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N. I. Mazurenko

ABSORBING SYSTEMS IN THE HILBERT CUBE
RELATED TO HAUSDORF AND COVERING DIMENSION

The topology of the system
(
D>γn
≥k (Q)

)
k∈N∪{0},γn∈Γ,γn+1≥k

, where D>γn
≥k (Q) = {A ∈

∈ exp(Q) | dimH(A) > γn, dim(A) ≥ k} and Γ = {γi}∞i=1 is a countable ordered set
with 0 < γ1 < γ2 < . . . < ∞ , is described.

Introduction. The theory of absorbing systems is one of powerful tools of
modern in�nite-dimensional topology that received numerous applications to the
general problem of recognition of in�nite-dimensional model spaces in topology, func-
tional analysis, measure theory etc.

One of the directions of investigations concerns the hyperspaces of compacta with
prescribed dimensional properties lying in the Euclidean spaces or, more generally, in
ANR-spaces (see [3, 6, 8]). The author �rst considered the hyperspaces of compacta of
given Hausdorf dimension [7]. It turned out that these hyperspaces lead to absorbing
systems ordered by some linearly ordered subsets of real line.

In this paper, we consider the hyperspaces of compacta in the Hilbert cube with
given both Hausdorf and covering dimension. Our main result (theorem 2) states that,
in some cases, these hyperspaces form absorbing systems in the Hilbert cube ordered
by partially ordered set. This allows us to describe the topology of the hyperspaces
under consideration.

The paper is organized as follows. In section 1 we recall the necessary de�nitions
and facts from the theory of absorbing systems. In particular, we construct a model
absorbing system ordered by product of linearly ordered sets. Theorem 1 is proved in
subsection 1.3.

1. Preliminaries. A typical metric will be denoted by d . By diam(A) we
denote the diameter of a subset A in a metric space. Given a cover U of a metric
space, we de�ne mesh(U) as sup{diam(U) | U ∈ U} . For x ∈ X and ε > 0 the set
Oε(x) = {y ∈ X|d(x, y) < ε} is an open ε -ball centered at x . Further, all spaces
are separable metrizable, all maps are continuous.

By Q we denote the Hilbert cube, Q =
∞∏

i=1

[−1, 1]i . The class of absolute nei-
ghborhood retracts is denoted by ANR . A closed subset A of X ∈ ANR is called
a Z -set in X if for every continuous function ε : X −→ (0,∞) there exists a map
f : X −→ X\A which is ε -close to the identity in the sense that d(x, f(x)) < ε(x) ,
for every x ∈ X. An embedding g : Y −→ X is called a Z -embedding if its
image g(Y ) is a Z -set in X . By B(Q) we denote the pseudoboundary of Q ,
B(Q) = Q\

∞∏
i=1

(−1, 1)i .

1.1. Hyperspaces. Let X be a metric space. The hyperspace of X is the space
exp X of nonempty compact subsets of X endowed with the Vietoris topology. A
base of this topology consists of the sets

〈V1, . . . , Vn〉 = {A ∈ exp X | A ⊂
n⋃

i=1

Vi and for every i ∈ {1, 2, ..., n} A ∩ Vi 6= ∅},
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where V1, ..., Vn run over the topology of X . The Vietoris topology is generated by
the Hausdorf metric dH ,

dH(A,B) = inf{ε > 0|A ⊂ Oε(B), B ⊂ Oε(A)}.
For n ∈ N , we denote by expn X the subspace of exp X consisting of sets of

cardinality ≤ n . Let expω X = ∪{expn X | n ∈ N} .

1.2. Hausdorf dimension. Let X be a complete separable metric space, let
F be a compact nonempty subset of X and s a non-negative number. For ε > 0
de�ne

Hs
ε(F ) = inf

B

∑

B∈B
(diamB)s,

where the in�mum is taken over all covers B of F with mesh(B) < ε .
Let Hs(F ) = lim

ε→0
Hs

ε(F ) . There exists a unique number s0 , the Hausdorf di-
mension of F , such that Hs(F ) = ∞ whenever 0 ≤ s < s0 and Hs(F ) = 0
whenever s0 < s < ∞ . We write dimHF = s0 .

Proposition 1 [7]. Let X be a complete separable metric space. For every α ≥
≥ 0 the set Cα = {A ∈ exp(X) | dimH(A) ≤ α} is a Gδ -subset of exp(X) .

1.3. Absorbing systems. We briey recall some de�nitions from the theory
of absorbing systems; see [1, 2, 6, 8] for details.

A space X has the Z -approximation property if for every compact space B ,
every map f : B → X that restricts to a Z -embedding on some compact subset K
of B , can be approximated arbitrarily closely by a Z -embedding g : B → X such
that g|K = f |K .

Let Γ be an ordered set and Mγ a class of metric spaces for γ ∈ Γ . Put
MΓ = (Mγ)γ∈Γ . An MΓ -system in a space X is an order preserving (with respect
to inclusion) indexed collection (Aγ)γ∈Γ of subsets of X such that Aγ ∈ Mγ for
every γ .

An MΓ -system X in X ∈ ANR is called strongly MΓ -universal in X if
for every MΓ -system (Aγ) in Q , every map f : Q −→ X that restricts to a Z -
embedding on some compact subset K of Q can be approximated by a Z -embedding
g : Q −→ X such that g|K = f |K and for every γ ∈ Γ we have g−1(Xγ)\K =
= Aγ\K .

An MΓ -system X is called MΓ -absorbing in X if the set
⋃

γ∈Γ Xγ is con-
tained in a σ -compact σ - Z -set in X and X is strongly MΓ -universal in X .

By Fσ we denote the class of σ -compact spaces.
We shall now consider a special case when the system X is a decreasing sequence

of absorbers (so Γ is ordered by the relation ≥ ) and we assume that all the classes
Mγ are equal to a �xed class M . In this situation we shall use the term M -
absorbing system.

Let X = (Xα)α∈A , Y = (Yβ)β∈B be decreasing systems of sets (the sets A
and B are ordered by the relation ≥ ). The system X × Y = (Xα × Yβ)α∈A,β∈B

of sets is partially ordered by the relation ⊇ : Xα × Yβ ⊇ Xα′ × Yβ′ if and only if
α ≥ α′ and β ≥ β′ where α, α′ ∈ A , β, β′ ∈ B .

Theorem 1. For i = 1, 2 let Ei be a topologically complete ANR with the
Z -approximation property and Γi be a countable ordered by the relation ≥ set with
the �rst element. If Xi = (Xi

γ)γ∈Γi is a strongly M -universal system in Ei for
i = 1, 2 , then the system X1×X2 =

(
X1

γ ×X2
γ′

)
(γ,γ′)∈Γ1×Γ2

is strongly M -universal
in E = E1 × E2 .
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P r o o f. For i = 1, 2 , let di be an admissible metric on Ei that is bounded
by 1. Then ρ(x, y) = max{di(xi, yi)} is an admissible metric on E .

Consider a map f : Q → E that restricts to a Z -embedding on some compact
subset K ⊆ Q , and let ε > 0 . In addition, let A = (A(γ,γ′))(γ,γ′)∈Γ1×Γ2 be an order
preserving (with respect to inclusion) indexed system of subsets of Q consisting of
elements of M (that is A(γ,γ′) ⊇ A(γ,γ′) if and only if γ ≥ γ and γ′ ≥ γ′ ). It is
obvious that the system A in addition should satisfy the condition:

(1 ) if x ∈ A(γ,γ′)\A(γ,γ′) for any γ ≥ γ and γ′ ≥ γ′ then x ∈ A(γ0,γ′)\A(γ0,γ′)
and, similarly, x ∈ A(γ,γ′0)\A(γ,γ′0) , where γ0 and γ′0 are initial elements of
sets Γ1 and Γ2 respectively.

We may assume without loss of generality that f is a Z -embedding. Write Q\K =

=
∞⋃

i=0

Fi , where F0 = ∅ , each Fi is compact, and Fi ⊂ Int(Fi+1) for every i ∈ N .
For every i ≥ 0 put

εi = min
{

2−i · ε, 1
2
ρ (f [K], f [Fi])

}

and observe that
ε0 ≥ ε1 ≥ . . . ≥ εi ≥ . . . > 0, lim

i→∞
εi = 0.

Now consider the k th component function fk : Q → Ek for k = 1, 2 . Put α0 = fk

and assume that we have constructed αi : Q → Ek such that

(2 ) d̂k(αi, αi−1) < εi, αi|Fi−1 = αi−1|Fi−1;

(3 ) αi|Q\Fi+1 = fk|Q\Fi+1 and αi|Fi is a Z -imbedding;

(4 ) α−1
i [X1

γ ]∩Fi = A(γ,γ′0) ∩Fi for every γ ∈ Γ1 and α−1
i [X2

γ ]∩Fi = A(γ0,γ) ∩Fi

for every γ ∈ Γ2 .

For the construction of αi+1 satisfying our inductive hypotheses, use the strong M -
universality of the system Xk for k = 1, 2 . We can �nd a Z -imbedding β : Fi+1 →
→ Ek , close to αi|Fi+1 , with β|Fi = αi|Fi and β−1[X1

γ ] = A(γ,γ′0) ∩ Fi+1 for every
γ ∈ Γ1 (similarly, β−1[X2

γ ] = A(γ0,γ) ∩ Fi+1 for every γ ∈ Γ2 ). Using the fact that
Ek is an ANR , we can assume that β and α|Fi+1 are su�ciently close so we could
extend a map β ∪ (αi|Q\Fi+2) : Fi+1 ∪Q\Fi+2 → Ek to a map αi+1 : Q → Ek such
that d̂k(αi+1, αi) < εi+1 .

The maps αi obviously form a Cauchy sequence and thus the function

gk = lim
i→∞

αi

is continuous. It is easy to verify that gk has the following properties (for k = 1, 2 )

(5 ) d̂k(gk, fk) < ε ;

(6 ) if x ∈ Fi+1\Fi then dk(gk(x), fk(x)) < ρ(f [K], f [Fi+1]) ;

(7 ) gk|K = fk|K , gk|Fi is a Z -imbedding for every i ;

(8 ) g−1
1 [X1

γ ]\K = A(γ,γ′0)\K for every γ ∈ Γ1 and g−1
2 [X2

γ ]\K = A(γ0,γ)\K for
every γ ∈ Γ2 .
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De�ne g = (g1, g2) : Q → E1 × E2 . It is easily seen that g is one-to-one, hence an
embedding. The compact set g[Q] is contained in the Z -set f [K] ∪

∞⋃
i=0

∞⋃
j=0

g1[Fi]×
× g2[Fj ] and is therefore a Z -set. Moreover, the maps f and g are clearly ε -close
and satisfy g|K = f |K .

If x is an element of A(γ,γ′)\K for any (γ, γ′) ∈ Γ1 × Γ2 then it is easy to see
that x ∈ A(γ0,γ′) and x ∈ A(γ,γ′0) . Therefore, taking into account condition (8 ), we
obtain that g1(x) ∈ X1

γ , g2(x) ∈ X2
γ′ and hence g(x) ∈ X1

γ ×X2
γ′ .

If x is not an element of A(γ,γ′)\K for any (γ, γ′) ∈ Γ1 × Γ2 then we consider
two possible cases:

(a) x ∈ Q\ ⋃
(γ,γ′)∈Γ1×Γ2

A(γ,γ′) . Then from condition (8 ) it follows that g(x) ∈

∈ E\ ⋃
(γ,γ′)∈Γ1×Γ2

(X1
γ ×X2

γ′) . This implies that g(x) 6∈ X1
γ ×X2

γ′ .

(b) x ∈ A(γ,γ′) , where γ > γ or (and) γ′ > γ′ . Without loss of generality we
may assume that γ > γ . Then, by condition (1 ), x ∈ A(γ,γ′0)\A(γ,γ′0) and by
condition (8 ), clearly, g1(x) 6∈ X1

γ . Therefore g(x) 6∈ X1
γ ×X2

γ′ . ♦

Corollary 1. If M = Fσ and a system Xi is Fσ -absorbing in Ei (for i =
= 1, 2 ) then the system X1 ×X2 is Fσ -absorbing in E1 × E2 .

P r o o f follows from Theorem 1 and the de�nition of absorbing system. ♦

Corollary 2. The system
(
B(Q)k ×Q× · · · ×B(Q)n ×Q× · · ·)

k,n∈N∪{0} is
Fσ -absorbing in Q∞ ×Q∞ .

P r o o f follows from the standard results of the theory of absorbing sets in Q
(see [6, 8]) and Corollary 1. ♦

2. Main result. For any non-negative integer number k and non-negative real
number γ denote by D>γ

≥k(Q) the collection of all compacta in Q for which the
Hausdorf dimension is > γ and the covering dimension is ≥ k . In this section we
consider a system

(
D>γ
≥k(Q)

)
indexed by the partially ordered set Γ × (N ∪ {0})

where Γ = {γi}∞i=1 with 0 < γ1 < γ2 < . . . < γn < . . . < ∞ and the set N ∪ {0}
is ordered naturally. It is easy to verify that the system

(
D>γi

≥k (Q)
)

(γi,k)∈Γ×(N∪{0})
is Fσ -system if and only if a condition γi+1 ≥ k holds. We shall prove that the
system D =

(
D>γi

≥k (Q)
)

(γi,k)∈Γ×(N∪{0}),γi+1≥k
is an absorbing system in exp(Q) for

the class of all σ -compact spaces. Hence the pair
(
exp(Q), D>γn

≥k (Q)
)

(γn,k)∈Γ×(N∪{0}),γn+1≥k

is homeomorphic to the pair
(
Q∞ ×Q∞, B(Q)n ×Q× · · · ×B(Q)k ×Q× · · ·)

k,n∈N∪{0},γn+1≥k
.

A topological characterization of the pair (Q∞ ×Q∞, B(Q)n ×Q× · · · × B(Q)k ×

×Q× · · · )k,n∈N∪{0},γn+1≥k is given in Theorem 1.
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Now we have to prove the strong Fσ -universality of the system D in exp(Q) .

Theorem 2. The system D is strongly Fσ -universal in exp(Q) .

P r o o f. Let ε > 0 and f : Q → exp(Q) be a continuous map that restricts
to a Z -embedding on some compact subset K of Q . Without loss of generality we
may assume that f is a Z -embedding because exp(Q) is a Hilbert cube.

We consider the sets Γ and N ∪ {0} with inverted order. Now choose an any
order preserving (with respect to inclusion) system of σ -compact subsets A =
=

(A(γn,k)

)
(γn,k)∈Γ×(N∪{0}),γn+1≥k

in Q . It is obvious that the system A should
satisfy a condition analogical to condition (1 ) in the proof of Theorem 1:
(1 ) if x ∈ A(γ,k)\A(γ,k) for any γ ≤ γ and k ≤ k then x ∈ A(γk′ ,k)\A(γ

k′ ,k)

and similarly x ∈ A(γ,0)\A(γ,0) , where k′ = max{i ∈ N | γi ≤ k} . (Here, for
technical reasons, we accept that max{∅} = 1 .) Clearly, γk′ ≤ γ and γk

′ ≤ γ .
De�ne µ : Q → I by

µ(x) =
1
3
·min{ε, dH(f(x), f [K])}.

The set exp(Q)\ expω(Q) is locally homotopy negligible in exp(Q) (see [6]), therefore
there is a homotopy H : exp(Q)× I→ exp(Q) such that
(2 ) H0 = 1exp(Q) ;

(3 ) for every t ∈ (0, 1] , Ht(exp(Q)) ⊆ expω(Q) .
It is clear that we may additionally assume that
(4 ) for every t ∈ [0, 1] , d̂H(Ht, 1exp(Q)) ≤ 2t ;

(5 ) for every t ∈ (0, 1] and A ∈ exp(Q) , Ht(A) ∈ expω([−1 + t, 1− t]∞) .
For every x ∈ Q let F (x) = H(f(x), µ(x)) . Then if µ(x) > 0 , F (x) is a �nite
approximation of the set f(x) .

Consider a sequence of compact subsets {Bn
p }∞p=1 in the �nite-dimensional cube

[0, 1]n × {(0, 0, . . .)} in Q de�ned as follows:

Bn
1 = 1

2 [0, 1]n × {(0, 0, . . .)},

Bn
2 =


 1

22 [0, 1]n + 1
2 (1, 1, . . . , 1︸ ︷︷ ︸

n

)


× {(0, 0, . . .)},

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ,

Bn
p =


 1

2p [0, 1]n +
(
1− 1

2p−1

)
(1, 1, . . . , 1︸ ︷︷ ︸

n

)


× {(0, 0, . . .)},

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · .

It is easy to see that the sets Bn
p are smaller copies of the cube [0, 1]n × {(0, 0, . . .)}

located on its diagonal, and the sequence of these sets converges to the point
(1, 1, . . . , 1︸ ︷︷ ︸

n

, 0, 0, . . .) . Let βn
p : [0, 1]n×{(0, 0, . . .)} → Bn

p any homeomorphism that is

a similarity. Observe, that in this case the homeomorphism βn
p does not change the

Hausdorf dimension (see [4]).
For every k ∈ N∪{0} and γ ∈ Γ write A(γ,k) =

∞⋃
p=1

Ap
(γ,k) , where for every p ∈

∈ N Ap
(γ,k) is a compact subset of Q . Denote for every x ∈ Q , tp(γ,k)(x) =

= d(x, Ap
(γ,k)) .
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For every n ∈ N , using locally homotopy negligibility of the set
exp([0, 1]n)\ expω([0, 1]n) , we can construct a homotopy Hn : exp([0, 1]n) × I →
→ exp([0, 1]n) that satis�es conditions similar to conditions (2 ){(4 ). Besides, obvi-
ously, for every n ∈ N and for every real γ ∈ [0, n) , there is a set Aγ ∈ exp([0, 1]n)
such that the following condition is satis�ed (see [4, 5]):

(6 ) dimH(Aγ) = γ and dim(Aγ) = 0 .

Let ϕn
γ : [0, 1] → exp(Q) be a map de�ned by the formula

ϕn
γ (t) = Hn(Aγ , t)× {(0, 0, . . .)}.

Clearly, the map ϕn
γ is de�ned for all γ ≤ n .

Now we de�ne maps hγi
, hΓ : Q → exp(Q) by the formulas

hγi(x) =
∞⋃

p=1

β[γi+1]+1
p

(
ϕ[γi+1]+1

γi+1

(
tp(γi,0)

(x)
))

and
hΓ(x) =

∞⋃

i=1

[
1
2i

hγi
(x) +

(
1− 1

2i−1

)
(1, 0, 0, . . .)

]
∪ {(1, 0, 0, . . .)}.

It is easy to verify that the map hΓ : Q → exp(Q) satis�es the following conditions:

(7 ) hΓ is continuous;

(8 ) hΓ(Q) ⊆ exp([0, 1]∞) ;

(9 ) if x ∈ A(γ,k)\A(γ′,k′) then γ < dimH(hΓ(x)) ≤ γ′ ;

(10 ) for every x ∈ Q , dim(hΓ(x)) = 0 .

The condition (9 ) is easy to verify, using the condition (1 ) and the construction of
the maps hγ and hΓ . Condition (10 ) follows from condition (6 ).

Now we construct maps hk, hN∪{0} : Q → exp(Q) by the formulas

hk(x) =
∞⋃

p=1

βk
p

(
Hk

(
[0, 1]k, tp(γk′ ,k)(x)

)
× {(0, 0, . . .)}

)
,

where k′ is de�ned in condition (1 ) and

hN∪{0}(x) =
∞⋃

k=1

[
1
2k

hk(x) +
(

1− 1
2k−1

)
(1, 0, 0, . . .)

]
∪ {(1, 0, 0, . . .)}.

The map hN∪{0} : Q → exp(Q) satis�es the following conditions:

(11 ) hN∪{0} is continuous;

(12 ) hN∪{0}(Q) ⊆ exp([0, 1]∞) ;

(13 ) if x ∈ A(γ,k)\A(γ′,k+1) for some γ, γ′ ∈ Γ then dim(hN∪{0}(x)) = k .

Condition (13 ) can be easily veri�ed by using condition (1 ) and the construction of
the maps hk and hN∪{0} .

Now de�ne the map h : Q → exp(Q) as

h(x) =
1
2
hN∪{0}(x) ∪ 1

2
[hΓ(x) + (1, 0, 0, . . .)] .

Taking into account conditions (7 ){(13 ), we can conclude that
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(14 ) h is continuous;

(15 ) h(Q) ⊆ exp([0, 1]∞) ;

(16 ) for every γi ∈ Γ and k ∈ N ∪ {0} where γi+1 ≥ k , h−1
[
D>γi

≥k (Q)
]

= A(γi,k) .

Actually, we have constructed a map which creates a set from exp(Q) with
required covering and Hausdorf dimensions. Let us construct now an injective map.
This is a �nal stage of our constructions.

Write the segment I = [0, 1] as I =
∞⋃

k=1

Ik∪{1} , where Ik =
[
1− 1

2k−1 , 1− 1
2k

]
.

Let αk be any homeomorphism of the segment [−1, 1] onto the segment Ik . For
every x ∈ Q , x = (xi)∞i=1 let x̂ ∈ Q be de�ned as follows:

x̂ = ( x1︸︷︷︸, x1, x2︸ ︷︷ ︸, x1, x2, x3︸ ︷︷ ︸, x1, x2, x3, x4︸ ︷︷ ︸, . . .).

De�ne a map ξ : Q → exp(Q) by the formula

ξ(x) =

[ ∞⋃

k=1

{αk(x̂k)} ∪ {1}
]
× {(0, 0, . . .)}.

It is clear that ξ is continuous and, for every x ∈ Q , ξ(x) ∈ exp(Q) . On the
other hand, ξ(x) is a countable subset of Q , therefore, from properties of Hausdorf
dimension (see [4, 5]) it follows that dimH(ξ(x)) = 0 for every x ∈ Q . Clearly,
dim(ξ(x)) = 0 .

Fix any x, x′ ∈ Q , x = (xi)∞i=1 , x′ = (x′i)
∞
i=1 . If x 6= x′ , then there is i ∈ N

such that xi 6= x′i . In this case, for some j ∈ N , αj(x̂j) 6= αj(x̂′j) . Therefore,
ξ(x) 6= ξ(x′) . This implies that the map ξ is an embedding.

Finally, we de�ne the map g : Q → exp(Q) by the formula

g(x) =
⋃

y∈F (x)

y +
µ(x)

4
(ξ(x) ∪ [h(x) + (1, 0, 0, . . .)] ∪ [ξ(x) + (2, 0, 0, . . .)]) .

We claim that this map, g , is an approximation of f which is required in the
de�nition of strong Fσ -universality. That g is continuous is a consequence of the
continuity of all used maps. ♦

Claim 1. The map g is well-de�ned and satis�es g|K = f |K . Moreover, for
every x ∈ Q , we have dH(f(x), g(x)) ≤ 11

12 min{ε, dH(f(x), f [K])} .
(a) Fix x ∈ Q . Then, by condition (5 ), F (x) ⊆ [−1 + µ(x), 1 − µ(x)]n . For

every y ∈ F (x) , the diameter of the set

y +
µ(x)

4
(ξ(x) ∪ [h(x) + (1, 0, 0, . . .)] ∪ [ξ(x) + (2, 0, 0, . . .)])

does not exceed µ(x)/4+ µ(x)/4+ µ(x)/4 = 3µ(x)/4 , which implies that g(x) ⊆ Q .
(b) If µ(x) > 0 , then the set g(x) is compact and non-empty, being a �nite

union of compact non-empty sets. If µ(x) = 0 , then the set g(x) = f(x) which is
also compact and non-empty. Therefore, for every x ∈ Q , g(x) ∈ exp(Q) .

(c) Fix x ∈ Q . It is clear that dH(f(x), g(x)) ≤ 2µ(x) + 3µ(x)/4 = 11µ(x)/4 ,
from which it follows that dH(f(x), g(x)) ≤ 11/12min{ε, dH(f(x), f [K])} . So we
are done because this inequality implies that g|K = f |K .

Claim 2. The map g is injective. Let us �rst observe that from the fact that f

is an embedding and Claim 1 it follows that

g[Q\K] ∩ g[K] = ∅. (1)
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Now �x x, x′ ∈ Q . If both x and x′ belong to K , then since g|K = f |K and since
f is an imbedding, it is trivial that the equality g(x) = g(x′) implies the equality
x = x′ . If x 6∈ K and x′ ∈ K , then from (1) it follows that g(x) 6= g(x′) . So
without loss of generality we may assume that x, x′ ∈ Q\K .

Let g(x) = g(x′) . Our aim is to show that x = x′ . We will �rst prove that
µ(x) = µ(x′) . Assume the contrary, i.e. assume that µ(x) < µ(x′) . Let π : Q →
→ [−1, 1] be the projection onto the �rst coordinate. Choose a point y = (a, y′) ∈
∈ g(x) = g(x′) such that

a = min π ◦ g(x) = min π ◦ g(x′).

Observe that the point y is an element of both sets F (x) and F (x′) . Since
these sets are �nite, by construction of the map g , it is easy to see that the set
π

(
y +

[
−µ(x)

4 , µ(x)
4

]∞)
∩ π ◦ g(x) = π

(
y + µ(x)

4 ξ(x)
)
∪ C (where, clearly, C is a

�nite union of �nite sets) is in�nite (because ξ(x) is in�nite), while the set

π

(
y +

[
−µ(x)

4
,
µ(x)

4

]∞)
∩ π ◦ g(x′)

is �nite being a �nite union of �nite sets. This contradiction establishes that µ(x) =
= µ(x′) .

Again, consider a point y1 = (b, y′1) ∈ g(x) = g(x′) such that

b = max π ◦ g(x) = max π ◦ g(x′).

Since F (x) and F (x′) are �nite, we can choose λ > 0 such that

π(y1 + [−λ, λ]∞) ∩ π ◦ g(x) = π

(
µ(x)

4
[ξ(x) ∩ [1− λ, 1]∞] +

(
b− µ(x)

4

))
=

= π

(
µ(x)

4
[ξ(x′) ∩ [1− λ, 1]∞] +

(
b− µ(x)

4

))
= π(y1 + [−λ, λ]∞) ∩ π ◦ g(x′).

Since the coordinates of x appear in�nitely often in the coordinates of x̂ (at pregiven
places), and the same is true for x′ , it now easily follows that x = x′ .

Claim 3. The map g is a Z -embedding. Since g[K] = f [K] is a Z -set, it
su�ces to show that g[Y ] is a Z -set whenever Y ⊆ Q\K is compact. But this is
clear, because the map g′ : Q −→ exp(Q) de�ned by the formula

g′(x) = Oδ(g(x))

maps Q into the complement of g[Y ] , for every positive δ , and is δ -close to g .
Claim 4. We have g−1

[
D>γi

≥k (Q)
]
\K = A(γi,k)\K for (γi, k) ∈ Γ× (N ∪ {0})

where γi+1 ≥ k .
The proof follows from condition (16 ) and from the fact that for every x ∈ Q ,

dimH(ξ(x)) = dim(ξ(x)) = 0 .

Corollary 3. The pair
(
exp(Q), D>γn

≥k (Q)
)

(γn,k)∈Γ×(N∪{0}),γn+1≥k
is homeo-

morphic to the pair
(
Q∞×Q∞, B(Q)n×Q× · · ·×B(Q)k×Q× · · ·)

k,n∈N∪{0},γn+1≥k
.

P r o o f. The set exp(Q)\ expω(Q) is locally homotopy negligible in exp(Q) (see
[6]) and obviously D>γn

≥k (Q) ⊆ exp(Q)\ expω(Q) for every (γn, k) ∈ Γ × (N ∪ {0}) ,
therefore, taking into account Theorem 2 and Proposition 1, we can conclude that
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the system
(
D>γn

≥k (Q)
)

(γn,k)∈Γ×(N∪{0}),γn+1≥k
is Fσ -absorbing in exp(Q) . Now, the

proof follows from Corollary 2 and the uniqueness theorem for absorbing systems (see
[8]) in a Hilbert cube. ♦

3. Conclusions and remarks. The results of the paper demonstrate that the
topology of the hyperspaces of compacta of given Hausdorf and covering dimension
can be described by means of model absorbing system in the Hilbert cube in the
case when the values of the Hausdorf dimension form a countable subset of the real
line ordered by the type of natural numbers. A natural question arizes whether the
results remain valid for other sets of values of the Hausdorf dimension (countable or
noncountable).
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