal, and the sequence of these sets converges to the point
(1,1,...,1,0,0,...) . Let 3y:[0,1]" x{(0,0,...)} — B} any homeomorphism that is
———

n
a similarity. Observe, that in this case the homeomorphism 3] does not change the
Hausdorf dimension (see [4]).

oo
For every k € NU{0} and v €T write A, = U A’(’V ) » Where for every p €
p=1

€N A?,Y )y i a compact subset of Q. Denote for every z € @, tf’w (@) =



For every n € N, using locally homotopy mnegligibility of the set
exp([0,1]™)\ exp,,([0,1]"), we can construct a homotopy H": exp([0,1]") x I —
— exp([0,1]™) that satisfies conditions similar to conditions (2)—(4). Besides, obvi-
ously, for every n € N and for every real v € [0,n), there is a set A, € exp([0,1]™)
such that the following condition is satisfied (see [4, 5]):

(6) dimpg(A,) =~ and dim(A4,) =0.
Let ¢: [0,1] — exp(Q) be a map defined by the formula
(1) = H"(Ay 1) % {(0,0,...)}.

Clearly, the map ¢ is defined for all v <n.
Now we define maps h.,, hr: Q — exp(Q) by the formulas

= U e (68227 (1,0/@))

and
oo

he(a) = uh%(x) + ( 2i1_1> (1,0,0,...)} U{(1,0,0,..)}.

i=1

Tt is easy to verify that the map hr: Q — exp(Q) satisfies the following conditions:

(7) hr is continuous;

(8) he(Q) € exp((0, 1)

(9) if z € Apx)\ A k) then v < dimp(hr(z)) <v';
(10) for every z € @Q, dim(hr(z)) =0.

The condition (9) is easy to verify, using the condition (1) and the construction of
the maps h, and hr. Condition (10) follows from condition (6).
Now we construct maps hyx, hnugoy: @ — exp(Q) by the formulas

Uﬁ" (1 (10,07, 1y (@) % {(0,0,..0})

where k' is defined in condition (1) and

o0

hyugoy(z) = {;k_hk(x) + (1 — 2,}_1) (1,0,0,...)} U{(1,0,0,...)}.

k=1
The map hnugoy: @ — exp(Q) satisfies the following conditions:
(11) hyugoy is continuous;
(12) hnugoy(Q) € exp([0,1]%)
(13) if v € Ay )\ Ay k4+1) for some 7,7 €T then dim(hyygoy(z)) =k.

Condition (13) can be easily verified by using condition (1) and the construction of
the maps hx and hyujo) -
Now define the map h: Q — exp(Q) as

h(z) = %hNu{O} (z)U % [hr(x) 4 (1,0,0,...)].

Taking into account conditions (7)-(13), we can conclude that
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(14) h is continuous;
(15) Q) S exp([0,1]>);
(16) for every v; €T and k € NU{0} where ;41 >k, h™! [D;Z(Q)} = Ay k) -

Actually, we have constructed a map which creates a set from exp(Q) with
required covering and Hausdorf dimensions. Let us construct now an injective map.
This is a final stage of our constructions.

Write the segment I =1[0,1] as I= |J I,U{1}, where I = [1 — 55,1 — 5¢] .
k=1

Let aj be any homeomorphism of the sggment [-1,1] onto the segment I . For
every £ € Q, x = (2;)52, let & € Q be defined as follows:

= ( A ,371,.172,.'151,1)2,I‘3,.’E1,$2,.’L’3,I4,...).
—~ o e N S

Define a map £: Q — exp(Q) by the formula

§(x) = [U{ak(ik)}U{l}] x{(0,0,...)}.
k=1

It is clear that £ is continuous and, for every = € @, &(x) € exp(Q). On the
other hand, £(z) is a countable subset of @ , therefore, from properties of Hausdorf
dimension (see [4, 5]) it follows that dimg(£(z)) = 0 for every z € Q. Clearly,
dim(¢(x)) =0.

Fix any z,2' € Q, x = (2;)52,, o’ = ()2, . If = # «’, then there is i € N
such that z; # z;. In this case, for some j € N, «;(#;) # a;(#}). Therefore,
&(x) # &(2') . This implies that the map ¢ is an embedding.

Finally, we define the map ¢: @ — exp(Q) by the formula

gz)= | erM(f(x)U[h(x)+(1,0,0,...)]u[5(:1:)+(2,0,O,...)]).

4
yEF (z)

We claim that this map, ¢, is an approximation of f which is required in the
definition of strong JF, -universality. That ¢ is continuous is a consequence of the
continuity of all used maps.

Claim 1. The map ¢ is well-defined and satisfies g|K = f|K . Moreover, for
every z € Q, we have dy(f(z),g(z)) < 13 min{e,du (f(z), f[K])}-

(a) Fix = € Q. Then, by condition (5), F(z) C [-1 + u(x),1 — p(x)]™. For
every y € F(x), the diameter of the set

U @ (&(z) U [h(z) + (1,0,0,..)] U [¢(z) + (2,0,0,...)])

does not exceed p(x)/44 p(x)/4+ u(x)/4 = 3u(x)/4, which implies that g(x) C Q.

(b) If wu(x) > 0, then the set g(x) is compact and non-empty, being a finite
union of compact non-empty sets. If u(xz) = 0, then the set g(z) = f(z) which is
also compact and non-empty. Therefore, for every = € @, g(z) € exp(Q) .

(c) Fix = € Q. It is clear that dy(f(x),g(z)) < 2u(x) + 3u(z)/4 = 11u(z)/4,
from which it follows that dg(f(z),g(z)) < 11/12min{e,dgy(f(x), f[K])}. So we
are done because this inequality implies that g|K = f|K .

Claim 2. The map g is injective. Let us first observe that from the fact that f

is an embedding and Claim 1 it follows that

gIR\K] N g[K] = 0. (1)

24



Now fix z,2’ € Q. If both  and 2’ belong to K , then since g|K = f|K and since
f is an imbedding, it is trivial that the equality g(z) = g(z’) implies the equality
x=2'.1f © ¢ K and 2’ € K, then from (1) it follows that g(z) # g(z'). So
without loss of generality we may assume that z,z’ € Q\K .

Let g(z) = g(2’). Our aim is to show that = = z/. We will first prove that
w(x) = p(z’). Assume the contrary, i.e. assume that u(xz) < p(2’). Let 7: Q —
— [—1,1] be the projection onto the first coordinate. Choose a point y = (a,y’) €
€ g(z) = g(2') such that

a=minm o g(z) = minm o g(z').

Observe that the point y is an element of both sets F(z) and F(z'). Since
these sets are finite, by construction of the map ¢, it is easy to see that the set

T (y+ [7%’ @ro) Nrog(z) = =« (y+ %5(1)) UC (where, clearly, C is a

finite union of finite sets) is infinite (because &(z) is infinite), while the set

e (o [H2.29]Y ri

is finite being a finite union of finite sets. This contradiction establishes that u(z) =

= p(@’).
Again, consider a point y; = (b,y]) € g(z) = g(2’) such that

b=maxm o g(r) = maxm o g(z').

Since F(z) and F(z') are finite, we can choose A > 0 such that

m(y1 + [\ AP)Nrog(z) =7 (“(f)[g(x) N[ —=A\1°]+ (b - ”(f)>> =

- (“Ef)[g(x’) A=A 1] + (b - “(f)» =7y + [-\N®) N o g(2).

Since the coordinates of = appear infinitely often in the coordinates of & (at pregiven
places), and the same is true for @', it now easily follows that = = a’.

Claim 3. The map g is a Z-embedding. Since g[K] = f[K] is a Z -set, it
suffices to show that g¢[Y] is a Z -set whenever Y C Q\K is compact. But this is
clear, because the map ¢': Q@ — exp(Q) defined by the formula

g'(x) = Os(g(x))
maps @ into the complement of g[Y], for every positive 0, and is ¢ -close to g .
Claim 4. We have g~ [Dggf(cg)} \K = A, ) \K for (vi,k) € T x (NU{0})
where v;41 > k.

The proof follows from condition (16) and from the fact that for every x € @,
dimp (§(z)) = dim({(z)) = 0.

Corollary 3. Th ( D> ) s homeo-
orollary e pair (exp(Q), D" (Q) o )T X (O(0] ey sa o is homeo

morphic to the pair (Q™x Q>, B(Q)"x @x ---xB(Q)"x Qx "')k,neNu{o},%sz'

Proof. Theset exp(Q)\ exp,(Q) islocally homotopy negligible in exp(Q) (see
[6]) and obviously D2} (Q) C exp(Q)\ exp,,(Q) for every (v,,k) € ' x (NU{0}),
therefore, taking into account Theorem 2 and Proposition 1, we can conclude that
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the system <D>V” ) is F, -absorbing in ex . Now, the
Y =k (Q) (Vn, k) ET X (NU{0}),vn 412>k & p(Q)

proof follows from Corollary 2 and the uniqueness theorem for absorbing systems (see
[8]) in a Hilbert cube.

3. Conclusions and remarks. The results of the paper demonstrate that the
topology of the hyperspaces of compacta of given Hausdorf and covering dimension
can be described by means of model absorbing system in the Hilbert cube in the
case when the values of the Hausdorf dimension form a countable subset of the real
line ordered by the type of natural numbers. A natural question arizes whether the
results remain valid for other sets of values of the Hausdorf dimension (countable or
noncountable).
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IIOTJIMHAKOYI CUCTEMU B I'lV;IbBEPTOBOMY KVYBI,
IIOB’£13AHI 3 POSMIPHICTIO TAYCAOP®A TA 3 POSMIPHICTIO,
O3HAYEHOIO YEPE3 IIOKPUTTHA

0 : (Pz1@) de DIM(Q)={A €
nucano mononroeio cucmemu (DI (@) EENLLO} oy T s 3k e D) (@)={ exp(Q) |

dimpg (A) > yn,dim(A) > k} @ I = {y}21 - saivenna 6nopadkosana MHOMCURG TMAKA, ULO
0<Mm<y<...<o0.

IIOTIJIOIIAKOIIME CUCTEMBI B THJIBBEPTOBOM KVYBE,
CBS3AHHBIE C PABMEPHOCTBIO XAYCAOP®A I PABMEPHOCTBIO,
OIIPEJIEJIEHHOMN ITIOCPEJACTBOM IIOKPHITUN

Onucana mMonoac2us Cucmemot (D;Z” (Q)> , 2de Diz” Q) = {4 €
- keNU{0},yn €T, vn41 >k =

€ exp(Q) | dimg(A) > vn,dim(A) > k} u ' = {7:}21 - cuémmuoe ynopadowennoe mmo-
atcecmeo maroe, wmo 0 <y <y2 < ...<00.
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